Worksheet

Compute the derivatives of the following functions:

$$
\begin{array}{ll}
f(x)=3 x^{7}-9 x^{4}+13 x^{3}-9 x^{2}+3 x-7 & A=s^{2} \\
f^{\prime}(x)= & \frac{d A}{d s}=
\end{array}
$$

$$
\begin{aligned}
& f(x)=5 \sqrt{x} \\
& f^{\prime}(x)=
\end{aligned}
$$

$g(t)=-6.3 t^{\pi}$
$g^{\prime}(t)=$
$V=\frac{4 \pi}{3} r^{3}$
$\frac{d V}{d r}=$
$A=4 \pi r^{3}$
$\frac{d A}{d r}=$
$V=\left(\sqrt{\frac{A}{6}}\right)^{3}$
$u(s)=3 s-\frac{5}{s^{2}}$
$\frac{d V}{d A}=$
$u^{\prime}(s)=$
$y=4 \sqrt[5]{x}$
$u(x)=\frac{3 x-12 x^{2}}{x^{3}}$
$\frac{d y}{d x}=$
$u^{\prime}(x)=$
$f(x)=\frac{3}{\sqrt[7]{x}}$
$f^{\prime}(x)=$
$T=\cos \theta$
$\frac{d T}{d \theta}=$
$A=\frac{1}{2} b \sin \theta \quad(b$ a constant $)$
$\frac{d A}{d \theta}=$
$T(\alpha)=32 \tan \alpha-3 \cos \alpha$
$T^{\prime}(\alpha)=$
$H(s)=\sin (s)+2 \cos (s)+3 \tan (s)$
$H^{\prime}(s)=$

$$
\begin{array}{ll}
f(t)=4^{t} & I(n)=P_{0}(1+r)^{n} \\
f^{\prime}(t)= & I^{\prime}(n)= \\
& \\
& y=\frac{3}{7^{x}}+\cos x-\sqrt{x} \\
A=2 \pi 5^{r} & y^{\prime}=
\end{array}
$$

$$
I(n)=P_{0}(1+r)^{n} \quad P_{0} \text { and } r \text { constants }
$$

1. The surface area A and volume V of a sphere of radius r are $A=4 \pi r^{2}, V=\frac{4}{3} \pi r^{3}$.
(a) Find a formula for V in terms of A.
(b) Compute the derivative $\frac{d V}{d A}$.
(c) The volume of a ball of radius 4 in is increased by $.5 \mathrm{in}^{3}$. Estimate the increase in the area.
2. The side of a cube is measured to be 10in with an error of $\pm .01 \mathrm{in}$. Approximate the error in using $10^{3}=1000 \mathrm{in}^{3}$ as volume of the cube.
