Homework assigned Friday, October 29

In the following problems we have the equations

$$
\begin{aligned}
& \frac{d x}{d t}=r_{1} x\left(\frac{K_{1}-x-\alpha y}{K_{1}}\right) \\
& \frac{d y}{d t}=r_{2} y\left(\frac{K_{2}-y-\beta x}{K_{2}}\right)
\end{aligned}
$$

for competition between two species. Answer the questions based on the following pictures.

(1) What is the carrying capacity for the x-species with the absence of the y-species?
(2) What is the carrying capacity for the y-species with the absence of the x-species?
(3) Draw in arrows in the figure showing the directions that x and y are changing.
(4) If $x(0)=10$ and $y(0)=20$ estiamate $x(100)$ and $y(100)$.

(1) What is the carrying capacity for the x-species with the absence of the y-species?
(2) What is the carrying capacity for the y-species with the absence of the x-species?
(3) Draw in arrows in the figure showing the directions that x and y are changing.
(4) If $x(0)=10$ and $y(0)=20$ estiamate $x(100)$ and $y(100)$.

(1) What is the carrying capacity for the x-species with the absence of the y-species?
(2) What is the carrying capacity for the y-species with the absence of the x-species?
(3) Draw in arrows in the figure showing the directions that x and y are changing.
(4) If $x(0)=80$ and $y(0)=5$ estiamate $x(100)$ and $y(100)$.

(1) What is the carrying capacity for the x-species with the absence of the y-species?
(2) What is the carrying capacity for the y-species with the absence of the x-species?
(3) Draw in arrows in the figure showing the directions that x and y are changing.
(4) If $x(0)=300$ and $y(0)=5$ estiamate $x(100)$ and $y(100)$.
(5) If $x(0)=5$ and $y(0)=45$ estimate $x(100)$ and $y(100)$.

