Work Sheet 12

Here is a summary of some of the facts about the discrete logistic equation

$$
N_{t+1}=N_{t}+R N_{t}\left(1-\frac{N_{t}}{K}\right)
$$

with per capita growth rate R and carrying capacity K. This is of the form

$$
N_{t+1}=f\left(N_{t}\right)
$$

where

$$
f(x)=x+R x\left(1-\frac{x}{K}\right) .
$$

To get the equilibrium points solve $f(x)=x$ (or if you prefer the variable $N, f(N)=N$. There are two equilibrium points

$$
N_{*}=0, \quad N_{*}=K .
$$

To see if they are stable or unstable compute $f^{\prime}(x)$ using the product rule

$$
f^{\prime}(x)=1+R\left(1-\frac{x}{K}\right)+R x\left(-\frac{1}{K}\right)
$$

then

$$
f^{\prime}(0)=1+R>1
$$

so $N_{*}=0$ is always unstable. And

$$
f^{\prime}(K)=1-R
$$

So for $N_{*}=K$ to be stable we need $|1-R|<1$. As $R>0$ this is equivalent to $R<1$. We can be more precise.

- If $0<R<2$, then $N_{*}=K$ is a stable equilibirum point for any intial $N_{0} \neq 0$ the polulation size for large t is $N_{t} \approx K$.
- If $2<R<2.45$ then $N_{*}=K$ is unstable but there is a stable two cycle. That is the population will osculate between the two values

$$
\left(\frac{2+R+\sqrt{R^{2}-4}}{2 R}\right) K, \quad\left(\frac{2+R-\sqrt{R^{2}-4}}{2 R}\right) K .
$$

- If $2.45<R<2.57$ there will be a stable cycle of order $4,8,16,32$ (in general of order 2^{n} for some n) depending on the size of R.
- When $2.57<R$ then there are no stable cycles of any order and the system is chaotic.

Problems

(1) Draw a graph of a system that has exactly one equilibrium points and it is stable.
(2) Draw a graph of a system that has exactly one equilibrium points and it is unstable.
(3) If a system has exactly two equilibrium points is it possible for them to both be unstable?
(4) If a system has exactly two equilibrium points is it possible for them to both be stable? Hint: When the graph crosses the $y=x$ exactly twice. It will have to either go from above, to below and back to above; or from below to above and back to below. What does that say about stability?
(5) If a system has exactly three equlilbrium points, then is possable for all three to be stable? Can they all be unstable?
(6) For the system

$$
N_{t+1}=200 N_{t} e^{-.01 t}
$$

find the equilibrium points and decide if they are stable or unstable. (The hard part of this will be to figure out the correct window (i.e. choice of x min and x max) to use.)
(7) For the system

$$
N_{t+1}=N_{t}+1.5 N_{t}\left(1-\frac{N_{t}+20}{1,000}\right)
$$

(8) What is the equation for a discrete logistic population with per capita growth rate of R, a carrying capacity of K that is being harvested at a rate of S organisms per year?

Figure 1. What happens to the population for large t ?

Figure 2. What happens to the population for large t ?

4

Figure 3. What happens to the population for large t ?

Figure 4. What happens to the population for large t ?

