
Homework for Friday, September 10

We now wish to use what we have learned to work to model some problems
about population growth. Our most basic model is that without any outside
constraints that the rate of growth of a population is proportional to the
size of the population. That is

dP

dt
= rP

where the constant of proportionality, r, is the intrinsic growth rate of
the population. In this case we know the solution is

P (t) = P (0)ert

is exponential growth (when r > 0) or exponential decay (when r < 0). The
graphs of solutions look like those in Figures 1 and 2

Figure 1. Exponential Growth: The solutions to y′ = .1y
with the initial conditions y(0) = −.2, y(0) = 0, y(0) = .5,
y(0) = 1, y(0) = 1.5

Figure 2. Exponential Decay: The solutions to y′ = −.1y
with the initial conditions y(0) = −.2, y(0) = 0, y(0) = .5,
y(0) = 1, y(0) = 1.5

Our other basic model is logistic growth. To review how we got this
model we assume that the intrinsic growth rate for a small population was
r > 0 and that the maximum size of the population that the environment
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would support was K (the carrying capacity). We also supposed that the
intrinsic growth rate depended on the size of the population. Let

R(P ) = intrinsic growth rate for a population of size P .

Then the rate equation for the growth of the population is

(1)
dP

dt
= R(P )P

We should have

R(0) = r (As the intrinsic growth rate for small P is r)

Also

R(P ) > 0 for 0 < P < K

{

As the population size is less than
what the environment will support so
it is increasing

R(P ) < 0 for K < P

{

As the population size is more than
what the environment will support, so
it is decreasing.

So the graph of R(P ) as a function of P should look like any of the functions
in Figure 3

R
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Figure 3

The simplest of these is the straight line. This has the equation

R(P ) = r

(

1 −
P

K

)

.

Using this in equation (1) gives

dP

dt
= rP

(

1 −
P

K

)
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which is the logistic equation . This can be solved explicitly

(2) P (t) =
P0K

P0 + (K − P0)e−rt

but for much of what we will be doing having the explicit solution is less
useful that just understanding how solutions behave.

Figure 4. Logistic Growth: The solutions to P ′(t) =
.1P (1 − P ) with the initial conditions P (0) = 0, P (0) = .1,
P (0) = .5, P (0) = .8, P (0) = 1.0, P (0) = 1.2, P (0) = 1.5.
Note that in logistic growth all solutions with P (0) > 0 tend
to the carrying capacity (in this case K = 1.)

Problem 1. Write down the logistic equation with intrinsic growth rate .03
and carrying capacity 500.

Solution. In this case r = .03 and K = 500 so the equation is

dP

dt
= .03P

(

1 −
P

K

)

�

We now look at some models the extend these somewhat and let us make
predictions how such things as harvesting and stocking effect populations.

Problem 2. A population of fish is a pond has an intrinsic growth rate of
−.03 fish per fish per year and thus is dying out. If the pond stocked at the
rate of 60 fish per year, find the stable equilibrium size of the population.

Solution. Let P (t) be the size of the population after t years. We first write
the new rate equation. It is

dP

dt
= −.03P + 60.

We then find the equilibrium size of the population by setting −.3P +60 = 0
and solving for P . The solution is

P =
−60

−.03
= 2,000.
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Figure 5. Graph showing where solutions to dP
dt

= −.03P +
60 are increasing or decreasing.

Now draw the picture showing where the solution is increasing and decreas-
ing. From this we see that the stable population is P = 2,000. �

Here are some related problems for you to try.

Problem 3. If the fish in our pound have an intrinsic growth rate of of
−.05 fish per fish per year and the pond is stocked at a rate of 100 fish per
year, find the stable equilibrium population of the pond. Do the same with
intrinsic growth rate of of −.12 and a stocking rate of 300.

Problem 4. Hopefully this problem will convince you that algebra can make
things easier. Assume that we have a population with an intrinsic growth
rate of r = −a where a is positive and we stock the population at a rate of
S. Then what is the stable population size after we start stocking?

Outline of Solution. The rate equation is

dP

dt
= −aP + S.

The equilibrium point is where −aP + S = 0. Solve for P to get

P =
S

a

and then draw the picture to see that this is a stable equilibrium point. So
the answer is P

a
. �

We now look at a variant where we want to find the stocking rate.

Problem 5. Let lake have a population of large month bass that, due to
fishing, has an intrinsic growth rate of −.05 per bass per year. The South
Carolina Department of Natural Resources wishes to have stable population
of 10,000 bass in the lake. At what rate should it be stocked?

Solution. P (t) be the population size at time t and S be the stocking rate.
Then the rate equation is

dP

dt
= −.05P + S.
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We find the equilibrium point by solving −.05P + S = 0 for S. This gives

P =
S

.05
= 20S.

(You should check that this is stable.) We want this to have the value 10,000.
That is we want to solve 20S = 10,000, which gives

S =
10,000

20
= 500

and this is the stocking rate we are looking for. �

Problem 6. Do the last problem which the intrinsic growth rate being −.03
bass per bass per year and where we want a stable population of 40,000. Try
it with the intrinsic growth rate being −.1 per bass per year and where we
want a stable population of 50,000.

Problem 7. This is another problem to show you that algebra is your friend.
Assume that we have a population with an intrinsic growth rate of r = −a

with a positive and that we wish to have a stable population size of Ps.
Then at what rate should we stock?

Proof. Let P (t) be the population at time t and S the stocking rate. Then
the rate equation is

dP

dt
= −aP + S.

Solving −aP + S = 0 for P gives P = S
a

(and we should check that this is
stable). We want this to have the value Ps. That is we want to solve

S

a
= Ps

which has the solution
S = aPs

which gives the required stocking rate. �

We now look at some models involving logistic growth.

Problem 8. Let a garden have a population of snails that has logistic growth
with intrinsic growth rate of .1 snails per snail per year and a carrying
capacity of 500. Toads are introduced to the garden and they eat 8% of the
snail population per year. What happens to the size of the snail population?

Solution. Let P (t) be the size of the snail population. Then the rate equation
will be

dP

dt
= .1P

(

1 −
P

500

)

− .08P

To find the equilibrium points set .1P
(

1 −
P

500

)

− .08P = 0. This factors to
give

P

(

.1 −
.1P

500
− .08

)

= 0
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So that P = 0 or
(

.1 −
.1P
500

− .08
)

= 0. Solving the latter gives

−
.1P

500
= .08 − .1 = −.02

so that

P =
500

.1
(.02) = 100.

Thus the equilibrium points are P = 0 and P = 100. You should check that
P = 0 is unstable and P = 250 is stable. So the population of snails will be
reduced to 100. �

Problem 9. Do the last problem with the intrinsic growth rate of the snails
being .05 snails per snail per year and a carrying capacity of 1,000 and the
toads eating 4% of the the snail population per year.

Problem 10. The population of fish in a lake grows logistically with an
intrinsic growth rate of .04 fish per fish per year and a carrying capacity of
10,000. At some point the fish are harvested are a rate of 50 fish per year.
What happens to the fish population?

Solution. If P (t) is the population at t years after the harvesting starts, then
the rate equation is

dP

dt
= .04P

(

1 −
P

10,000

)

− 50

To find the equilibrium points we solve

.04P

(

1 −
P

10,000

)

− 50 = 0.

This is a quadratic equation in P and the solutions are

P1 = 1464.466094, P2 = 8535.533906

Thus the new stable population will be 8536 fish. So harvesting 50 fish a

Figure 6. Graph showing that P1 = 1464.466094 is unsta-
ble and P2 = 8535.533906 is stable.

year reduces the population by 1,464 fish. Also note that if the population
ever drops below P1 = 1464 then the population will die off. �
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Problem 11. Do the problem above but change the harvesting rate to 200
fish per year.

Solution. This time the rate equation is

dP

dt
= .04P

(

1 −
P

10,000

)

− 200

and to find the equilibrium points we want to solve

.04P

(

1 −
P

10,000

)

− 200

but this has no real numbers as solutions. (The solutions are the com-
plex numbers 5,000 ± 5,000i). So there are no equilibrium points and

.04P
(

1 −
P

10,000

)

− 200 is always negative. Therefore the population will

decrease down to zero. Thus the population will die off. �

Figure 7. Graph showing that harvesting at the rate of 200
a year will kill off the population.

Problem 12. A population of rabbits on an island grows logistically with
an intrinsic growth rate of .05 rabbits per rabbits per year and a carrying
capacity of 500. If the island is stocked at a rate of 20 rabbits per year,
what happens to the population?

Solution. The rate equation is

dP

dt
= .05P

(

1 −
P

500

)

+ 20.

We find the equilibrium by solving .05P
(

1 −
P

500

)

+ 20 = 0. This has solu-
tions

P = −262.3475383, P = 762.3475383

We only need to consider the positive solution. You can check that it is
stable (see Figure 8). Therefore the population should tend to 762 rabbits.

�
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Figure 8. Graph showing that P = 762.3475383 is a stable
equilibrium point.


