Optimal lower bound of the average indeterminate length lossless quantum block encoding

Rabins Wosti (joint work with George Androulakis)

University of South Carolina

> arXiv:2305.18748

Outline

(1) Classical Data Compression
(2) Shannon's source coding theorem
(3) Schumacher's quantum source coding theorem
(4) Generalization of Schumacher's compression
(5) Our work

Classical Source

Consider a classical source \mathcal{B} that emits one symbol at each discrete time step from the symbol set $\mathcal{S}=\left\{s_{i}\right\}_{i=1}^{4}$ with the following probabilities. Assume that the emissions at each time step are independent and identically distributed (i.i.d.).

Symbol	Probability
s_{1}	$p(1)=0.5$
s_{2}	$p(2)=0.25$
s_{3}	$p(3)=0.125$
s_{4}	$p(4)=0.125$

Fixed-length classical encoding scheme

Let $A=\{0,1\}$ be the binary alphabet. An example of a fixed-length encoding scheme $\phi=\left\{E: \mathcal{S} \rightarrow A^{*}, D: A^{*} \rightarrow \mathcal{S}\right\}$:

Symbol	Probability	Codeword	Codeword Length
s_{1}	$p(1)=0.5$	$E\left(s_{1}\right)=00$	length $\left(E\left(s_{1}\right)\right)=2$
s_{2}	$p(2)=0.25$	$E\left(s_{2}\right)=01$	length $\left(E\left(s_{2}\right)\right)=2$
s_{3}	$p(3)=0.125$	$E\left(s_{3}\right)=10$	length $\left(E\left(s_{3}\right)\right)=2$
s_{4}	$p(4)=0.125$	$E\left(s_{4}\right)=11$	length $\left(E\left(s_{4}\right)\right)=2$

Average codeword length $=\sum_{i=1}^{4} p(i) *$ length $\left(E\left(s_{i}\right)\right)=2$ bits/symbol. In general, the average codeword length $=\left\lceil\log _{2} N\right\rceil$ for a symbol set of size N.

Variable-length classical encoding scheme

An example of a variable-length encoding scheme $\phi^{\prime}=\left\{E^{\prime}, D^{\prime}\right\}$:

Symbol	Probability	Codeword	Codeword Length
s_{1}	$p(1)=0.5$	$E^{\prime}\left(s_{1}\right)=0$	length $\left(E\left(s_{1}\right)\right)=1$
s_{2}	$p(2)=0.25$	$E^{\prime}\left(s_{2}\right)=10$	length $\left(E\left(s_{2}\right)\right)=2$
s_{3}	$p(3)=0.18$	$E^{\prime}\left(s_{3}\right)=110$	length $\left(E\left(s_{3}\right)\right)=3$
s_{4}	$p(4)=0.07$	$E^{\prime}\left(s_{4}\right)=111$	length $\left(E\left(s_{4}\right)\right)=3$

Average codeword length $=$
$\sum_{i=1}^{4} p(i) *$ length $\left(E^{\prime}\left(s_{i}\right)\right)=1.75$ bits $/$ symbol.
Called Huffman code.

Uniquely-decodable codes (Lossless codes)

Symbol	Probability	Huffman Codeword	Alternate Cod
s_{1}	$p(1)=0.5$	$E\left(s_{1}\right)=0$	$E^{\prime}\left(s_{1}\right)=0$
s_{2}	$p(2)=0.25$	$E\left(s_{2}\right)=10$	$E^{\prime}\left(s_{2}\right)=10$
s_{3}	$p(3)=0.125$	$E\left(s_{3}\right)=110$	$E^{\prime}\left(s_{3}\right)=100$
s_{4}	$p(4)=0.125$	$E\left(s_{4}\right)=111$	$E^{\prime}\left(s_{4}\right)=111$

A sequence of codeword 100 can be decoded in two ways: $s_{2} s_{1}$ and s_{3}.

Classical Kraft-McMillan Inequality:

Assume that a uniquely decodable classical encoding scheme over a binary alphabet encodes a set of D-many symbols into codewords of lengths $\left\{\ell_{i} \in \mathbb{N}\right\}_{i=1}^{D}$, then the codeword lengths must satisfy the following inequality

$$
\sum_{i=1}^{D} 2^{-\ell_{i}} \leq 1
$$

Conversely, if there exists a set of lengths $\left\{\ell_{i}\right\}_{i=1}^{D}$ that satisfy the above inequality, then there exists a uniquely decodable classical encoding scheme with those codeword lengths.

Classical Block Encoding

Fix block size $I=2$. Consider 2-extension of the classical source \mathcal{B}^{2} that emits one symbol from the symbol set

$$
\mathcal{S}^{2}=\left\{s_{i_{1}} s_{i_{2}}\right\}_{i_{1}, i_{2}=1}^{4}
$$

at each discrete time step. Each symbol $s_{i_{1}} s_{i_{2}}$ is emitted with the probability $p\left(i_{1}\right) p\left(i_{2}\right)$ for $i_{1}, i_{2} \in\{1, \ldots, 4\}$.
Average codeword length of Huffman code that encodes symbols from the source \mathcal{B}^{2} is 3.46 bits/block. That is, 1.73 bits/symbol. Also called code rate.
What if block size $(I) \rightarrow \infty$?
How much can you compress the information from an i.i.d. classical source with negligible loss of information?

Shannon's source coding theorem (Informally)

Consider an i.i.d. classical source $\mathcal{B}=\left\{p(i), s_{i}\right\}_{i=1}^{N}$ with Shannon entropy $H(\mathcal{B})=-\sum_{i=1}^{N} p(i) \log _{2} p(i)$. Also, let $\mathcal{S}^{n}=\left\{s_{i_{1}}, \ldots, s_{i_{n}}\right\}$ for $i_{1}, \ldots, i_{n} \in\{1, \ldots, N\}$ be the set consisting of all n-sequences of symbols from the source. For any $\epsilon \geq 0$, let $R=H(\mathcal{B})+\epsilon$. Then there exists a reliable compression scheme $\phi^{n}=\left\{E^{n}, D^{n}\right\}$ of code rate R for the n-extension of the source. That is,

$$
\operatorname{Pr}\left(s_{1}, \ldots, s_{n}: D^{n} \circ E^{n}\left(s_{1}, \ldots, s_{n}\right)=\left(s_{1}, \ldots, s_{n}\right)\right) \rightarrow 1 \text { as } n \rightarrow \infty
$$

Conversely, any compression scheme $\phi^{n}=\left\{E^{n}, D^{n}\right\}$ with code rate $R<H(\mathcal{B})$ is not reliable for the n-extension of the source. That is,

$$
\operatorname{Pr}\left(s_{1}, \ldots, s_{n}: D^{n} \circ E^{n}\left(s_{1}, \ldots, s_{n}\right)=\left(s_{1}, \ldots, s_{n}\right)\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Based on Asymptotic Equipartition Property (AEP) of typical sequences. $n H(\mathcal{B}) \leq$ Average codeword length of Huffman code for $\mathcal{B}^{n} \leq n H(\mathcal{B})+1$.

Schumacher's quantum source coding theorem (Informally)

 Consider an i.i.d. quantum source $\mathcal{B}=\left\{p(i),\left|s_{i}\right\rangle\right\}_{i=1}^{N}$ where each $\left|s_{i}\right\rangle \in \mathcal{H}$ of dimension D. Let $\rho=\sum_{i=1}^{N} p(i)\left|s_{i}\right\rangle\left\langle s_{i}\right|$ be the ensemble state.Consider the spectral decomposition of $\rho=\sum_{i=1}^{D} \lambda_{i}\left|\lambda_{i}\right\rangle\left\langle\lambda_{i}\right|$.
Then, the von-Neumann entropy of the source is given by
$\mathcal{S}(\rho)=-\sum_{i=1}^{D} \lambda_{i} \log _{2} \lambda_{i}$. Also, let $\mathcal{S}^{n}=\left\{s_{i_{1}}, \ldots, s_{i_{n}}\right\}$ for $i_{1}, \ldots, i_{n} \in\{1, \ldots, N\}$ be the set consisting of all n-sequences of symbols from the source. For any $\epsilon \geq 0$, let $R=\mathcal{S}(\rho)+\epsilon$. Then there exists a reliable compression scheme $\phi^{n}=\left\{E^{n}, D^{n}\right\}$ of code rate R for the n-extension of the source. That is,

$$
\operatorname{tr}\left(\Pi_{\Lambda_{n}} \rho^{\otimes n}\right) \rightarrow 1 \text { as } n \rightarrow \infty
$$

where $\Lambda_{n} \subset \mathcal{H}^{\otimes n}$ is the typical subspace and $\Pi_{\Lambda_{n}}$ is the projector from $\mathcal{H}^{\otimes n}$ onto Λ_{n}. Conversely, any compression scheme $\phi^{n}=\left\{E^{n}, D^{n}\right\}$ with code rate $R<\mathcal{S}(\rho)$ is not reliable for the n-extension of the source. That is,

$$
\operatorname{tr}\left(\Pi_{\Lambda_{n}} \rho^{\otimes n}\right) \rightarrow 0 \text { as } n \rightarrow \infty
$$

Based on AEP of typical subspaces.

Generalization of Schumacher's compression

- Universal compression scheme: Josza et. al.[1] for i.i.d. quantum sources, Kaltchenko \& Yang [2, 3] for stationary ergodic sources
- Variable-length (indeterminate-length) compression scheme: Schumacher \& Westmoreland [4], and Hayashi \& Matsumoto [5, 6] for i.i.d. sources
- quantum source: Kaltchenko \& Yang [2, 3] and Bjelaković \& Igor [7] for stationary ergodic sources, all others for i.i.d. sources
No-go theorems for (completely) lossless quantum data compression introduced by Boström \& Felbinger [8].
We are interested in:
- completely lossless
- source-dependent
- indeterminate-length
- quantum stochastic source
- encode tensor product of pure states in blocks of equal size

Quantum code

Let \mathcal{H} be a Hilbert space of dimension D. A quantum code on \mathcal{H} is a linear isometry $U: \mathcal{H} \rightarrow\left(\mathbb{C}^{2}\right)^{\oplus}$. Thus, for every quantum code U on \mathcal{H}, the dimension of its range is equal to D, and if $\left(\left|\psi_{i}\right\rangle\right)_{i=1}^{D}$ is any orthonormal sequence in its range, then U has the form

$$
U=\sum_{i=1}^{D}\left|\psi_{i}\right\rangle\left\langle e_{i}\right|
$$

where $\left(\left|e_{i}\right\rangle\right)_{i=1}^{D}$ is an orthonormal basis of \mathcal{H}. For any pure state $|s\rangle=\sum_{i=1}^{D} \alpha_{i}\left|e_{i}\right\rangle$, the quantum state $|\sigma\rangle=U|s\rangle=\sum_{i=1}^{D} \alpha_{i}\left|\psi_{i}\right\rangle$ obtained by applying U to a state $|s\rangle \in \mathcal{H}$ is called codeword.
Let each $\left|\psi_{i}\right\rangle \in\left(\mathbb{C}^{2}\right)^{\otimes \ell_{i}}$ for some $\ell_{i} \in \mathbb{N}$. If $\ell_{i}=\ell \forall i$, then $|\sigma\rangle \in\left(\mathbb{C}^{2}\right)^{\otimes \ell}$ and is a length state, otherwise it is an indeterminate-length state. Define length observable $\Lambda=\sum_{\ell=0}^{\infty} \ell \Pi_{\ell}$. Indeterminate-length of a codeword $|\sigma\rangle$ is given by $\operatorname{Tr}(|\sigma\rangle\langle\sigma| \Lambda)=\langle\sigma| \Lambda|\sigma\rangle=\sum_{i=1}^{D}\left|\alpha_{i}\right|^{2} \ell_{i}$.

Concatenation of quantum codewords

Consider a linear map $U^{m}=U \circ \cdots \circ U: \mathcal{H}^{\otimes m} \rightarrow\left(\mathbb{C}^{2}\right)^{\oplus}$ defined such that

$$
(U \circ \cdots \circ U)\left|s_{1}\right\rangle \otimes \cdots \otimes\left|s_{m}\right\rangle=U\left|s_{1}\right\rangle \circ \cdots \circ U\left|s_{m}\right\rangle=\left|\sigma_{i}\right\rangle \circ \cdots \circ\left|\sigma_{m}\right\rangle
$$

where each $\left|s_{i}\right\rangle=\sum_{j=1}^{D} \alpha_{i}^{j}\left|e_{j}\right\rangle$ such that $\sum_{j=1}^{D}\left|\alpha_{i}^{j}\right|^{2}=1$. Concatenation of normalized indeterminate-length states can result in unnormalized states. (Check $\frac{1}{\sqrt{2}}(|0\rangle+|00\rangle)$ and $\frac{1}{\sqrt{2}}(|0\rangle-|00\rangle!)$ [9]
So, $(U \circ \cdots \circ U)\left|s_{1}\right\rangle \otimes \cdots \otimes\left|s_{m}\right\rangle$

$$
=\sum_{j_{1}, \ldots, j_{m}=1}^{D} \alpha_{1}^{j_{1}} \cdots \alpha_{m}^{j_{m}}\left|\psi_{j_{1}}\right\rangle \circ \cdots \circ\left|\psi_{j_{m}}\right\rangle
$$

U^{m} is an isometry $\Longleftrightarrow\left\{\left|\psi_{j_{1}} \circ \cdots \circ \psi_{j_{m}}\right\rangle\right\}$ is an orthonormal set.
U is uniquely decodable
$\Longleftrightarrow U^{m}$ is an isometry for every $m \in \mathbb{N}$
$\Longleftrightarrow\left\{\left|\psi_{j_{1}} \circ \cdots \circ \psi_{j_{m}}\right\rangle:\left(j_{1}, \ldots, j_{m}\right) \in\{1, \ldots, D\}^{m}\right\}$ is an orthonormal set for every $m \in \mathbb{N}$. Such a sequence $\left(\left|\psi_{1}\right\rangle\right)_{i=1}^{D}$ is called jointly orthonormal sequence of length codewords.

Quantum stochastic source

A quantum stochastic source \mathcal{B} consists of a set of pure states $\left\{\left|s_{n}\right\rangle\right\}_{n=1}^{N}$ of a Hilbert space \mathcal{H}, and a stochastic process $X=\left(X_{n}\right)_{n=1}^{\infty}$, where each X_{n} is a random variable which takes values in $\{1,2, \ldots, N\}$. At every positive integer time n the state $\left|s_{X_{n}}\right\rangle$ is emitted from the quantum source. If p denotes the probability distribution of the stochastic process X, then for every $k \in \mathbb{N}$ and $\left(n_{1}, \ldots, n_{k}\right) \in\{1, \ldots, N\}^{k}$, we have that

$$
p\left(n_{1}, \ldots, n_{k}\right)=\mathbb{P}\left(X_{1}=n_{1}, \ldots, X_{k}=n_{k}\right)
$$

Also, the conditional probability distribution of the stochastic process X is defined for any $k \geq 2$ and $\left(n_{1}, \ldots, n_{k}\right) \in\{1, \ldots, N\}^{k}$ by

$$
p\left(n_{k} \mid n_{k-1}, \ldots, n_{1}\right)=\mathbb{P}\left(X_{k}=n_{k} \mid X_{k-1}=n_{k-1}, \ldots, X_{1}=n_{1}\right)
$$

Case for 2 blocks

Fix $r \in \mathbb{N}$ as the block size and $m=2$ as the number of blocks. Consider the ensemble state of two block $\rho_{2 r}$

$$
\begin{aligned}
& =\sum_{i_{1}, \ldots, i_{2 r}=1}^{N} p\left(i_{1}, \ldots, i_{2 r}\right)\left|s_{i_{1}} \cdots s_{i_{2}}\right\rangle\left\langle s_{i_{1}} \cdots s_{i_{2} r}\right| \\
& =\sum_{i_{1}, \ldots, i_{r}=1}^{N} p\left(i_{1}, \ldots, i_{r}\right)\left|s_{i_{1}} \cdots s_{i_{r}}\right\rangle\left\langle s_{i_{1}} \cdots s_{i_{r}}\right| \otimes \\
& \quad \sum_{i_{r+1}, \ldots, i_{2}=1}^{N} p\left(i_{r+1}, \ldots, i_{2 r} \mid i_{1}, \ldots, i_{r}\right)\left|s_{i_{r+1}} \cdots s_{i_{2 r}}\right\rangle\left\langle s_{i_{r+1}} \cdots s_{i_{2} r}\right| \\
& =\sum_{i_{1}, \ldots, i_{r}=1}^{N} p\left(i_{1}, \ldots, i_{r}\right)\left|s_{i_{1}} \cdots s_{i_{r}}\right\rangle\left\langle s_{i_{1}} \cdots s_{i_{r}}\right| \otimes \rho^{i_{1}, \ldots, i_{r}}
\end{aligned}
$$

where $\rho^{i_{1}, \ldots, i_{r}}$ is second block ensemble state given that $\left|s_{i_{1}} \cdots s_{i_{r}}\right\rangle$ is emitted in the first block.

Consider a linear map $U_{1} \circ \cdots \circ U_{m}: \mathcal{H}^{\otimes m} \rightarrow\left(\mathbb{C}^{2}\right)^{\oplus}$ defined such that

$$
\left(U_{1} \circ \cdots \circ U_{m}\right)\left|s_{1}\right\rangle \otimes \cdots \otimes\left|s_{m}\right\rangle=U_{1}\left|s_{1}\right\rangle \circ \cdots \circ U_{m}\left|s_{m}\right\rangle
$$

and each $U_{j}=\sum_{i=1}^{D}\left|\psi_{i}^{j}\right\rangle\left\langle e_{i}^{j}\right|$.
$U_{1} \circ \cdots \circ U_{m}$ is uniquely decodable
$\Longleftrightarrow U_{1} \circ \cdots \circ U_{m}$ is an isometry
$\left.\Longleftrightarrow\left|\psi_{j_{1}}^{1} \circ \cdots \circ \psi_{j_{m}}^{m}\right\rangle:\left(j_{1}, \ldots, j_{m}\right) \in\{1, \ldots, D\}^{m}\right\}$ is an orthonormal set.
Fix a jointly orthonormal sequence of length codewords $\left(\left|\psi_{i}\right\rangle\right)_{i=1}^{D}$. Setting $\left(\left|\psi_{i}^{j}\right\rangle\right)_{i=1}^{D}=\left(\left|\psi_{i}\right\rangle\right)_{i=1}^{D} \forall j$ makes $U_{1} \circ \cdots \circ U_{m}$ uniquely decodable.

Special block codes

Consider a quantum stochastic source \mathcal{S} which contains an alphabet of N many pure states $\left(\left|s_{i}\right\rangle\right)_{i=1}^{N}$ that span a Hilbert space \mathcal{H} of dimension D. Let $r, m \in \mathbb{N}$ where r denotes the block size, and m denotes the number of blocks. A special block code is a family of isometries

$$
\mathcal{U}=\left\{U^{n_{1}, \ldots, n_{(k-1) r}}: 1 \leq k \leq m, n_{1}, \ldots, n_{(k-1) r} \in\{1, \ldots, N\}\right\}
$$

such that every isometry used in the family \mathcal{U} has a common sequence of jointly orthonormal length codewords. Thus more explicitly, there exists a jointly orthonormal sequence of length codewords $\left(\left|\psi_{i}\right\rangle\right)_{i=1}^{D^{r}} \subseteq\left(\mathbb{C}^{2}\right)^{\oplus}$, and an orthonormal sequence $\left(\left|e_{i}^{n_{1}, \ldots, n_{(k-1) r}}\right\rangle\right)_{i=1}^{D^{r}}$ for $1 \leq k \leq m$ and $n_{1}, \ldots, n_{(k-1) r} \in\{1, \ldots, N\}$ such that

$$
U^{n_{1}, \ldots, n_{(k-1) r}}=\sum_{i=1}^{D^{r}}\left|\psi_{i}\right\rangle\left\langle e_{i}^{n_{1}, \ldots, n_{(k-1) r}}\right|
$$

Average codeword length of special block code (for 2 blocks)

We will denote by $\operatorname{ACL}(\mathcal{U})$ the average codeword length of the special block code \mathcal{U}, which is defined to be equal to

$$
\begin{aligned}
& \sum_{n_{1}, \ldots, n_{m l}=1}^{N} p\left(n_{1}, \ldots, n_{m r}\right) \operatorname{Tr}\left(\mid U\left(s_{n_{1}} \cdots s_{n_{r}}\right) \circ U^{n_{1}, \ldots, n_{r}}\left(s_{n_{r+1}} \cdots s_{n_{2 r}}\right) \circ\right. \\
&\left.\cdots \circ U^{n_{1}, \ldots, n_{(m-1) r}}\left(s_{n_{(m-1) r+1}} \cdots s_{n_{m r}}\right)\right\rangle \\
&\left\langle U\left(s_{n_{1}} \cdots s_{n_{r}}\right) \circ U^{n_{1}, \ldots, n_{n_{r} r}}\left(s_{n_{r+1}} \cdots s_{n_{2 r}}\right) \circ\right. \\
&\left.\cdots \circ U^{n_{1}, \ldots, n_{(m-1) r}}\left(s_{n_{(m-1) r+1}} \cdots s_{n_{m r}}\right) \mid \Lambda\right)
\end{aligned}
$$

Main result

Consider a quantum stochastic source \mathcal{B} consisting of an alphabet of N many pure states spanning a D-dimensional Hilbert space \mathcal{H}, and a stochastic process X having mass function p as defined before. Fix $m, r \in \mathbb{N}$. Let

$$
L B(\mathcal{B}, m, r)
$$

denote the infimum of the set containing $A C L(\mathcal{U})$ for every special block code \mathcal{U} that is used to encode $m r$ many states emitted by \mathcal{B} into m blocks each of size r. Then $\operatorname{LB}(\mathcal{B}, m, r)$ can be computed as follows: For each $k=1, \ldots, m$, and a sequence $n_{1}, \ldots, n_{(k-1) r}$ of integers chosen from the set $\{1, \ldots, N\}$, let $\left(\lambda_{i}^{n_{1}, \ldots, n_{(k-1) r}}\right)_{i=1}^{D^{r}}$ be the eigenvalues of the $k^{\text {th }}$ block conditional ensemble state $\rho^{n_{1}, \ldots, n_{(k-1) r}}$, arranged in decreasing order, and $\left(\left|\lambda_{i}^{n_{1}, \ldots, n_{(k-1) r}}\right\rangle\right)_{i=1}^{D^{r}}$ be the corresponding eigenvectors.

Let

$$
\begin{aligned}
& \mathfrak{L}=\left\{\left(\ell_{1}, \ldots, \ell_{D^{r}}\right): \ell_{i} \in \mathbb{N} \cup\{0\} \text { for all } i, \ell_{1} \leq \ell_{2} \leq \cdots \leq \ell_{D^{r}},\right. \text { and } \\
& \left.\qquad \sum_{i=1}^{D^{r}} 2^{-\ell_{i}} \leq 1\right\}
\end{aligned}
$$

Define a function $L: \mathfrak{L} \rightarrow[0, \infty)$ by

$$
\begin{aligned}
L\left(\left(\ell_{i}\right)_{i=1}^{D^{r}}\right):= & \sum_{j=2}^{m}\left(\sum_{n_{1}, \ldots, n_{(j-1) r}=1}^{N} p\left(n_{1}, \ldots, n_{(j-1) r}\right) \sum_{i=1}^{D^{r}} \lambda_{i}^{n_{1}, \ldots, n_{(j-1) r}} \ell_{i}\right)+ \\
& \sum_{i=1}^{D^{r}} \lambda_{i} \ell_{i} .
\end{aligned}
$$

Then,

$$
L B(\mathcal{S}, m, r)=\min \left\{L\left(\left(\ell_{i}\right)_{i=1}^{D^{r}}\right):\left(\ell_{i}\right)_{i=1}^{D^{r}} \in \mathfrak{L}\right\}
$$

Moreover, the infimum defining $L B(\mathcal{S}, m, r)$ is actually a minimum, i.e., there exists a special block code

$$
\min \left\{L\left(\left(\ell_{i}\right)_{i=1}^{D^{r}}\right):\left(\ell_{i}\right)_{i=1}^{D^{r}} \in \mathfrak{L}\right\}=A C L(\mathcal{V})
$$

The minimizer \mathcal{V} is given as follows: Assume that L achieves its minimum on \mathfrak{L} at the point $\left(\ell_{i}\right)_{i=1}^{D^{r}} \in \mathfrak{L}$. Since the sequence $\left(\ell_{i}\right)_{i=1}^{D^{r}}$ satisfies the classical Kraft-McMillan inequality, (which is the last condition in the definition of \mathfrak{L}), there exists a classical uniquely decodable sequence $\left(\omega_{i}\right)_{i=1}^{D^{r}}$ of codewords with corresponding lengths $\left(\ell_{i}\right)_{i=1}^{D^{r}}$. Let $\left(\left|\omega_{i}\right\rangle\right)_{i=1}^{D^{r}}$ be the corresponding sequence of qubit strings in the Fock space $\left(\mathbb{C}^{2}\right)^{\oplus}$. For each $k \in\{1, \ldots, m\}$, and string $n_{1}, \ldots, n_{(k-1) r} \in\{1, \ldots, N\}$, define

$$
V^{n_{1}, \ldots, n_{(k-1) r}}: \mathcal{H}^{\otimes r} \rightarrow\left(\mathbb{C}^{2}\right)^{\oplus}
$$

by

$$
V^{n_{1}, \ldots, n_{(k-1) r}}=\sum_{i=1}^{D^{r}}\left|\omega_{i}\right\rangle\left\langle\lambda_{i}^{n_{1}, \ldots, n_{(k-1) r}}\right| .
$$

Concatenation of rank-1 operators

Consider a collection of normalized states $\left\{\left|\phi_{i}\right\rangle\right\}_{i=1}^{N}$ such that each $\left|\phi_{i}\right\rangle$ is in the linear span of a jointly orthonormal sequence of length codewords $\left(\left|\psi_{j}\right\rangle\right)_{j=1}^{D}$. Then, $\left|\phi_{i} \circ \cdots \circ \phi_{N}\right\rangle$ is a normalized state. So, one can define the concatenation of rank-1 operators $\left(\left|\phi_{i}\right\rangle\left\langle\phi_{i}\right|\right)_{i=1}^{N}$ as

$$
\left|\phi_{1}\right\rangle\left\langle\phi_{1}\right| \circ \cdots \circ\left|\phi_{N}\right\rangle\left\langle\phi_{N}\right|=\left|\phi_{1} \circ \cdots \circ \phi_{N}\right\rangle\left\langle\phi_{1} \circ \cdots \circ \phi_{N}\right|
$$

Supporting lemma

For $z \in \mathbb{N}$ consider a non-increasing sequence of positive real numbers $Q_{1} \geq Q_{2} \geq \cdots \geq Q_{z} \geq 0$. Further, consider another arbitrary sequence of positive real numbers $l_{1}, l_{2}, \ldots, l_{z}$ and its non-decreasing enumeration $I_{1}^{\prime} \leq I_{2}^{\prime} \leq \cdots \leq I_{z}^{\prime}$. Then,

$$
\sum_{i=1}^{z} Q_{i} I_{i}^{\prime} \leq \sum_{i=1}^{z} Q_{i} I_{i}
$$

Sketch of the proof for 2 blocks

Consider the quantum stochastic source as described above, and fix the number of blocks, $m=2$. The ensemble state for two blocks $\rho_{2 r}$ can be written as

$$
=\sum_{n_{1}, \ldots, n_{2 r}=1}^{D^{r}} p\left(n_{1}, \ldots, n_{2 r}\right)\left|s_{n_{1}}, \cdots, s_{n_{2 r}}\right\rangle\left\langle s_{n_{1}}, \cdots, s_{n_{2 r}}\right|
$$

The average codeword length of our encoding for two blocks is given by

$$
\begin{gathered}
=\sum_{n_{1}, \ldots, n_{2 r}=1}^{N} p\left(n_{1}, \ldots, n_{2 r}\right) \operatorname{Tr}\left(\left|U\left(s_{n_{1}} \cdots s_{n_{r}}\right) \circ U^{n_{1}, \ldots, n_{2 r}}\left(s_{n_{r+1}} \cdots s_{n_{2 r}}\right)\right\rangle\right. \\
\left.\left\langle U\left(s_{n_{1}} \cdots s_{n_{r}}\right) \circ U^{n_{1}, \ldots, n_{r}}\left(s_{n_{r+1}} \cdots s_{n_{2 r}}\right)\right| \Lambda\right)
\end{gathered}
$$

$$
\begin{gathered}
=\sum_{n_{1}, \ldots, n_{2}=1}^{N} p\left(n_{1}, \ldots, n_{2 r}\right) \operatorname{Tr}\left(U\left|s_{n_{1}} \cdots s_{n_{r}}\right\rangle\left\langle s_{n_{1}} \cdots s_{n_{r}}\right| U^{\dagger} 。\right. \\
\\
\left.U^{n_{1}, \ldots, n_{r}}\left|s_{n_{r+1}} \cdots s_{n_{2}}\right\rangle\left\langle s_{n_{r+1}} \cdots s_{n_{2} r}\right|\left(U^{n_{1}, \ldots, n_{r}}\right)^{\dagger} \Lambda\right) \\
=\sum_{n_{1}, \ldots, n_{r}=1}^{N} \operatorname{Tr}\left(p\left(n_{1}, \ldots, n_{r}\right) U\left|s_{n_{1}} \cdots s_{n_{r}}\right\rangle\left\langle s_{n_{1}} \cdots s_{n_{r}}\right| U^{\dagger} \circ\right. \\
\left.U^{n_{1}, \ldots, n_{r}} \rho^{n_{1}, \ldots, n_{r}}\left(U^{n_{1}, \ldots, n_{r}}\right)^{\dagger} \Lambda\right)
\end{gathered}
$$

Substituting $U=\sum_{j=1}^{D^{r}}\left|\psi_{j}\right\rangle\left\langle e_{j}\right|, \quad U^{\dagger}=\sum_{j^{\prime}=1}^{D^{r}}\left|e_{j^{\prime}}\right\rangle\left\langle\psi_{j^{\prime}}\right|$,
$U^{n_{1}, \ldots, n_{r}}=\sum_{k=1}^{D^{r}}\left|\psi_{k}\right\rangle\left\langle e_{k}^{n_{1}, \ldots, n_{r}}\right|, \quad U^{n_{1}, \ldots, n_{r}}=\sum_{k^{\prime}=1}^{D^{r}}\left|e_{k^{\prime}}^{n_{1}, \ldots, n_{r}}\right\rangle\left\langle\psi_{k^{\prime}}\right|$, and $\Lambda=\sum_{\ell=0}^{\infty} \ell \Pi_{\ell}$ into the above equation and applying some simplifications, we get

$$
\begin{gathered}
=\sum_{n_{1}, \ldots, n_{r}=1}^{D^{r}} p\left(n_{1}, \ldots, n_{r}\right) \sum_{j, j^{\prime}=1}^{D^{r}}\left\langle e_{j} \mid s_{n_{1}} \cdots s_{n_{r}}\right\rangle\left\langle s_{n_{1}} \cdots s_{n_{r}} \mid e_{j^{\prime}}\right\rangle \\
\sum_{i=1}^{D^{r}} \lambda_{i}^{n_{1}, \ldots, n_{r}} \sum_{k, k^{\prime}=1}^{D^{r}}\left\langle e_{k}^{n_{1}, \ldots, n_{r}} \mid \lambda_{i}^{n_{1}, \ldots, n_{r}}\right\rangle\left\langle\lambda_{i}^{n_{1}, \ldots, n_{r}} \mid e_{k^{\prime}}^{n_{1}, \ldots, n_{r}}\right\rangle \\
\sum_{\ell=0}^{\infty} \ell\left\langle\psi_{j^{\prime}} \psi_{k^{\prime}}\right| \Pi_{\ell}\left|\psi_{j} \psi_{k}\right\rangle
\end{gathered}
$$

Since the sequence $\left\{\left|\psi_{r}\right\rangle_{r=1}^{D^{r}}\right.$ is a jointly orthonormal sequence, that causes $j=j^{\prime}$ and $k=k^{\prime}$. So, the average codeword length simplifies to

$$
\begin{gathered}
=\sum_{n_{1}, \ldots, n_{r}=1}^{D^{r}} p\left(n_{1}, \ldots, n_{r}\right) \sum_{j=1}^{D^{r}}\left|\left\langle e_{j} \mid s_{n_{1}} \cdots s_{n_{r}}\right\rangle\right|^{2} \sum_{i=1}^{D^{r}} \lambda_{i}^{n_{1}, \ldots, n_{r}} \\
\sum_{k=1}^{D^{r}}\left|\left\langle e_{k}^{n_{1} \ldots, n_{r}} \mid \lambda_{i}^{n_{1}, \ldots, n_{r}}\right\rangle\right|^{2}\left(\ell_{j}+\ell_{k}\right)
\end{gathered}
$$

$$
\begin{aligned}
& =\sum_{n_{1}, \ldots, n_{r}=1}^{D^{r}} p\left(n_{1}, \ldots, n_{r}\right) \sum_{j=1}^{D^{r}} \ell_{j}\left|\left\langle e_{j} \mid s_{n_{1}} \cdots s_{n_{r}}\right\rangle\right|^{2}+ \\
& \sum_{n_{1}, \ldots, n_{r}=1}^{D^{\prime}} p\left(n_{1}, \ldots, n_{r}\right) \sum_{j=1}^{D^{\prime}}\left|\left\langle e_{j} \mid s_{n_{1}} \cdots s_{n_{r}}\right\rangle\right|^{2} \sum_{i=1}^{D^{\prime}} \lambda_{i}^{n_{1}, \ldots, n_{r}} \\
& \sum_{k=1}^{D^{\prime}} \ell_{k}\left|\left\langle e_{k}^{n_{1} \ldots, n_{r}} \mid \lambda_{i}^{n_{1}, \ldots, n_{r}}\right\rangle\right|^{2}
\end{aligned}
$$

Using Birkhoff-von Neumann theorem, it can be shown that the above equation is minimized when $\left|e_{i}^{n_{1}, \ldots, n_{r}}\right\rangle=\left|\lambda_{i}^{n_{1}, \ldots, n_{r}}\right\rangle$ upto an overall phase factor for $1 \leq i \leq D^{r}$. So, the above equation simplifies to

$$
\begin{aligned}
& =\sum_{n_{1}, \ldots, n_{r}=1}^{D^{\prime}} p\left(n_{1}, \ldots, n_{r}\right) \sum_{j=1}^{D^{r}} \ell_{j}\left|\left\langle e_{j} \mid s_{n_{1}, \ldots, n_{r}}\right\rangle\right|^{2}+ \\
& \sum_{n_{1}, \ldots, n_{r}=1}^{D^{\prime}} p\left(n_{1}, \ldots, n_{r}\right) \sum_{i=1}^{D^{r}} \ell_{i} \lambda_{i}^{n_{1}, \ldots, n_{r}} \\
& =\sum_{j=1}^{D^{r}} \ell_{j}\left\langle e_{j}\right|\left(\sum_{n_{1}, \ldots, n_{r}=1}^{D^{r}} p\left(n_{1}, \ldots, n_{r}\right)\left|s_{n_{1}} \cdots s_{n_{r}}\right\rangle\left\langle s_{n_{1}} \cdots s_{n_{r}}\right|\right)\left|e_{j}\right\rangle+ \\
& \sum_{n_{1}, \ldots, n_{r}=1}^{D^{r}} p\left(n_{1}, \ldots, n_{r}\right) \sum_{i=1}^{D^{r}} \ell_{i} \lambda_{i}^{n_{1}, \ldots, n_{r}} \\
& =\sum_{j=1}^{D^{\prime}} \ell_{j}\left\langle e_{j}\right| \rho_{r}\left|e_{j}\right\rangle+\sum_{n_{1}, \ldots, n_{r}=1}^{D^{r}} p\left(n_{1}, \ldots, n_{r}\right) \sum_{i=1}^{D^{r}} \ell_{i} \lambda_{i}^{n_{1}, \ldots, n_{r}}
\end{aligned}
$$

$$
=\sum_{j, k=1}^{D^{\prime}} \ell_{j} \lambda_{k}\left|\left\langle e_{j} \mid \lambda_{k}\right\rangle\right|^{2}+\sum_{n_{1}, \ldots, n_{r}=1}^{D^{\prime}} p\left(n_{1}, \ldots, n_{r}\right) \sum_{i=1}^{D^{\prime}} \ell_{i} \lambda_{i}^{n_{1}, \ldots, n_{r}}
$$

Again, using Birkhoff-von Neumann theorem, the above equation is minimized when $\left|e_{j}\right\rangle=\left|\lambda_{j}\right\rangle$ upto an overall phase factor for $1 \leq j \leq D^{\prime}$. Thus, the equation reduces to

$$
\sum_{j=1}^{D^{r}} \ell_{j} \lambda_{j}+\sum_{n_{1}, \ldots, n_{r}=1}^{D^{r}} p\left(n_{1}, \ldots, n_{r}\right) \sum_{i=1}^{D^{r}} \ell_{i} \lambda_{i}^{n_{1}, \ldots, n_{r}}
$$

In general, for $m \in \mathbb{N}$ blocks, the equation is given by

$$
\sum_{j=2}^{m}\left(\sum_{n_{1}, \ldots, n_{(j-1) r}}^{N} p\left(n_{1}, \ldots, n_{(j-1) r}\right) \sum_{i=1}^{D^{r}} \lambda_{i}^{n_{1}, \ldots, n_{(j-1) r}} \ell_{i}\right)+\sum_{i=1}^{D^{r}} \lambda_{i} \ell_{i}
$$

Hence, the minimum average codeword length is obtained by using the set of $\left\{\ell_{i}\right\}_{i=1}^{D^{r}}$ that minimizes the above equation and satisfies $\sum_{i=1}^{D^{r}} 2^{-\ell_{i}} \leq 1$.

References

國 Jozsa，Richard，et al．＂Universal quantum information compression．＂ Physical review letters 81.8 （1998）： 1714.

目 Kaltchenko，Alexei and Yang，En－Hui．（2003）．＂Universal Compression of Classically Correlated Stationary Quantum Sources．＂Proc SPIE． 5105．10．1117／12．485663．
國 Kaltchenko，Alexei，and Yang En－Hui．＂Universal compression of ergodic quantum sources．＂arXiv：quant－ph／0302174（2003）．
嗇 Schumacher，Benjamin，and Westmoreland，Michael D． ＂Indeterminate－length quantum coding．＂Physical Review A 64.4 （2001）： 042304.
Hayashi，Masahito，and Keiji Matsumoto．＂Quantum universal variable－length source coding．＂Physical Review A 66.2 （2002）： 022311.

Hayashi，Masahito，and Keiji Matsumoto．＂Simple construction of

