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Classical Data Compression

Classical Source

Consider a classical source B that emits one symbol at each discrete time
step from the symbol set S = {si}4i=1 with the following probabilities.
Assume that the emissions at each time step are independent and
identically distributed (i.i.d.).

Symbol Probability

s1 p(1) = 0.5

s2 p(2) = 0.25

s3 p(3) = 0.125

s4 p(4) = 0.125
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Classical Data Compression

Fixed-length classical encoding scheme

Let A = {0, 1} be the binary alphabet. An example of a fixed-length
encoding scheme ϕ = {E : S → A∗,D : A∗ → S}:

Symbol Probability Codeword Codeword Length

s1 p(1) = 0.5 E (s1) = 00 length(E (s1)) = 2

s2 p(2) = 0.25 E (s2) = 01 length(E (s2)) = 2

s3 p(3) = 0.125 E (s3) = 10 length(E (s3)) = 2

s4 p(4) = 0.125 E (s4) = 11 length(E (s4)) = 2

Average codeword length =
∑4

i=1 p(i) ∗ length(E (si )) = 2 bits/symbol.
In general, the average codeword length = ⌈log2N⌉ for a symbol set of
size N.
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Classical Data Compression

Variable-length classical encoding scheme

An example of a variable-length encoding scheme ϕ′ = {E ′,D ′}:

Symbol Probability Codeword Codeword Length

s1 p(1) = 0.5 E ′(s1) = 0 length(E (s1)) = 1

s2 p(2) = 0.25 E ′(s2) = 10 length(E (s2)) = 2

s3 p(3) = 0.18 E ′(s3) = 110 length(E (s3)) = 3

s4 p(4) = 0.07 E ′(s4) = 111 length(E (s4)) = 3

Average codeword length =∑4
i=1 p(i) ∗ length(E ′(si )) = 1.75 bits/symbol.

Called Huffman code.
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Classical Data Compression

Uniquely-decodable codes (Lossless codes)

Symbol Probability Huffman Codeword Alternate Codeword

s1 p(1) = 0.5 E (s1) = 0 E ′(s1) = 0

s2 p(2) = 0.25 E (s2) = 10 E ′(s2) = 10

s3 p(3) = 0.125 E (s3) = 110 E ′(s3) = 100

s4 p(4) = 0.125 E (s4) = 111 E ′(s4) = 111

A sequence of codeword 100 can be decoded in two ways: s2s1 and s3.
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Classical Data Compression

Classical Kraft-McMillan Inequality:
Assume that a uniquely decodable classical encoding scheme over a binary
alphabet encodes a set of D-many symbols into codewords of lengths
{ℓi ∈ N}Di=1, then the codeword lengths must satisfy the following
inequality

D∑
i=1

2−ℓi ≤ 1

Conversely, if there exists a set of lengths {ℓi}Di=1 that satisfy the above
inequality, then there exists a uniquely decodable classical encoding
scheme with those codeword lengths.
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Classical Data Compression

Classical Block Encoding

Fix block size l = 2. Consider 2-extension of the classical source B2 that
emits one symbol from the symbol set

S2 = {si1si2}4i1,i2=1

at each discrete time step. Each symbol si1si2 is emitted with the
probability p(i1)p(i2) for i1, i2 ∈ {1, . . . , 4}.
Average codeword length of Huffman code that encodes symbols from the
source B2 is 3.46 bits/block. That is, 1.73 bits/symbol. Also called code
rate.
What if block size (l) → ∞?
How much can you compress the information from an i.i.d. classical source
with negligible loss of information?
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Shannon’s source coding theorem

Shannon’s source coding theorem (Informally)

Consider an i.i.d. classical source B = {p(i), si}Ni=1 with Shannon

entropy H(B) = −
∑N

i=1 p(i) log2 p(i). Also, let Sn = {si1 , . . . , sin} for
i1, . . . , in ∈ {1, . . . ,N} be the set consisting of all n-sequences of symbols
from the source. For any ϵ ≥ 0, let R = H(B) + ϵ. Then there exists a
reliable compression scheme ϕn = {En,Dn} of code rate R for the
n-extension of the source. That is,

Pr(s1, . . . , sn : Dn ◦ En(s1, . . . , sn) = (s1, . . . , sn)) → 1 as n → ∞

Conversely, any compression scheme ϕn = {En,Dn} with code rate
R < H(B) is not reliable for the n-extension of the source. That is,

Pr(s1, . . . , sn : Dn ◦ En(s1, . . . , sn) = (s1, . . . , sn)) → 0 as n → ∞

Based on Asymptotic Equipartition Property (AEP) of typical sequences.
nH(B) ≤ Average codeword length of Huffman code for Bn ≤ nH(B) + 1.
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Schumacher’s quantum source coding theorem

Schumacher’s quantum source coding theorem (Informally)
Consider an i.i.d. quantum source B = {p(i), |si ⟩}Ni=1 where each |si ⟩ ∈ H
of dimension D. Let ρ =

∑N
i=1 p(i) |si ⟩⟨si | be the ensemble state.

Consider the spectral decomposition of ρ =
∑D

i=1 λi |λi ⟩⟨λi |.
Then, the von-Neumann entropy of the source is given by
S(ρ) = −

∑D
i=1 λi log2 λi . Also, let Sn = {si1 , . . . , sin} for

i1, . . . , in ∈ {1, . . . ,N} be the set consisting of all n-sequences of symbols
from the source. For any ϵ ≥ 0, let R = S(ρ) + ϵ. Then there exists a
reliable compression scheme ϕn = {En,Dn} of code rate R for the
n-extension of the source. That is,

tr(ΠΛnρ
⊗n) → 1 as n → ∞

where Λn ⊂ H⊗n is the typical subspace and ΠΛn is the projector from H⊗n

onto Λn. Conversely, any compression scheme ϕn = {En,Dn} with code
rate R < S(ρ) is not reliable for the n-extension of the source. That is,

tr(ΠΛnρ
⊗n) → 0 as n → ∞

Based on AEP of typical subspaces.
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Generalization of Schumacher’s compression

Generalization of Schumacher’s compression
Universal compression scheme: Josza et. al.[1] for i.i.d. quantum
sources, Kaltchenko & Yang [2, 3] for stationary ergodic sources

Variable-length (indeterminate-length) compression scheme:
Schumacher & Westmoreland [4], and Hayashi & Matsumoto [5, 6]
for i.i.d. sources

quantum source: Kaltchenko & Yang [2, 3] and Bjelaković & Igor [7]
for stationary ergodic sources, all others for i.i.d. sources

No-go theorems for (completely) lossless quantum data compression
introduced by Boström & Felbinger [8].
We are interested in:

completely lossless

source-dependent

indeterminate-length

quantum stochastic source

encode tensor product of pure states in blocks of equal size
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Our work

Quantum code

Let H be a Hilbert space of dimension D. A quantum code on H is a
linear isometry U : H → (C2)⊕. Thus, for every quantum code U on H,
the dimension of its range is equal to D, and if (|ψi ⟩)Di=1 is any
orthonormal sequence in its range, then U has the form

U =
D∑
i=1

|ψi ⟩⟨ei | ,

where (|ei ⟩)Di=1 is an orthonormal basis of H. For any pure state

|s⟩ =
∑D

i=1 αi |ei ⟩, the quantum state |σ⟩ = U |s⟩ =
∑D

i=1 αi |ψi ⟩ obtained
by applying U to a state |s⟩ ∈ H is called codeword.
Let each |ψi ⟩ ∈ (C2)⊗ℓi for some ℓi ∈ N. If ℓi = ℓ ∀i , then |σ⟩ ∈ (C2)⊗ℓ

and is a length state, otherwise it is an indeterminate-length state.
Define length observable Λ =

∑∞
ℓ=0 ℓΠℓ. Indeterminate-length of a

codeword |σ⟩ is given by Tr(|σ⟩⟨σ|Λ) = ⟨σ|Λ |σ⟩ =
∑D

i=1 |αi |2ℓi .
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Our work

Concatenation of quantum codewords
Consider a linear map Um = U ◦ · · · ◦U : H⊗m → (C2)⊕ defined such that

(U ◦ · · · ◦ U) |s1⟩ ⊗ · · · ⊗ |sm⟩ = U |s1⟩ ◦ · · · ◦ U |sm⟩ = |σi ⟩ ◦ · · · ◦ |σm⟩

where each |si ⟩ =
∑D

j=1 α
j
i |ej⟩ such that

∑D
j=1 |α

j
i |2 = 1. Concatenation

of normalized indeterminate-length states can result in unnormalized
states. (Check 1√

2
(|0⟩+ |00⟩) and 1√

2
(|0⟩ − |00⟩!) [9]

So, (U ◦ · · · ◦ U) |s1⟩ ⊗ · · · ⊗ |sm⟩

=
D∑

j1,...,jm=1

αj1
1 · · ·αjm

m |ψj1⟩ ◦ · · · ◦ |ψjm⟩

Um is an isometry ⇐⇒ {|ψj1 ◦ · · · ◦ ψjm⟩} is an orthonormal set.
U is uniquely decodable
⇐⇒ Um is an isometry for every m ∈ N
⇐⇒ {|ψj1 ◦ · · · ◦ ψjm⟩ : (j1, . . . , jm) ∈ {1, . . . ,D}m} is an orthonormal set
for every m ∈ N. Such a sequence (|ψ1⟩)Di=1 is called jointly orthonormal
sequence of length codewords.
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Our work

Quantum stochastic source

A quantum stochastic source B consists of a set of pure states
{|sn⟩}Nn=1 of a Hilbert space H, and a stochastic process X = (Xn)

∞
n=1,

where each Xn is a random variable which takes values in {1, 2, . . . ,N}. At
every positive integer time n the state |sXn⟩ is emitted from the quantum
source. If p denotes the probability distribution of the stochastic process
X , then for every k ∈ N and (n1, . . . , nk) ∈ {1, . . . ,N}k , we have that

p(n1, . . . , nk) = P(X1 = n1, . . . ,Xk = nk).

Also, the conditional probability distribution of the stochastic process X is
defined for any k ≥ 2 and (n1, . . . , nk) ∈ {1, . . . ,N}k by

p(nk |nk−1, . . . , n1) = P(Xk = nk |Xk−1 = nk−1, . . . ,X1 = n1).
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Our work

Case for 2 blocks
Fix r ∈ N as the block size and m = 2 as the number of blocks. Consider
the ensemble state of two block ρ2r

=
N∑

i1,...,i2r=1

p(i1, . . . , i2r ) |si1 · · · si2r ⟩⟨si1 · · · si2r |

=
N∑

i1,...,ir=1

p(i1, . . . , ir ) |si1 · · · sir ⟩⟨si1 · · · sir | ⊗

N∑
ir+1,...,i2r=1

p(ir+1, . . . , i2r |i1, . . . , ir )
∣∣sir+1 · · · si2r

〉〈
sir+1 · · · si2r

∣∣
=

N∑
i1,...,ir=1

p(i1, . . . , ir ) |si1 · · · sir ⟩⟨si1 · · · sir | ⊗ ρi1,...,ir

where ρi1,...,ir is second block ensemble state given that |si1 · · · sir ⟩ is
emitted in the first block.
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Our work

Consider a linear map U1 ◦ · · · ◦ Um : H⊗m → (C2)⊕ defined such that

(U1 ◦ · · · ◦ Um) |s1⟩ ⊗ · · · ⊗ |sm⟩ = U1 |s1⟩ ◦ · · · ◦ Um |sm⟩

and each Uj =
∑D

i=1

∣∣∣ψj
i

〉〈
e ji

∣∣∣.
U1 ◦ · · · ◦ Um is uniquely decodable
⇐⇒ U1 ◦ · · · ◦ Um is an isometry

⇐⇒
∣∣∣ψ1

j1
◦ · · · ◦ ψm

jm

〉
: (j1, . . . , jm) ∈ {1, . . . ,D}m} is an orthonormal set.

Fix a jointly orthonormal sequence of length codewords (|ψi ⟩)Di=1. Setting

(
∣∣∣ψj

i

〉
)Di=1 = (|ψi ⟩)Di=1 ∀j makes U1 ◦ · · · ◦ Um uniquely decodable.
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Our work

Special block codes
Consider a quantum stochastic source S which contains an alphabet of N
many pure states (|si ⟩)Ni=1 that span a Hilbert space H of dimension D.
Let r ,m ∈ N where r denotes the block size, and m denotes the number of
blocks. A special block code is a family of isometries

U =
{
Un1,...,n(k−1)r : 1 ≤ k ≤ m, n1, . . . , n(k−1)r ∈ {1, . . . ,N}

}
,

such that every isometry used in the family U has a common sequence of
jointly orthonormal length codewords. Thus more explicitly, there exists a
jointly orthonormal sequence of length codewords (|ψi ⟩)D

r

i=1 ⊆ (C2)⊕, and

an orthonormal sequence
( ∣∣∣en1,...,n(k−1)r

i

〉)Dr

i=1
for 1 ≤ k ≤ m and

n1, . . . , n(k−1)r ∈ {1, . . . ,N} such that

Un1,...,n(k−1)r =
Dr∑
i=1

∣∣∣ψi

〉〈
e
n1,...,n(k−1)r

i

∣∣∣ .
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Our work

Average codeword length of special block code (for 2
blocks)

We will denote by ACL(U) the average codeword length of the special
block code U , which is defined to be equal to

N∑
n1,...,nml=1

p(n1, . . . , nmr ) Tr

(∣∣∣U(sn1 · · · snr ) ◦ Un1,...,nr (snr+1 · · · sn2r )◦

· · · ◦ Un1,...,n(m−1)r (sn(m−1)r+1
· · · snmr )

〉
〈
U(sn1 · · · snr ) ◦ Un1,...,nnr (snr+1 · · · sn2r )◦

· · · ◦ Un1,...,n(m−1)r (sn(m−1)r+1
· · · snmr )

∣∣∣Λ)
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Our work

Main result

Consider a quantum stochastic source B consisting of an alphabet of N
many pure states spanning a D-dimensional Hilbert space H, and a
stochastic process X having mass function p as defined before. Fix
m, r ∈ N. Let

LB(B,m, r)

denote the infimum of the set containing ACL(U) for every special block
code U that is used to encode mr many states emitted by B into m blocks
each of size r . Then LB(B,m, r) can be computed as follows: For each
k = 1, . . . ,m, and a sequence n1, . . . , n(k−1)r of integers chosen from the

set {1, . . . ,N}, let
(
λ
n1,...,n(k−1)r

i

)Dr

i=1
be the eigenvalues of the kth block

conditional ensemble state ρn1,...,n(k−1)r , arranged in decreasing order, and( ∣∣∣λn1,...,n(k−1)r

i

〉)Dr

i=1
be the corresponding eigenvectors.

Rabins Wosti (joint work with George Androulakis) (Univ. of South Carolina)Lower bound for indeterminate-length code Nov. 3, 2023 19 / 30



Our work

Let

L =
{
(ℓ1, . . . , ℓDr ) : ℓi ∈ N ∪ {0} for all i , ℓ1 ≤ ℓ2 ≤ · · · ≤ ℓDr , and

Dr∑
i=1

2−ℓi ≤ 1
}
.

Define a function L : L → [0,∞) by

L((ℓi )
Dr

i=1) :=
m∑
j=2

 N∑
n1,...,n(j−1)r=1

p(n1, . . . , n(j−1)r )
Dr∑
i=1

λ
n1,...,n(j−1)r

i ℓi

+

Dr∑
i=1

λiℓi .

Then,

LB(S,m, r) = min{L((ℓi )D
r

i=1) : (ℓi )
Dr

i=1 ∈ L}.
Moreover, the infimum defining LB(S,m, r) is actually a minimum, i.e.,
there exists a special block code

V =
{
V n1,...,n(k−1)r : k ∈ {1, . . . ,m}, and n1, . . . , n(k−1)r ∈ {1, . . . ,N}

}
,

which can be used to encode mr many states emitted by B into m blocks
each of size r such that
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Our work

min{L((ℓi )D
r

i=1) : (ℓi )
Dr

i=1 ∈ L} = ACL(V).

The minimizer V is given as follows: Assume that L achieves its minimum
on L at the point (ℓi )

Dr

i=1 ∈ L. Since the sequence (ℓi )
Dr

i=1 satisfies the
classical Kraft-McMillan inequality, (which is the last condition in the
definition of L), there exists a classical uniquely decodable sequence
(ωi )

Dr

i=1 of codewords with corresponding lengths (ℓi )
Dr

i=1. Let (|ωi ⟩)D
r

i=1 be
the corresponding sequence of qubit strings in the Fock space (C2)⊕. For
each k ∈ {1, . . . ,m}, and string n1, . . . , n(k−1)r ∈ {1, . . . ,N}, define

V n1,...,n(k−1)r : H⊗r → (C2)⊕,

by

V n1,...,n(k−1)r =
Dr∑
i=1

∣∣∣ωi

〉〈
λ
n1,...,n(k−1)r

i

∣∣∣ .
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Our work

Concatenation of rank-1 operators

Consider a collection of normalized states {|ϕi ⟩}Ni=1 such that each |ϕi ⟩ is
in the linear span of a jointly orthonormal sequence of length codewords
(|ψj⟩)Dj=1. Then, |ϕi ◦ · · · ◦ ϕN⟩ is a normalized state. So, one can define

the concatenation of rank-1 operators (|ϕi ⟩⟨ϕi |)Ni=1 as

|ϕ1⟩⟨ϕ1| ◦ · · · ◦ |ϕN⟩⟨ϕN | = |ϕ1 ◦ · · · ◦ ϕN⟩⟨ϕ1 ◦ · · · ◦ ϕN |
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Our work

Supporting lemma

For z ∈ N consider a non-increasing sequence of positive real numbers
Q1 ≥ Q2 ≥ · · · ≥ Qz ≥ 0. Further, consider another arbitrary sequence of
positive real numbers l1, l2, . . . , lz and its non-decreasing enumeration
l ′1 ≤ l ′2 ≤ · · · ≤ l ′z . Then,

z∑
i=1

Qi l
′
i ≤

z∑
i=1

Qi li .
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Our work

Sketch of the proof for 2 blocks

Consider the quantum stochastic source as described above, and fix the
number of blocks, m=2. The ensemble state for two blocks ρ2r can be
written as

=
Dr∑

n1,...,n2r=1

p(n1, . . . , n2r ) |sn1 , · · · , sn2r ⟩⟨sn1 , · · · , sn2r |

The average codeword length of our encoding for two blocks is given by

=
N∑

n1,...,n2r=1

p(n1, . . . , n2r ) Tr

(∣∣U(sn1 · · · snr ) ◦ Un1,...,n2r (snr+1 · · · sn2r )
〉

〈
U(sn1 · · · snr ) ◦ Un1,...,nr (snr+1 · · · sn2r )

∣∣Λ)
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Our work

=
N∑

n1,...,n2r=1

p(n1, . . . , n2r ) Tr

(
U |sn1 · · · snr ⟩⟨sn1 · · · snr |U†◦

Un1,...,nr
∣∣snr+1 · · · sn2r

〉〈
snr+1 · · · sn2r

∣∣ (Un1,...,nr )†Λ

)

=
N∑

n1,...,nr=1

Tr

(
p(n1, . . . , nr )U |sn1 · · · snr ⟩⟨sn1 · · · snr |U†◦

Un1,...,nrρn1,...,nr (Un1,...,nr )†Λ

)
Substituting U =

∑Dr

j=1 |ψj⟩⟨ej |, U† =
∑Dr

j ′=1

∣∣ej ′〉〈ψj ′
∣∣,

Un1,...,nr =
∑Dr

k=1

∣∣ψk

〉〈
en1,...,nrk

∣∣, Un1,...,nr =
∑Dr

k ′=1

∣∣en1,...,nrk ′
〉〈
ψk ′
∣∣, and

Λ =
∑∞

ℓ=0 ℓΠℓ into the above equation and applying some simplifications,
we get
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Our work

=
Dr∑

n1,...,nr=1

p(n1, . . . , nr )
Dr∑

j ,j ′=1

⟨ej |sn1 · · · snr ⟩
〈
sn1 · · · snr

∣∣ej ′〉
Dr∑
i=1

λn1,...,nri

Dr∑
k,k ′=1

〈
en1,...,nrk

∣∣λn1,...,nri

〉 〈
λn1,...,nri

∣∣en1,...,nrk ′
〉

∞∑
ℓ=0

ℓ
〈
ψj ′ψk ′

∣∣Πℓ |ψjψk⟩

Since the sequence {|ψr ⟩D
r

r=1 is a jointly orthonormal sequence, that causes
j = j ′ and k = k ′. So, the average codeword length simplifies to

=
Dr∑

n1,...,nr=1

p(n1, . . . , nr )
Dr∑
j=1

|⟨ej |sn1 · · · snr ⟩|
2

Dr∑
i=1

λn1,...,nri

Dr∑
k=1

∣∣〈en1....,nrk

∣∣λn1,...,nri

〉∣∣2 (ℓj + ℓk)
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=
Dr∑

n1,...,nr=1

p(n1, . . . , nr )
Dr∑
j=1

ℓj |⟨ej |sn1 · · · snr ⟩|
2+

D l∑
n1,...,nr=1

p(n1, . . . , nr )
D l∑
j=1

|⟨ej |sn1 · · · snr ⟩|
2

D l∑
i=1

λn1,...,nri

D l∑
k=1

ℓk
∣∣〈en1....,nrk

∣∣λn1,...,nri

〉∣∣2
Using Birkhoff-von Neumann theorem, it can be shown that the above
equation is minimized when

∣∣en1,...,nri

〉
=
∣∣λn1,...,nri

〉
upto an overall phase

factor for 1 ≤ i ≤ Dr . So, the above equation simplifies to
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=
D l∑

n1,...,nr=1

p(n1, . . . , nr )
Dr∑
j=1

ℓj |⟨ej |sn1,...,nr ⟩|
2 +

D l∑
n1,...,nr=1

p(n1, . . . , nr )
Dr∑
i=1

ℓiλ
n1,...,nr
i

=
Dr∑
j=1

ℓj ⟨ej |
( Dr∑

n1,...,nr=1

p(n1, . . . , nr ) |sn1 · · · snr ⟩⟨sn1 · · · snr |
)
|ej⟩+

Dr∑
n1,...,nr=1

p(n1, . . . , nr )
Dr∑
i=1

ℓiλ
n1,...,nr
i

=
D l∑
j=1

ℓj ⟨ej | ρr |ej⟩+
Dr∑

n1,...,nr=1

p(n1, . . . , nr )
Dr∑
i=1

ℓiλ
n1,...,nr
i
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=
D l∑

j ,k=1

ℓjλk |⟨ej |λk⟩|2 +
D l∑

n1,...,nr=1

p(n1, . . . , nr )
D l∑
i=1

ℓiλ
n1,...,nr
i

Again, using Birkhoff-von Neumann theorem, the above equation is
minimized when |ej⟩ = |λj⟩ upto an overall phase factor for 1 ≤ j ≤ D l .
Thus, the equation reduces to

Dr∑
j=1

ℓjλj +
Dr∑

n1,...,nr=1

p(n1, . . . , nr )
Dr∑
i=1

ℓiλ
n1,...,nr
i

In general, for m ∈ N blocks, the equation is given by

m∑
j=2

 N∑
n1,...,n(j−1)r

p(n1, . . . , n(j−1)r )
Dr∑
i=1

λ
n1,...,n(j−1)r

i ℓi

+
Dr∑
i=1

λiℓi

Hence, the minimum average codeword length is obtained by using the set
of {ℓi}D

r

i=1 that minimizes the above equation and satisfies
∑Dr

i=1 2
−ℓi ≤ 1.
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