Work Sheet 3

Let us generalize a result on the last worksheet. Assume that $y=y(t)$ is a function of t such that

$$
y^{\prime}=\rho(y-c)
$$

where c is a constant. Then if we set $u=y-c$ and recall that the derivative of a constant is 0 we have that

$$
u^{\prime}=(y-c)^{\prime}=y^{\prime}=\rho(y-c)=\rho u .
$$

But $u^{\prime}=\rho u$ implies that

$$
u=u(0) e^{\rho t} .
$$

But $u=y-c$, and thus $u(0)=y(0)-c$ so the last displayed equation becomes

$$
y-c=(y(0)-c) e^{\rho t} .
$$

Adding c to both side gives

$$
y=c+(y(0)-c) e^{\rho t} .
$$

Problem 1. Find the solution to

$$
y^{\prime}=.3(y-50) .
$$

Solution. In this case $\rho=.3$ and $c=50$ and so

$$
y=50+(y(0)-50) e^{.3 t} .
$$

(Since $y(0)$ is not given we can not say any more about the solution.)
Problem 2. Find the solution to

$$
\frac{d P}{d t}=-.1(P-100), \quad P(0)=500 .
$$

Solution. In this case we are using the variable P rather than y and $y^{\prime}=\frac{d P}{d t}$, and $\rho=-.1, c=100$ and $y(0)=P(0)=500$. Thus

$$
P=100+(500-100) e^{-.1 t}=100+400 e^{-.1 t} .
$$

Problem 3. Find the solution to

$$
\frac{d A}{d r}=.3(A-200), \quad A(2)=400
$$

Solution. In this case $y=A$ and $t=r, c=200$, and $\rho=.3$ and so

$$
A=200+(A(0)-200) e^{.3 r}
$$

To find $A(0)$ we use that $A(2)=400$ so that

$$
400=A(2)=200+(A(0)-200) e^{3(2)}=200+(A(0)-200) e^{.6} .
$$

Solving for $A(0)$ gives

$$
A(0)=\frac{400-200}{e^{6}}+200=309.7623272
$$

and thus

$$
\begin{aligned}
A & =200+(A(0)-200) e^{.3 r} \\
& =200+(309.7623272-200) e^{.3 r} \\
& =200+109.7623272 e^{.3 r}
\end{aligned}
$$

Problem 4. Solve

$$
\frac{d N}{d t}=-.1 N, \quad N(0)=300
$$

Problem 5. Solve

$$
\frac{d P}{d t}=-.1(P-300), \quad P(0)=500
$$

Problem 6. Solve

$$
y^{\prime}=-.07(y-30), \quad y(4)=50
$$

Use the solution to find $y(20)$. What is the approximate value of $y(t)$ when t is large (say $t>100$)?

Problem 7. Suppose that

$$
y^{\prime}=-.1(y-c), \quad y(0)=500, \quad y(5)=400
$$

find the value of c and a formula for y.
Proof. The formula for y is

$$
y=c+(y(0)-c) e^{-.1 t}=c+(500-c) e^{-.1 t}
$$

So

$$
400=y(5)=c+(500-c) e^{-.5}=.3934693403 c+303.2653298
$$

which we can solve for c to get

$$
c=245.8505919
$$

and so

$$
y=245.8505919+254.1494081 e^{-.1 t}
$$

Problem 8. Suppose that

$$
\frac{d P}{d t}=-.05(P-c), \quad y(0)=1,000, \quad y(10)=900
$$

find the value of c and a formula for $P(t)$.

