
CLASSES OF POLYNOMIALS HAVING ONLY ONE

NON{CYCLOTOMIC IRREDUCIBLE FACTOR

A. Borisov, M. Filaseta*, T. Y. Lam**, and O. Trifonov

1. Introduction

In 1986, during the problem session at the West Coast Number Theory Conference, the

second author stated the following:

Conjecture 1. Let n be an integer � 2, and let f(x) = 1+x+x2+ � � �+xn. Then f 0(x)
is irreducible over the rationals.

He noted then that the conjecture is true if n = p � 1 � 2 or if n = pr where p is a

prime and r a positive integer. Calculations showed the conjecture also held for n � 100.

Recently, in a study of more general polynomials, the �rst author [2] obtained further

irreducibility results for f(x); in particular, he established irreducibility in the case that

n+ 1 is a squarefree number � 3 and in the case that n = 2p � 1 where p is prime.

The third author independently observed that f (k)(x) is Eisenstein if n = p�1 for every

integer k 2 [1; n� 1] and, based on some further computations, conjectured:

Conjecture 2. Let n and k be integers with n � 2 and 1 � k � n � 1, and let f(x) =

1 + x+ x2 + � � � + xn. Then f (k)(x) is irreducible over the rationals.

In 1991, again during the problem session at theWest Coast Number Theory Conference,

Je� Lagarias mentioned a class of polynomials associated with some work of Eugene Gutkin

[5] concerning billiards. Eugene Gutkin was interested in showing that the polynomials

had no roots in common other than from obvious cyclotomic factors. As a consequence,

Je� Lagarias made the following conjecture attributed to Eugene Gutkin:

Conjecture 3. Let n be an integer � 4, and let

p(x) = (n� 1)(xn+1 � 1)� (n+ 1)(xn � x):

Then p(x) is (x�1)3 times an irreducible polynomial if n is even and p(x) is (x�1)3(x+1)

times an irreducible polynomial if n is odd.

In this paper, we explain some approaches to these three conjectures. The connection

between Conjectures 3 and the two previous conjectures is more transparent if one observes
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that in Conjecture 1 we have f(x) = (xn+1 � 1)=(x� 1) so that

f 0(x) =
nxn+1 � (n+ 1)xn + 1

(x� 1)2
:

Higher derivatives of f(x) as in Conjecture 2 take a similar form. We are able to show that

Conjectures 1 and 3 hold for almost all n and that Conjecture 2 holds for most choices of

n and k. More precisely, we establish each of the following theorems.

Theorem 1. Let " > 0. For all but O(t(1=3)+") positive integers n � t, the derivative of

the polynomial f(x) = 1 + x+ x2 + � � � + xn is irreducible.

Theorem 2. Fix a positive integer k. For all but o(t) positive integers n � t, the kth

derivative of the polynomial f(x) = 1 + x+ x2 + � � � + xn is irreducible.

Theorem 3. Fix a positive integer m. There is an N such that if n is a positive integer

� N and f(x) = 1 + x+ x2 + � � � + xn, then the polynomial f (n�m)(x) is irreducible.

Theorem 4. Let " > 0. For all but O(t(4=5)+") positive integers n � t, the polynomial

p(x) = (n� 1)(xn+1 � 1)� (n+ 1)(xn � x);

is such that p(x) is (x � 1)3 times an irreducible polynomial if n is even and p(x) is

(x� 1)3(x+ 1) times an irreducible polynomial if n is odd.

In Theorem 2, our arguments give O(t log log t= log t) in place of o(t). We would be

interested in an upper bound of the type O(t�) for some � 2 (0; 1) that is independent of

k. Our arguments suggest that such a � exists, but we have been unable to establish this.

The rest of the paper is organized as follows. In the next section, we give a proof of

Theorem 3. The proofs of the remaining theorems above that we will present here rely on

the location of the p-adic zeroes of the polynomials. Section 3 establishes some preliminary

results based on these zeroes. As noted at the end of that section, these preliminary results

can be extended to handle certain other classes of polynomials where almost all polynomials

in the class have one non-cyclotomic irreducible factor. In the remaining sections of the

paper, we give proofs of each of the remaining theorems based on these preliminary results.

Acknowledgment: The authors express their gratitude to Andrzej Schinzel who encour-

aged the �rst three authors to correspond with one another in matters related to this

research. They also express their gratitude to Charles Nicol for early remarks concerning

this work.

2. A Proof of Theorem 3 and Further Remarks

Consider f(x) as in Theorem 3. If m = 1, then f (n�m)(x) is linear and, hence, irre-

ducible for every integer n � 1. If m = 2, then f (n�m)(x) is quadratic and it is a simple

matter to show that this quadratic has imaginary roots. Thus, in this case, f (n�m)(x) is

irreducible for every integer n � 2. It is of some interest to continue by considering the

cubics one obtains in Theorem 3 by setting m = 3. The proof we will present for Theorem
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3 is e�ective so that in theory it is possible to determine for a �xed m what polynomials

of the form f (n�m)(x) are reducible. We will demonstrate this at the end of the section

by showing that for m = 3 the cubic f (n�m)(x) is irreducible for every integer n � 4.

We turn now to the proof of Theorem 3. Observe that

f (n�m)(x) =

nX
j=n�m

j(j�1) � � � (j�n+m+1)xj�n+m =

mX
j=0

(n�j)(n�j�1) � � � (m�j+1)xm�j:

We set k = n�m and consider the polynomial

Fk(x) =
xmf (k)(1=x)

k!
=

mX
j=0

(k +m� j)(k +m� j � 1) � � � (m� j + 1)

k!
xj

=

mX
j=0

�
k +m� j

m� j

�
xj =

mX
j=0

�
k + j

j

�
xm�j :

It su�ces now to show that if k is su�ciently large, then the polynomial Fk(x) is irreducible.

For a prime p and an integer a, we de�ne �(a) = �p(a) = e where pejja. We de�ne the

Newton polygon of a polynomial F (x) =
P

n

j=0 ajx
j as the lower convex hull of the points

(j; �(aj)) (cf. [3], [6], [15]). We consider the Newton polygon of a polynomial F (x). Let the

lattice points along the edges be (x0; y0); (x1; y1); : : : ; (xs; ys) with 0 = x0 < x1 < � � � <
xs = degF (x). Then the degree of any irreducible factor of F (x) (over Z[x]) must be some

sum of the di�erences x1�x0; x2�x1; : : : ; xs�xs�1. In other words, if r is the degree of an

irreducible factor of F (x), then there are integers j1; : : : ; jt with 1 � j1 < j2 < � � � < jt � s

such that r =
Pt

i=1(xji � xji�1).

The next result is due to Sylvester [13] and was �rst used to obtain irreducibility results

by I. Schur [12]. It is a generalization of Bertrand's postulate that for every integer m � 1,

there is a prime in the interval (m; 2m] (take k = m).

Lemma 1. Let m and k be positive integers with m � k. Then there is a prime p � k+1

which divides one of the numbers m + 1;m + 2; : : : ;m + k.

We will also use an e�ective version of Thue's theorem (it follows with a little modi�-

cation from Theorem 4.1 in [1]; also see [11]).

Lemma 2. Let a, b, and d be integers with d 6= 0. Let q be a positive integer � 3. Then

there are �nitely many integer pairs (x; y) for which axq � byq = d. Furthermore, these

pairs can e�ectively be determined.

The following is a combinatorial lemma and follows directly from (5.26) of [4].

Lemma 3. Let m and k be positive integers. Let Fk(x) be as in the theorem. Then

Fk(x+ 1) =

mX
j=0

�
k +m+ 1

j

�
xm�j :
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Fix a positive integer m. By the comments at the beginning of this section, we may

suppose that m � 3 (and do so). If Fk(x) is reducible, then it has a factor with degree in

the interval [1;m=2]. It su�ces therefore to show that for each ` 2 [1;m=2], there are only

�nitely many k for which Fk(x) has a factor of degree `. Fix an integer ` 2 [1;m=2], and

suppose Fk(x) has a factor g(x) in Z[x] of degree `. De�ne q = m in the case that ` = 1.

Otherwise, de�ne q as the largest prime divisor of m(m�1) � � � (m�`+1). Since m�` � `,

we deduce from Lemma 1 that q � ` + 1. Observe that our choice of q guarantees that

q � 3. Let t 2 f0; 1; : : : ; `� 1g such that q divides m� t.

Suppose now that p > m is a prime dividing k + t+ 1 (if no such p exists, we can skip

this part). Let r be the positive integer such that prjj(k + t+ 1). We claim that q divides

r. For t+ 1 � j � m, we deduce from

�
k + j

j

�
=

(k + j)(k + j � 1) � � � (k + 1)

j!

that p, which is > m, divides the numerator of this last expression but not its denominator.

In fact, pr must exactly divide the numerator. On the other hand, one easily deduces from

p > m > t and pj(k + t+ 1) that p does not divide
�
k+t
t

�
. Hence, the Newton polygon of

Fk(x) with respect to the prime p has as its left-most edge the line segment with endpoints

(0; r) and (m � t; 0). Recall that ` � t + 1. Since Fk(x) has the factor g(x) of degree `,

it follows that there must be two lattice points, say (a; b) and (c; d) with c > a, on the

left-most edge of the Newton polygon of Fk(x) with c � a � `. On the other hand, by

considering the slope of the left-most edge, we see that

jd� bj
c� a

=
r

m� t
=) (m� t)jd� bj = (c� a)r:

The de�nition of q implies c � a � ` < q. Thus, q and c � a are relatively prime (in the

case that q is a prime, this is clear; in the case that ` = 1 where we have de�ned q = m,

this follows since c � a � ` = 1 implies c � a = 1). On the other hand, qj(m � t), so the

above equation gives that q divides r as claimed.

We now make use of Lemma 3. We consider any prime p > m dividing k +m� t+ 1,

and let r be the positive integer such that pr exactly divides k +m� t+ 1. Observe that

since t � ` � 1 � (m=2) � 1, we have k +m � t + 1 6= k + t + 1, so we are in a di�erent

situation than the above. We use an argument similar to the above to show that q divides

r in this situation as well. Here, we have

�
k +m+ 1

j

�
=

(k +m+ 1)(k +m) � � � (k +m � j + 2)

j!
:

The conditions p > m and pr exactly divides k+m� t+1 with r � 1 imply that for every

j with t + 1 � j � m, pr exactly divides
�
k+m+1

j

�
. Also, p does not divide

�
k+m+1

t

�
. We

deduce that the Newton polygon of Fk(x+ 1) with respect to p contains the line segment

with endpoints (0; r) and (m � t; 0). The same argument as above gives as before that

since Fk(x) (and hence Fk(x+ 1)) has a factor of degree `, q must divide r.
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Let p1; : : : ; ps denote the distinct primes � m. Let

T = fpe11 pe22 � � � pes
s

: 0 � ej � q � 1 for each jg:
By the above, k+m� t+1 = auq and k+ t+ 1 = bvq for some integers a and b in T and

some integers u and v. We deduce that (u; v) is a solution to the diophantine equation

axq � byq = m� 2t. Note that m� 2t > 0 and that q and t only depend on m and `. For

each choice of a and b in T , we deduce from Lemma 2 that there are only �nitely many

k with k +m � t + 1 = auq and k + t + 1 = bvq as above. Since T is a �nite set, there

are only �nitely many Fk(x) with a factor in Z[x] of degree `. This completes the proof of

Theorem 3.

We end this section by establishing that the cubics obtained by taking derivatives of

f(x) as in Theorem 3 are all irreducible.

Theorem 5. Let f(x) = 1 + x + x2 + � � � + xn. For every integer n � 4, the polynomial

f (n�3)(x) is irreducible.

As in our arguments above (with m = 3), we consider

Fk(x) = x3 +

�
k + 1

1

�
x2 +

�
k + 2

2

�
x+

�
k + 3

3

�
:

We want to show that Fk(x) is irreducible for all k � 1. In the argument for Theorem 3,

we have m = q = 3, ` = 1, and t = 0. We deduce that k + 4 = au3 and k + 1 = bv3 for

some positive integers a, b, u, and v with a and b divisors of 36. Such k are determined

from the diophantine equation au3 � bv3 = 3.

A simple restriction on a and b that follows directly from au3 � bv3 = 3 is that either

both a and b are divisible by 3 or neither is. Also, since one of k+4 = au3 and k+1 = bv3

is odd, at least one of a and b is odd. We show further that only the cases where a and b

are both not divisible by 9 are of interest to us (in other words, we need only consider a

and b divisors of 12). If 33e+2 exactly divides k + 1 for some non-negative integer e, then

the Newton polygon of Fk(x) with respect to 3 consists of a line segment with endpoints

(0; 3e + 1) and (3; 0). This segment contains no lattice points other than the endpoints.

Hence, Fk(x) is irreducible. An analogous argument works when 33e+2 exactly divides

k + 4 by considering Fk(x + 1) rather than Fk(x). It follows then that a and b must be

divisors of 12.

Our next two lemmas appear in [7], Theorem 5 on page 220 and Theorem 6 on page

225.

Lemma 4. If d > 1, the equation u3 + dv3 = 1 has at most one integer solution with

uv 6= 0. If such a solution exists, then necessarily u+ v
3
p
d is the fundamental unit in the

ring Z[
3
p
d].

Lemma 5. The complete set of solutions to the diophantine equation 2u3 � v3 = 3 is

given by (u; v) = (1;�1) and (u; v) = (4; 5), and the complete set of solutions to the

diophantinve equation 4u3 � v3 = 3 is given by (u; v) = (1; 1).

Lemma 4 will be used to examine solutions to

u3 � 2v3 = 1 and u3 � 4v3 = 1:
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We will want uv 6= 0. Integer solutions to these correspond to integer solutions to u3 +

2(�v)3 = 1 and u3 + 4(�v)3 = 1. Lemma 4 asserts that there is at most one solution to

u3 + 2(�v)3 = 1 with uv 6= 0. Apparently, this is given by (u; v) = (�1;�1). Now, we

apply Lemma 4 to the second equation. Observe that 5 + 3
3
p
4 + 2

3
p
4
2
is a unit in Z[ 3

p
4].

If the fundamental unit in Z[ 3
p
4] were of the form u+v 3

p
4 with u and v integers satisfying

u3 + 4v3 = 1, then there would be some positive integer t for which

�
u+ v

3
p
4
�t

= 5 + 3
3
p
4 + 2

3
p
4
2
:

Expanding the right side and expressing it in terms of the basis f1; 3
p
4;

3
p
4
2g, it is easy to

see that v will be a divisor of the coe�cient of
3
p
4 and a divisor of the coe�cient of

3
p
4
2
.

We deduce that v divides both 3 and 2 and, hence, is �1. Since u3 + 4v3 = 1, we easily

obtain a contradiction. Therefore, the fundamental in Z[ 3
p
4] cannot be of the form stated

in Lemma 4, and we deduce that there are no solutions to u3 + 4(�v)3 = 1 with uv 6= 0.

Lemma 5 is only part of Theorem 6 in [7, p. 225]. The �rst sentence of Lemma 5 is

stated explicitly. The second sentence follows by considering 4u3 + (�v)3 = 3 in Theorem

6. Theorem 6 in [7] implies that there is at most one solution to this diophantine equation.

Apparently, it is given by (u; v) = (1; 1).

Given the restrictions on a and b above, we show next that the only solutions to au3 �
bv3 = 3 with u and v positive arise from one of the following:

(i) (a; b) = (4; 1) and (u; v) = (1; 1).

(ii) (a; b) = (6; 3) and (u; v) = (1; 1).

(iii) (a; b) = (2; 1) and (u; v) = (4; 5).

To simplify matters, we restrict ourselves to a � b. If a < b and au3 � bv3 = 3 with u

and v positive, then also b(�v)3 � a(�u)3 = 3. Thus, we can make the restriction a � b

provided we also consider solutions with both u and v negative. Given our restrictions on

a and b, we get that there are only six cases to consider.

Case 1. (a; b) = (1; 1).

Here, we want solutions to u3 � v3 = 3. Since we are considering u and v to have the

same sign, we have uv > 0. Then the factor u2 + uv+ v2 of u3 � v3 is � 3 with equality if

and only if uv = 1. We easily deduce that u3 � v3 = 3 has no solutions in integers u and

v with uv > 0.

Case 2. (a; b) = (2; 1).

Here, we are interested in solutions of 2u3 � v3 = 3 with uv > 0. We apply Lemma 5

above to obtain the unique solution (u; v) = (4; 5).

Case 3. (a; b) = (4; 1).

From Lemma 5, the only solution to 4u3 � v3 = 3 is (u; v) = (1; 1).

Case 4. (a; b) = (3; 3).

If 3u3 � 3v3 = 3, then u3 � v3 = 1. Since we require uv > 0, the factor u2 + uv + v2 of

u3 � v3 is � 3 so that u3 � v3 = 1 has no solutions in integers u and v with uv > 0.
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Case 5. (a; b) = (6; 3).

If 6u3 � 3v3 = 3, then 2u3 � v3 = 1. As noted above, Lemma 4 implies u3 � 2v3 = 1

has only the solution (u; v) = (�1;�1). Interchanging the roles of u and v and changing

the signs of u and v, we deduce that 2u3 � v3 = 1 has only the solution (u; v) = (1; 1)

(assuming uv > 0).

Case 6. (a; b) = (12; 3).

If 12u3 � 3v3 = 3, then 4u3 � v3 = 1. From the comments after Lemma 4 above, it

follows that there are no integer solutions to 4u3 � v3 = 1 with uv 6= 0.

We deduce from (i), (ii), and (iii) that we only need consider the three possibilities k+1 = 1,

k+1 = 3, and k+1 = 125. One checks the latter two directly to see that Fk(x) is irreducible.

We are not allowing k = 0 so the �rst possibility does not really arise. This completes the

proof of Theorem 5.

3. Preliminary Results

For p a prime, we let j jp represent the p-adic norm on Q and let Qp denote the completion

of the rationals with respect to this norm. We denote by �p(a) the value of � log jajp= log p
where we interpret �p(0) as 1. Both j jp and �p extend in a natural way to the algebraic

closure of Qp . We drop the subscripts when using �p when it is clear what the prime p under

consideration is. We make use of the Newton polygon of a polynomial f(x) =
Pn

j=0 ajx
j

with coe�cients in some extension of Qp ; as in the previous section, this Newton polygon

is de�ned as the lower convex hull of the points (j; �(aj)). Throughout the remainder of

this paper, we work in an algebraic closure of Qp unless noted otherwise or unless it is

clear from the context that we are working in C . As references, we mention the books of

Gouvea [3], Koblitz [6], and Weis [15].

A lemma we will make use of throughout the remainder of the paper is the following.

Lemma 6. Let � be an mth p-adic root of unity and � 0 and m0th p-adic root of unity.

Suppose p - mm0. Then �(� � � 0) = 0.

The lemma follows from Lemma 2.12 of [14]. It is also easily established by observing that

�(� 0)�1�1 is a root of
Pmm

0�1

j=0 (x+1)j , a monic polynomial with constant term relatively

prime to p. We will make particular use of the lemma with � 0 = �1.
The next result, an essential ingredient to our arguments for Theorems 1 and 2, is based

on the work of the �rst author in [2].

Proposition 1. Let w(x) =
Pn+1

j=0 ajx
j 2 Z[x]with an+1 6= 0, and let m and r be integers

with m > 0, r � 0, n+ 1 = m + r. Let p be a prime such that pjm, p > r, and p - an+1.

Write m = p`m0 where �p(m0) = 0. Suppose that w(x) � an+1(x
m � 1)xr (mod p`) and

that, for each � 6= 1 such that �m
0

= 1, we have �p(w(�)) = `. Let w(x) = g(x)h(x) be a

factorization of w(x) in Z[x]. Let

A =
X

g(�)=0

�
� � 1

�

�
; B =

X
h()=0

�
 � 1



�
; C =

X
g(�)=0

(1� �) and D =
X

h()=0

(1� );
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where the sums are over the distinct roots of g(x) and h(x) and where we consider A and

B only in the case that a0 6= 0. Then A, B, C, and D are rational numbers satisfying:

(i) if r = 0, then each of �(A), �(B), �(C), and �(D) is positive,

(ii) if r > 0, p`jja0, and gcd(`; r) = 1, then either �(A) > 0, �(C) > 0, pjh(0), and
D 6= 0 or �(B) > 0, �(D) > 0, pjg(0), and C 6= 0.

Comment: We have de�ned A, B, C, and D as sums over distinct roots of g(x) or h(x).

The conclusions of the proposition, however, hold even if any of these sums is taken over

the roots counted to their multiplicities. The same proof below, word for word, can be

used to establish this.

Proof. First, we observe that each of A, B, C, and D is rational; this follows as each is

a symmetric function of the roots of either g(x) or h(x) both of which contain rational

coe�cients. Note that the rational values of A, B, C, and D depend only on the coe�cients

of g(x) and h(x). It follows that these values are independent of whether we view the roots

� of g(x) and the roots  of h(x) as complex numbers or as lying in an algebraic closure

of Qp .

We begin by determining information about the p-adic location of the zeroes of w(x).

Let � be an m0th root of unity di�erent from 1. We determine next the Newton polygon

of f(x) = w(x + �). Write f(x) =
P

n+1
j=0 bjx

j and observe that b0 = f(0) = w(�). We

deduce that the left-most endpoint of the Newton polygon of f(x) is (0; �(w(�))) = (0; `).

Also, the conditions in the lemma imply that there is a v(x) 2 Z[x] for which w(x) =

a(xm+r � xr) + p`v(x) where a = an+1. Note that p - a. It follows that

f(x) = a
�
(x+ �)m+r � (x+ �)r

�
+ p`v(x+ �)

= a

m+rX
j=0

��
m+ r

j

�
�m+r�j �

�
r

j

�
�r�j

�
xj + p`v(x+ �)

= a

m+rX
j=0

��
m+ r

j

�
�
�
r

j

��
xj�r�j + p`v(x+ �)

where we interpret
�
r

j

�
as zero if j > r. We use that �(x + y) � minf�(x); �(y)g with

equality when �(x) 6= �(y). We deduce

�(bj) � min

�
`; �

��
m+ r

j

�
�
�
r

j

���
;

and equality holds if the minimum is not `. For 1 � j � r, the conditions p`jm and p > r

imply that
�
m+r
j

�
�
�
r

j

�
(mod p`), and we obtain �(bj) � `. For j > r, we have

�
r

j

�
= 0.

One easily checks that

�

��
m+ r

pu

��
= `� u for 1 � u � `

and

�

��
m+ r

j

��
� `� u if pu � j < pu+1 and 1 � u � `� 1:
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Furthermore, this last inequality holds also for u = 0 provided j is restricted to r < j < p.

We deduce that �(bpu) = `�u for 1 � u � ` and that �(bj) � `�u for pu � j < pu+1 and

0 � u � `� 1. Also, �(bj) � 0 for p` < j � n+ 1. It follows that the Newton polygon of

f(x) has left-most edges joining the points (0; `) and (pu; `� u) for 1 � u � `. (It is easy

to see that the right-most edge is the segment with endpoints (p`; 0) and (n+1; 0), but we

will not need this fact.)

We use the classical connection between Newton polygons of a polynomial and the p-

adic roots of the polynomial. We deduce that f(x) has exactly p roots � with �(�) = 1=p

and, for each u 2 f1; ; 2; : : : ; `� 1g, exactly pu+1 � pu roots � with �(�) = 1=(pu+1 � pu).

We view these roots as forming ` sets, each set containing roots with equal �-values. Note

that since p - m0, p does not ramify in Qp (�). We deduce that the roots in any one set are

distinct roots of the same irreducible factor of f(x) over Qp (�).

Observe that � is a root of w(x) if and only if � � � is a root of f(x). If we view the

roots of f(x) in the form � � � and consider the ` sets of roots formed as above, we see

that w(x) has ` \clusters" around � of roots with the property that if � and �0 belong
to the same cluster, then �(� � �) = �(�0 � �) > 0. Furthermore, the roots in any one

of these clusters are distinct roots of the same irreducible factor of w(x) over Qp (�) and,

hence, of the same irreducible factor of w(x) over Q. In other words, if one root from a

cluster is a root of g(x) (or h(x)), then all the roots from that cluster are roots of g(x) (or

h(x), respectively).

The above holds for each � 6= 1 satisfying �m
0

= 1. There are m0 � 1 such � forming

(m0 � 1)� ` clusters of roots of w(x). We show next that these are disjoint clusters. This

is clearly true of clusters formed from the same �; in other words, if � and �0 are roots

with �(� � �) 6= �(�0 � �), then clearly � 6= �0. Now, suppose � is in a cluster around �

and in a cluster around � 0 where � 6= � 0, � 6= 1, � 0 6= 1, �m
0

= 1, and (� 0)m
0

= 1. Then it

follows that

�
�
(� 0 � �)�

�
= �

�
� 0(�� �)� �(�� � 0)

�
� minf�

�
� 0(�� �)

�
; �
�
�(�� � 0)

�
g > 0:

Lemma 6 implies that �(� 0 � �) = 0. Since �(� � �) > 0 and �(�) = 0, we also deduce

�(�) = 0. We therefore obtain a contradiction, and we can conclude that the (m0 � 1)� `

clusters consist of distinct roots.

The total number of roots in these (m0� 1)� ` clusters is (m0� 1)� p`. Since w(x) has

m + r = m0p` + r roots, we have yet to account for p` + r roots of w(x). By considering

the Newton polygon of w(x) and using the condition w(x) � a(xm � 1)xr (mod p`), we

deduce that w(x) has exactly r roots � with the property that �(�) > 0. Note that the

other roots � of w(x) necessarily satisfy �(�) = 0. In a manner similar to the above (but

easier), we deduce that each of the r roots around 0 does not belong to any of the above

clusters of roots. These r roots around 0 form a cluster as before except that we cannot in

general deduce that these roots necessarily are roots of the same irreducible factor of w(x)

over Qp (�) (or over Q). The condition gcd(`; r) = 1 in (ii) implies that the left-most edge

of the Newton polygon of w(x) contains only the lattice points at its endpoints, namely

(0; `) and (r; 0). Since p does not ramify in Qp (�), we deduce that in this case the cluster

of r roots around 0 are distinct roots of a single irreducible factor of w(x) over Qp(�).
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We show now that the remaining p` roots of w(x) form a cluster of roots around 1. The

argument for roots around 1 is analogous to the case for � above (just set � = 1) except

that we cannot obtain here that �(b0) = �(w(1)) = `. On the other hand, the condition

w(x) � a(xm � 1)xr (mod p`) implies �(b0) = �(w(1)) � `. The argument proceeds as

before, and we deduce that there are p` roots � of w(x) with the property that �(��1) > 0

(we could say more, but this is all we will need). As before, it is easy to argue that these p`

roots around 1 are distinct from the roots of w(x) belonging to other clusters. We cannot,

however, deduce that these roots are distinct or that they are roots of the same irreducible

factor of w(x) over Qp (�) (or over Q).

We now apply the information we have established about the location of the zeroes of

w(x). We consider the case that r = 0. Then there are no roots in the cluster described

above around 0. It follows that the roots of g(x) consist of complete clusters around � for

some choices of � 6= 1 together with possibly some of the p` roots around 1; likewise for

h(x). If C1; C2; : : : ; Cs denote the clusters around � 6= 1 which contain roots of g(x) and C0
denotes the roots in the cluster around 1 that are roots of g(x), then we deduce that

�(C) � min
0�j�s

�
�

� X
�2Cj

(1� �)

��
:

Observe that

�

� X
�2C0

(1� �)

�
� min

�2C0

�
�(1� �)

	
> 0:

For each j 2 f1; 2; : : : ; sg, we de�ne �j as the m0th root of unity such that the roots of Cj
are those around �j , and we write

X
�2Cj

(1� �) =
X
�2Cj

�
(1� �j)� (� � �j)

�
= jCj j(1 � �j)�

X
�2Cj

(� � �j):

Since jCj j by construction is a multiple of p, we deduce that each of the terms in this

last expression has �-value > 0. It follows now that �(C) > 0. The same argument gives

�(D) > 0. Since r = 0 and w(x) � a(xm � 1)xr (mod p`), we deduce that a0 6= 0 so that

A and B are de�ned. Also, in this case, �(�) = 0 for each root � of g(x) and �() = 0 for

each root  of h(x). De�ne �1; : : : ; �s as before, and let �0 = 1. We use that

�(A) � min
0�j�s

�
�

� X
�2Cj

�
� � 1

�

���

� min
0�j�s

�
�

� X
�2Cj

�
(� � �j) +

� � �j

��j
+

�
�j �

1

�j

���
:

Following along lines similar to our argument that �(C) > 0, we deduce that �(A) > 0.

An analogous argument gives �(B) > 0.

For (ii), we have shown that the cluster of r roots around 0 are roots of a single irre-

ducible factor of w(x) over Qp (�). Hence, these r roots are either roots of g(x) or roots of
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h(x). Suppose the cluster of roots around 0 are roots of h(x). Then each root � of g(x)

belongs to a cluster around a root of unity so that the arguments above give �(A) > 0 and

�(C) > 0. Since p - an+1, the leading coe�cient of h(x) is not divisible by p and we deduce

that �(h(0)) =
P

h()=0 �(). Since h(x) has roots from the cluster of roots around 0, we

obtain �(h(0)) > 0 so that pjh(0). If S is the set of r roots clustered around 0, then we

consider X
2S

(1� ) = r �
X
2S

:

Since �() > 0 for each  2 S, the sum on the right has a positive �-value. Since

p > r > 0, �(r) = 0. It follows that �
�P

2S(1 � )
�
= 0. Hence, the arguments in the

previous paragraph now imply �(D) = 0. In particular, we must have D 6= 0. A similar

argument can be used in the case that the cluster of roots around 0 are roots of g(x). The

proposition follows. �

For the proof of Theorem 4, we will make use of three results similar to Proposition 1.

They are as follows:

Proposition 2. Let w(x) =
Pn+1

j=0 ajx
j 2 Z[x] with an+1 6= 0. Let p be an odd prime

such that pj(n + 1) and p - an+1. Write n + 1 = p`m0 where �p(m0) = 0. Suppose that

w(x) � an+1(x
n+1 � 1) (mod p`) and that, for each � 6= �1 such that �m

0

= 1, we have

�p(w(�)) = `. Let w(x) = g(x)h(x) be a factorization of w(x) in Z[x]. Let

A =
X

g(�)=0

�
�� 1

�

�
; B =

X
h()=0

�
� 1



�
; C 0 =

X
g(�)=0

(1��2) and D0 =
X

h()=0

(1� 2);

where the sums are over the distinct roots of g(x) and h(x) and where we consider A and

B only in the case that a0 6= 0. Then A, B, C 0, and D0 are rational numbers satisfying

�(A) > 0, �(B) > 0, �(C 0) > 0, and �(D0) > 0.

Proposition 3. Let w(x) =
P

n+1
j=0 ajx

j 2 Z[x] with an+1 6= 0. Let p be an odd prime

such that pjn and p - an+1. Write n = p`m0 where �p(m
0) = 0. Suppose that w(x) �

an+1(x
n � 1)(x + 1) (mod p`) and that, for each � 6= 1 such that �m

0

= 1, we have

�p(w(�)) = `. Let w(x) = g(x)h(x) be a factorization of w(x) in Z[x]. De�ne A, B,

C 0, and D0 as in Proposition 2. Then A, B, C 0, and D0 are rational numbers satisfying

�(A) > 0, �(B) > 0, �(C 0) > 0, and �(D0) > 0.

Proposition 4. Let w(x) =
P

n+1
j=0 ajx

j 2 Z[x] with an+1 6= 0. Suppose w(x) is a re-

ciprocal polynomial so that w(x) = �xn+1w(1=x). Let p be an odd prime such that

pj(n � 1), pjan+1, and p - an. Write n � 1 = p`m0 where �p(m
0) = 0. Suppose that

w(x) � an(x
n�1 � 1)x (mod p`) and that, for each � 6= �1 such that �m

0

= 1, we have

�p(w(�)) = `. Let w(x) = g(x)h(x) be a factorization of w(x) in Z[x]. De�ne A, B, C 0,
and D0 as above. Then A, B, C 0, and D0 are rational numbers such that if AB = 0, then

at least one of �(C 0) > 0 and �(D0) > 0 holds.

Proofs of Propositions 2, 3, and 4 can be given along the lines of the argument presented

here for Proposition 1. To aid the reader, we briey describe certain aspects of these
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proofs. As in the proof of Proposition 1, the roots of w(x) in each of the above results

can be grouped in clusters. In each of Propositions 2, 3, and 4, around each of the m0 � 2

(if m0 is even) or m0 � 1 (if m0 is odd) di�erent � satisfying � 6= �1 and �m
0

= 1, there

are p` roots which form various clusters, with each cluster of roots belonging to the same

irreducible factor of w(x) and each cluster containing a multiple of p di�erent roots. In

the case of Proposition 2, there are p` other roots of w(x) forming a cluster around 1 and,

if m0 is even, p` other roots forming a cluster around �1; each of these clusters contains

roots that are not necessarily roots of the same irreducible factor of w(x). This is su�cient

to establish Proposition 2. There are similar clusters of size p` around each of 1 (for all

m0) and �1 (if m0 is even) in the case of Proposition 4. However, in this case there are

two additional roots to account for; one of these two roots � satis�es �(�) > 0 and the

other root �0 satis�es �(�0) < 0. If AB = 0, one can show that the roots � and �0 are
either both roots of g(x) or are both roots of h(x). If the former holds then �(D0) > 0,

and if the latter holds then �(C 0) > 0. In Proposition 3, there is one cluster with p` roots

around 1 containing roots that are not necessarily roots of the same irreducible factor of

w(x). There are also p` +1 roots around �1 (if m0 is even) or one such root (if m0 is odd)
forming clusters with the roots in each cluster being roots of the same irreducible factor

of w(x); one cluster contains p + 1 roots (if m0 is even) or 1 root (if m0 is odd) and the

remaining clusters contain a multiple of p di�erent roots of w(x). It follows easily that

�(A) > 0, �(B) > 0, �(C 0) > 0, and �(D0) > 0.

There is a variety of results analogous to the propositions in this section that can be

established by similar means. Note that in Proposition 1 we dealt with a sum C of terms

of the form 1�� whereas the remaining propositions dealt with a sum C 0 involving terms

of the form 1 � �2. As will be evident later, C is of value in establishing Theorem 1 as

the term 1 � � is 0 when � is one of the cyclotomic roots of nxn+1 � (n+ 1)xn + 1 (i.e.,

when � = 1), the numerator of f 0(x). Similarly, C 0 is helpful in establishing Theorem 4

since 1� �2 is 0 when � is one of the cyclotomic roots of p(x) (i.e., when � = �1). More

generally, one can make use of

Ck =
X

g(�)=0

(1� �k) and Dk =
X

h()=0

(1� k)

in dealing with certain classes of polynomials for which the cyclotomic roots are known to

be roots of xk� 1. The proofs presented in the following sections will help illustrate appli-

cations of such propositions to the irreducibility of the non-cyclotomic parts of polynomials

of a given form.

4. A Proof of Theorem 1

Let n � 2. We wish to show that nxn+1� (n+1)xn+1 is (x� 1)2 times an irreducible

polynomial in Z[x]. It su�ces to show the same for the reciprocal of nxn+1� (n+1)xn+1,

and for this purpose we de�ne w(x) = xn+1 � (n + 1)x + n. We consider n � 2 and

w(x) = g(x)h(x) where g(x) and h(x) are in Z[x], deg g(x) � 1, deg h(x) � 1, and

g(1) 6= 0. Note that deg g(x) � 1 is possible since the product of the roots of w(x) is �n
so that w(x) has a root di�erent from 1. Since w(x) is monic, we may suppose that each

of g(x) and h(x) are monic and do so. Our goal is to show h(x) = (x� 1)2.
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We make use of A and B of Proposition 1 but not of C and D. If � is a root of g(x),

then � and g(0)=� are algebraic integers. Also, if  is a root of h(x), then  and h(0)=

are algebraic integers. Since g(0)h(0) = n, we deduce that nAB is a rational integer. We

will see momentarily that if B = 0, then h(x) = (x � 1)2. In addition, we show that if

B 6= 0, then upper and lower bounds on the value of njABj can be obtained which are

inconsistent for all but O(t(1=3)+") positive integers n � t. The proof of Theorem 1 will

then be complete.

Since (xn+1�1)=(x�1) has distinct roots on the unit circle and since the derivative of a

polynomial has roots inside the convex hull of the roots of the polynomial (cf. [9, Problem

31 on page 108]), the roots of (nxn+1 � (n+ 1)xn + 1)=(x � 1)2 have absolute value < 1.

It is clear that 1 is a root of w(x) with multiplicity 2. It follows that the remaining roots

of w(x) have absolute value > 1. Observe that w0(x) only has cyclotomic roots. It follows

that the n� 1 roots of w(x) with absolute value > 1 are distinct.

Now, we establish that if B = 0, then h(x) = (x � 1)2. We show instead the contra-

positive. Suppose h(x) 6= (x � 1)2. Since g(1) 6= 0, (x � 1)2 is a factor of h(x). The

comments above imply that each of g(x) and h(x) must have a root with absolute value

> 1. Furthermore, the absolute value of the product of the roots of either of these poly-

nomials exceeds 1. Thus, g(0) and h(0) each has absolute value > 1. Note that g(0) and

h(0) must be relatively prime since a common divisor p would divide both g(0)h(0) = n

and the coe�cient of x in the product g(x)h(x), namely n+1, which is clearly impossible.

We apply Proposition 1 with m = n and r = 1. We consider �rst a prime divisor p of

h(0). Note then that pjm and p - g(0). We let ` and m0 be de�ned as in the proposition.

Since n � 0 (mod p`), we obtain w(x) �
�
xn�1

�
x (mod p`). Suppose �m

0

= 1 and � 6= 1.

Then �n = 1 so that w(�) = n(1 � �). Since �(1� �) = 0, we obtain �(w(�)) = �(n) = `.

Observe that the conclusions of Proposition 1 (ii) now follow as w(0) = n 6= 0 and r = 1

imply the hypotheses in Proposition 1 (ii) hold. Since p - g(0), we deduce that �(A) > 0.

On the other hand,

A+B =
X

w(�)=0

�
�� 1

�

�
=

n+ 1

n
;

where we have used here that the roots of w(x) other than 1 are distinct and that the

summand above is 0 when � = 1 (so that we can consider the sum above as a sum over roots

of w(x) with each root appearing to its multiplicity). Since pjn, we have �((n+1)=n) < 0.

Since �(A) > 0, we obtain B 6= 0. Thus, we can deduce that if B = 0, then h(x) = (x�1)2.

Now, suppose B 6= 0. Since g(1) 6= 0, we still have that g(0) has absolute value > 1.

If we repeat the argument in the previous paragraph but this time considering a prime p

dividing g(0) (so that the roles of g(x) and h(x) and the roles of A and B are switched),

we obtain A 6= 0. In addition, we see that for each prime divisor p of n (so p divides h(0)

or g(0)), these arguments give from Proposition 1 (ii) that either �(A) > 0 or �(B) > 0.

We deduce that at least one of the rational integers g(0)A and h(0)B is a multiple of p.

Thus, if pjn, then pjnAB.
Next, we show that if pj(n+1), then p2jnAB. Since we now have that AB 6= 0, we will
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get the lower bound

(1) njABj �
� Y

pj(n+1)

p

�2�Y
pjn

p

�
:

We apply Proposition 1 with m = n + 1 and r = 0. Thus, p is a prime divisor of m.

Again, we let ` and m0 be de�ned as in the proposition. Since n � �1 (mod p`), we obtain

w(x) � xn+1 � 1 (mod p`). If �m
0

= 1, then �n+1 = 1 so that w(�) = (n + 1)(1 � �). If

also � 6= 1, then �(1� �) = 0 and we obtain �(w(�)) = �(n+ 1) = `. Thus, we can apply

Proposition 1 (i). We obtain �(A) > 0 and �(B) > 0. Therefore, each of the rational

integers g(0)A and h(0)B is a multiple of p. It easily follows that the integer nAB is

divisible by p2, and we obtain (1).

To obtain an upper bound for njABj, we use the following result about the complex

zeroes of w(x).

Lemma 7. If n � 2 and rei� (with r; � 2 R) is a root of w(x) = xn+1� (n+1)x+n, then

jr � 1j < (5=n) log n.

The result is essentially contained in [2] and [8]. It can be established by observing w(�) = 0

implies j�n+1j � j(n+ 1)� � nj � (2n+ 1)j�j so that

j�j � (2n+ 1)1=n = exp

�
log(2n+ 1)

n

�
� 1 +

2 log(2n+ 1)

n
� 1 +

5 log n

n
:

Observe that since the roots of w(x) other than 1 have absolute value > 1, Lemma 7 implies

that for all integers n � 2, if rei� 6= 1 is a root of w(x), then 0 < r � 1 < (5=n) log n.

Next, we show that

(2) jAj � 10 log n and jBj � 10 log n:

Using � to denote the conjugate of �, we can rearrange the terms in the de�nition of A to

obtain

A =
X

g(�)=0

�
� � 1

�

�
:

Since g(�) = 0 implies � is a root of w(x), we deduce that if � = rei�, then

����� � 1

�

���� = r � 1

r
� 10 log n

n
:

The �rst inequality in (2) now follows. The second inequality is deduced in an analogous

manner. From (2), we obtain the estimate

(3) njABj � 100n(log n)2:
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Since AB 6= 0, we deduce from (1) and (3) that

� Y
pj(n+1)

p

�2�Y
pjn

p

�
� 100n(log n)2:

Since n � t, it follows that

Y
pj(n+1)

p� t1=3(log t)2=3 or
Y
pjn

p� t1=3(log t)2=3:

Theorem 1 is now a consequence of the following

Lemma 8. Let � > 0. For n a positive integer, de�ne Q(n) =
Q

pjn p. Then for every

" > 0, the number of n � t for which Q(n) � t� is O(t�+")

Proof. Observe that Q(n) is always squarefree. For each squarefree numberm = p1p2 � � � ps
� t� where each pj denotes a prime with p1 < p2 < � � � < ps, the number of n � t for

which Q(n) = m is is equal to the number of solutions in positive integers x1; x2; : : : ; xs to

x1 log p1 + x2 log p2 + � � � + xs log ps � log t:

We consider the pj which are � p
log t �rst. Suppose pk is the largest of these. Clearly

k � p
log t and each xj is bounded by 2 log t. Thus, the number of choices for x1; x2; : : : ; xk

is � (2 log t)
p
log t � exp

�
2
p
log t log log t

�
. Now, each remaining pj satis�es pj >

p
log t

so that log pj > (1=2) log log t. Hence,

�
xk+1 + xk+2 + � � � + xs

� log log t
2

� xk+1 log pk+1 + xk+2 log pk+2 + � � � + xs log ps � log t:

Let N denote the greatest integer � 2 log t=(log log t). Then the number of choices for

xk+1; xk+2; : : : ; xs is bounded by the number of solutions to xk+1 + xk+2 + � � � + xs � N

in positive integers xk+1; xk+2; : : : ; xs. Equivalently, we seek a bound on the number of

solutions to

yk+1 + yk+2 + � � � + ys � N � s� k

in non-negative integers yk+1; yk+2; : : : ; ys. Each such solution corresponds to a unique

non-negative binary number consisting of � N � 1 digits given by yk+1 ones, followed by

1 zero, followed by yk+2 ones, followed by 1 zero, and so on (ending with ys ones). It

follows that there are � 2N choices for xk+1; xk+2; : : : ; xs as above. Thus, the number of

possibilities for the s positive integers x1; x2; : : : ; xs is

� exp
�
2
p
log t log log t

�
� 22 log t=(log log t) � exp

�
2 log t

log log t

�
� t":

This is a bound on the number of n � t for which Q(n) = m for some given squarefree

m � t�. Letting m vary, the lemma follows. �
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5. A Proof of Theorem 2

Let n denote a positive integer, and set

f(x) = 1 + x+ x2 + � � � + xn:

Our goal is to show that for each positive integer k and for most n � t, the polynomial

f (k)(x) is irreducible. As in the previous section, we will make use of Proposition 1. The

main di�culty we will encounter is in showing that the condition �(w(�)) = ` is satis�ed in

Proposition 1. Indeed, already for k = 2, it is the case that in many instances �(w(�)) 6=
` when the other conditions of Proposition 1 hold. Thus, it will become necessary to

bound the number of times �(w(�)) 6= `. For this purpose, we will introduce an auxiliary

polynomial u(x) (see the discussion after Lemma 14) that depends on k and r but not on

n and which has the property that �(w(�)) 6= ` if and only if �(u(�)) > 0. This allows

us to obtain the bound we need on the number of times �(w(�)) 6= `, and we proceed by

applying Proposition 1 as in the previous section.

We begin with a lemma which is easily established by induction. The details of the

proof are left to the reader.

Lemma 9. Let k be a positive integer � n� 1. Then

f (k)(x) =
1

(x� 1)k+1

 
n+1X

j=n�k+1

(�1)n+1�j
�

k

n+ 1� j

�� n+1Y
i=n�k+1

i6=j

i

�
xj + (�1)k+1k!

!
:

We also make use of

Lemma 10. Let n and k be positive integers with k � n� 1. Then each root of f (k)(x)

has absolute value < 1.

Proof. Observe that the roots of f(x) are on the unit circle fz : jzj = 1g and that f(x) has

no repeated roots. As in Section 4, we use that the roots of the derivative of a polynomial in

R[x] lie in the convex hull of the roots of the polynomial. It follows that all the derivatives

of f(x) have only roots with absolute value < 1. �

Lemma 11. Let n and k be positive integers with k � n�1. Let j be an integer satisfying

n� k + 1 � j � n+ 1. Then

�
k

n+ 1� j

�� n+1Y
i=n�k+1

i6=j

i

�

is divisible by k!.

Proof. Observe that
n+1Y

i=n�k+1
i6=j

i =

� n+1Y
i=j+1

i

�� j�1Y
i=n�k+1

i

�
;
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a product of n + 1 � j consecutive integers times a product of k � (n + 1 � j) positive

integers. The �rst of these products on the right is therefore divisible by (n+ 1� j)! and

the second is divisible by (k � (n+ 1� j))!. It follows that

�
k

n+ 1� j

�� n+1Y
i=n�k+1

i6=j

i

�
=

k!

(n+ 1� j)!(k � (n+ 1� j))!

� n+1Y
i=j+1

i

�� j�1Y
i=n�k+1

i

�

is an integer multiple of k!. The lemma follows. �

Lemma 11 is not really necessary for what follows. But it makes matters slightly easier.

Note that it follows from Lemma 11 that if � is a root of f (k)(x), then 1=� is an algebraic

integer.

Lemma 12. Let n and k be positive integers with k � n � 1. Let m be an integer

satisfying n� k + 1 � m � n+ 1. Set r = n+ 1�m. Then

(�1)n+k�m
�

k

n+ 1�m

�� n+1Y
i=n�k+1

i6=m

i

�
� �k! (mod m);

and there is a constant �(k; r) depending only on r and k and independent of n such that

1

m

�
(�1)n+k�m

�
k

n+ 1�m

�� n+1Y
i=n�k+1

i6=m

i

�
+ k!

�
� �(k; r) (mod m):

Proof. Consider the function

F (x) = (x+ r)(x+ r � 1) � � � (x+ 1)� (x� 1)(x� 2) � � � (x� (k � r)):

Observe that

F (m) =

n+1Y
i=n�k+1

i6=m

i:

The constant term of F (x) is (�1)k�rr!(k�r)! = (�1)k+m�n�1(n+1�m)!(k+m�n�1)!.

Thus, F (m) � (�1)k+m�n�1(n+ 1�m)!(k +m � n� 1)! (mod m). Writing
�

k

n+1�m
�
as

k!=((n+ 1�m)!(k +m� n� 1)!), the �rst congruence in the lemma follows.

Observe that (�1)n+k�m
�

k

n+1�m
�
= (�1)r+k�1

�
k

r

�
. The above shows that F (x) =

f0+ f1x+G(x)x2 where (�1)r+k�1
�
k

r

�
f0 = �(k!), f1 is the coe�cient of x in F (x) (which

depends only on r and k), and G(x) 2 Z[x]. Since

(�1)n+k�m
�

k

n+ 1�m

�� n+1Y
i=n�k+1

i6=m

i

�
+ k!
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is the same as (�1)r+k�1
�
k

r

�
F (m)+k!, we deduce that the expression on the left-hand side

of the second congruence is congruent modulo m to (�1)r+k�1
�
k

r

�
times f1. The lemma

follows. �

We �x a positive integer k and consider n � k + 1. Let w(x) be (�1)k�1=k! times the

reciprocal polynomial of the numerator of f (k)(x) in Lemma 9 where k is a positive integer.

In other words, we set

w(x) = xn+1 +
1

k!

n+1X
j=n�k+1

(�1)n+k�j
�

k

n+ 1� j

�� n+1Y
i=n�k+1

i6=j

i

�
xn+1�j:

This can be rewritten as

w(x) = xn+1 +
1

k!

kX
j=0

(�1)k+j�1

�
k

j

�� Y
0�i�k
i6=j

(n+ 1� i)

�
xj :

Note that Lemma 11 implies w(x) 2 Z[x].
Let m be an integer with n � k + 1 � m � n + 1, and let p be a prime divisor of m

with p > k (if it exists). De�ne r, ` and m0 as in Proposition 1. It follows from the �rst

congruence in Lemma 12 that w(x) � (xm � 1)xr (mod p`). The de�nition of m implies

that 0 � n+1�m = r � k < p. Except for the condition that �(w(�)) = `, the conditions

of Proposition 1 are clearly satis�ed. In addition to the condition �(w(�)) = `, we will

want that either both A and B are non-zero or both C and D are non-zero. We address

these matters next.

Since w(x) � (xm� 1)xr (mod p`), there is a polynomial v(x) in Z[x] such that w(x) =

(xm � 1)xr + p`v(x). Setting x = � where �m
0

= 1, we deduce �(w(�)) � `. We will not

be able to prove in general that �(w(�)) = `, but instead we will show that typically this

is the case.

Lemma 13. Let u(x) =
Ps

j=0 bjx
j 2 Z[x]. Let p be a prime not dividing bs. Then there

exist � s di�erent numbers � such that for some positive integer m0 relatively prime to p,

we have �m
0

= 1 and �(u(�)) > 0.

Proof. Let x1; x2; : : : ; xs be the s not necessarily distinct p-adic roots of u(x). If � is as in

the lemma, then �(� � xi) > 0 for some i 2 f1; 2; : : : ; sg. If � and � 0 are distinct roots of
unity as in the lemma and i is such that both �(� � xi) > 0 and �(� 0 � xi) > 0, then we

would have �(� � � 0) > 0, contradicting Lemma 6. Hence, for each i 2 f1; 2; : : : ; sg, there
is at most one � as in the lemma for which �(� � xi) > 0. The lemma follows. �

Lemma 14. Let u(x) =
P

s

j=0 bjx
j 2 Z[x] with u(1) 6= 0, let z � maxfju(1)j; jbsj; 2g, and

let m0 be a positive integer. Then there is a constant c (depending only on u(x)) such that

there are � cm0=(log z) di�erent primes p satisfying gcd(p;m0) = 1, p > z, and there is a

� for which �m
0

= 1, u(�) 6= 0, and �(u(�)) > 0.

Proof. Let H(x) be the part of xm
0 � 1 which is coprime to u(x); in other words, H(x) =

(xm
0 � 1)= gcd(u(x); xm

0 � 1). Let R denote the resultant of H(x) and u(x). Then R is a
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non-zero integer which can be expressed as a product of numbers of the form u(�) where

�m
0

= 1 and u(�) 6= 0. It follows that R is divisible by the product of the primes p in the

lemma. If we consider the � m0 complex roots of H(x) (all with absolute value 1), we see

that R is bounded by
�P

s

j=0 jbj j
�m0

. Thus, if P denotes the number of primes p in the

lemma, then

zP �
� sX

j=0

jbj j
�m

0

:

It follows that P � m0= log z, implying the lemma. �

We describe next the polynomials u(x) that we will use in Lemma 14. We return to

our discussion of w(x) and consider � 6= 1 for which �m
0

= 1. Since �n+1 = �n+1�m = �r

and r � k, we can view w(�) as a polynomial in � of degree � k which has, by Lemma 12,

each coe�cient divisible by m. We multiply this polynomial by k!=m and use the second

congruence in Lemma 12 to deal with the coe�cient of �r modulo m. For the remaining

coe�cients, observe that

Y
0�i�k
i6=j;i6=r

(n+ 1� i) � (�1)k�r(k � r)!r!

r � j
(mod m):

Note that �(k�r) � r� j � r so that this last expression is a rational integer. We deduce

now that if

y1(x) = �(k; r)xr + (�1)r�1
X

0�j�k
j 6=r

�
k

j

��
(�1)j(k � r)!r!

r � j

�
xj ;

then (k!=m)w(�) � y1(�) = my2(�) for some polynomial y2(x) 2 Z[x]. The coe�cients

of y1(x) only depend on r and k, and the coe�cient of xj for j 6= r and 0 � j � k in

y1(x) is clearly non-zero. Recall that w(1) = 0. Under the conditions of Proposition 1,

�(� � 1) = 0, so the factor of x� 1 in w(x) does not a�ect the value of �(w(�)). We divide

y1(x) by the highest power of x � 1 that divides it and call the quotient u(x). Observe

that �(w(�)) > ` if and only if �(y1(�)) > 0 if and only if �(u(�)) > 0. The advantage of

dealing with u(x) over w(x) is that u(x) depends only on k and r and not on n. With k

still �xed, we let r = n+1�m vary from 0 to k to obtain k+1 di�erent polynomials u(x).

The idea now is to show that in many instances �(u(�)) = 0.

With k and r �xed, we de�ne a pair (m0; p), with m0 a positive integer and p a prime not

dividing m0, as a bad pair (rather than a bad apple) if there is a � 6= 1 for which �m
0

= 1

and �(u(�)) > 0. For t > 0, we determine an upper bound for the number of bad pairs

(m0; p) with p`m0 � t for some positive integer `. The number p`m0 will correspond to m

in Proposition 1. Observe that we do not require that � be a primitive m0th root of unity.

This introduces some complications in bounding the number of bad (m0; p).
For a given m0, we can use Lemma 14 to bound the number of primes p for which

�(u(�)) > 0, but we must deal with the possibility not covered by Lemma 14 that u(�) = 0.

We show next that there are at least three choices of r 2 f0; 1; : : : ; kg, in the case k 6= 2,

for which u(x) has no cyclotomic factors. We will use the following preliminary result.
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Lemma 15. For each positive integer k � 15, there exist at least two distinct primes in

the interval (k=2; k � 2].

Proof. The result was veri�ed directly for 15 � k < 200. Now, suppose k � 200. Note

that 1:96k=2 < k � 2. We show that for each x � 100 there is a prime in the interval

(x; 1:4x]; the lemma then follows since then there is a prime in the interval (k=2; 1:4k=2]

and a prime in the interval (1:4k=2; 1:96k=2] � (1:4k=2; k � 2]. De�ne #(x) =
P

p�x log p.
We make use of the estimate from Rosser and Schoenfeld [10] that

x

�
1� 1

log x

�
< #(x) < x

�
1 +

1

2 log x

�
for all x � 41:

To establish there is a prime in (x; 1:4x] for x � 100, it su�ces therefore to show

1:4x

�
1� 1

log(1:4x)

�
� x

�
1 +

1

2 log x

�
:

This is a simple matter to verify; indeed, the inequality above holds for all x � 100 follows

from the fact that it holds for x = 100. �

Lemma 16. Let k be an integer with k = 3 or k � 5. For each r 2 fk � 2; k � 1; kg, the
polynomial u(x) de�ned above has no cyclotomic divisors.

Proof. We work in the �eld of complex numbers. Fix k and r as in the lemma. By the

de�nition of u(x), we know that 1 is not a root of u(x). We assume now that u(x) has a

root which is a root of unity. Then u(�) = 0 for some � 6= 1 satisfying �d = 1 for some

positive integer d. We take d minimal and note that d � 2. We justify �rst that d 6= 2.

If d = 2, then �1 is a root of u(x) and, hence, also of y1(x). One checks directly that

y1(�1) 6= 0 in the case that k = 3 and r = 1. For the remaining choices of k and r, we use

the de�nition of y1(x) together with the a formula for �(k; r). In particular, the de�nition

of y1(x) and the choice of r imply that, for k � 5, if y1(�1) = 0, then �(k; r) > 0. From

the proof of Lemma 12, we see that �(k; r) is (�1)r+k�1
�
k

r

�
times the coe�cient f1 of x in

F (x) = (x+ r)(x+ r � 1) � � � (x+ 1)� (x� 1)(x� 2) � � � (x� (k � r)):

When r = k, every coe�cient of F (x) is positive and we easily deduce that �(k; r) < 0.

Now, suppose r = k�2 and k � 5 (we have already dealt with k = 3). Since the coe�cient

of x in the expanded product (x+2)(x+1)(x�1)(x�2) is zero and its constant term is 4,

we see that f1 is simply 4 times the coe�cient of x in (x+ r)(x+ r� 1) � � � (x+ 3). Thus,

f1 > 0, and we conclude that �(k; r) < 0. It remains to consider the case that r = k � 1.

One checks directly that in this case

f1 = (k � 1)!�
k�1X
j=1

(k � 1)!

j
= �

k�1X
j=2

(k � 1)!

j
:

Since k � 3, we obtain �(k; r) = �(k; k�1) < 0. We deduce that u(�1) 6= 0 so that d > 2.
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The de�nition of u(x) implies that we must also have y1(�) = 0. Using the de�nition of

y1(x), we consider the expression y1(�)=((k� r)!r!�r) as a sum of k+1 terms and observe

that it is an element of Q(�) which is an extension of degree �(d) over Q. Thus, we can

rewrite the expression as a polynomial in f1; �; : : : ; ��(d)�1g with rational coe�cients. Call

this polynomial �(�).

We consider �rst the case that k � 15. By Lemma 15, there are two primes in the

interval (k=2; k � 2]. Call these primes p1 and p2. We show that at least one of these two

primes does not divide d. Since � is a root of y1(x), a non-zero polynomial of degree k, we

deduce that the degree of the minimal polynomial for � (in Q[x]) is � k. Hence, �(d) � k.

On the other hand, each of p1 and p2 is > k=2. If p1 and p2 are both factors of d, then we

would have

k � �(d) � �(p1p2) = (p1 � 1)(p2 � 1) >

�
k

2
� 1

�2

;

which is easily seen to be impossible for the k under consideration. Thus, either p1 or

p2 does not divide d. Now, �x p to be a prime in (k=2; k � 2] which does not divide d.

Consider j0 = r � p 2 f0; 1; : : : ; kg. Observe that for each j 2 f0; 1; : : : ; kg we have

�p < r � k � r � j � r < 2p:

It follows that in the sum de�ning y1(x), the expression r� j in the summand is divisible

by p if and only if j = j0. Since p 2 (k=2; k], we get that pjjk!. Since r � k, we clearly

have that pj(k � r + p)!. We obtain

�
k

j0

�
=

k!

(r � p)!(k � r + p)!
2 Z =) p does not divide

�
k

j0

�
:

If we consider the k + 1 non-zero terms in y1(x)=((k � r)!r!xr), we see that the constant

term �(k; r)=((k � r)!r!) may have denominator divisible by p (and, in fact, does though

this is not needed) and the denominator of the coe�cient of xj
0�r = x�p is divisible by p.

No other denominators will be divisible by p.

We justify momentarily that ��p when expressed as a polynomial in � of degree � �(d)

includes a term �i with i > 0 and with coe�cient not divisible by p. More precisely, we

show that ��p � b = pG(�) is impossible if b 2 Z and G(x) 2 Z[x]. It will then follow that

�(�) has at least one coe�cient which can be expressed as a rational number (possibly 0)

with denominator not divisible by p plus a non-zero rational number with denominator

divisible by p. This coe�cient is clearly non-zero. It follows that �(�) 6= 0, and we deduce

that y1(�) 6= 0. This is a contradiction. Hence, u(x) does not have a cyclotomic factor for

k � 15.

Assume that there exist b 2 Zand G(x) 2 Z[x] such that ��p� b = pG(�). By applying

the automorphisms of Q(�) �xing Q, we may replace � in this equation with any primitive

root of xd � 1 = 0. Since d > 2, we deduce that there are �1 and �2 primitive roots of

xd�1 = 0 with �1 6= �2 satisfying �
�p
1 � b = pG(�1) and �

�p
2 � b = pG(�2). Subtracting, we

obtain �
�p
2 � �

�p
1 = p

�
G(�2)� G(�1)

�
. Setting �3 = �

p

1 �
�p
2 2 Q(�), we easily deduce that

NQ (�)=Q (�3�1) is a multiple of p. Since �3�1 is a root of 1+(x+1)+(x+1)2+� � �+(x+1)d�1,

21



a monic polynomial with constant term d, we obtain a contradiction. Thus, the lemma is

established in the case that k � 15.

For k � 14, the polynomials u(x) were computed explicitly using Maple V (Release 4)

and it was determined that if k = 3 or 5 � k � 14, then each u(x) has no cyclotomic

factors. The lemma follows. �

For each k � 2, we ideally will want three of the polynomials u(x), as r varies, to be

free of cyclotomic divisors. Lemma 16 shows that such polynomials exist unless k = 2

or k = 4. In the case k = 4, a simple computation veri�es that u(x) has no cyclotomic

divisors if r 2 f1; 3; 4g. For k = 2, we will not have three such u(x). In this case, u(x)

has no cyclotomic divisors if r = 0 or if r = 2. In the case r = 1, we have u(x) = �x� 1

which has the cyclotomic factor x+1. As a consequence, we will make a slightly di�erent

argument in the case k = 2.

Suppose now that u(x) is a polynomial as above having no cyclotomic factors. We

consider n � t with t su�ciently large. We also suppose that p > z � k with z su�ciently

large (as in Lemma 14). For a positive integer d > 1, we de�ne S(d) to be the set of primes

p not dividing d for which there is a primitive dth root of unity � such that �(u(�)) > 0.

Observe that if (m0; p) is a bad pair, then p 2 S(d) for some d dividing m0. Furthermore,

if p 2 S(d) and � is a primitive dth root of unity for which �(u(�)) > 0, then for every

positive integer m00, we have �dm
00

= 1 so that (dm00; p) is a bad pair. It is not di�cult

to see that every bad pair can be obtained in this manner; in other words, every bad pair

is of the form (dm00; p) where p 2 S(d) and m00 is a positive integer. Since we are only

interested in bad pairs (m0; p) with p`m0 � t for some positive integer `, we only need to

consider bad pairs (dm00; p) that satisfy pdm00 � t. In other words, for a given d > 1 and

a given p 2 S(d), there are � m00 � t=(dp) bad pairs (dm00; p) for us to consider.

The fact that we are only interested in p > z produces another restriction on the m0

we are considering. This is apparent in the statement of Lemma 14. If we set " to be a

positive number < 1=c, then Lemma 14 implies there are no primes p in S(d) whenever

d � " log z. This gives us

Lemma 17. Given the notation above, the number of bad pairs (m0; p) for which p > z

and pm0 � t is bounded by X
d>" log z

X
p2S(d)
p>z

t

dp
:

We now prove

Lemma 18. Given the notation above, the number of bad pairs (m0; p) for which p > z

and pm0 � t is � t log log t=
p
z log z.

Proof. We rewrite the sum in Lemma 17 as S1 + S2 where

S1 =
X

" log z<d�pz log z

X
p2S(d)
p>z

t

dp
and S2 =

X
d>
p
z log z

X
p2S(d)
z<p�t

t

dp
:
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We use Lemma 14 to estimate the number of p 2 S(d) which are > z to deduce that

S1 �
X

" log z<d�pz log z

X
p2S(d)
p>z

t

dz
�

X
d�pz log z

t

z log z
� tp

z log z
:

To estimate S2, we observe that Lemma 13 implies that each prime p can appear in at

most k di�erent sets S(d). Since each d in the summand for S2 is >
p
z log z, we deduce

S2 =
X

d>
p
z log z

X
p2S(d)
z<p�t

t

dp
�
X

z<p�t

kt

p
p
z log z

� t log log tp
z log z

:

The lemma follows. �

Consider a pair (m0; p) which is not bad. Suppose w(x) = g(x)h(x) with A, B, C,

and D de�ned as in Proposition 1 except with each root in the sums appearing to their

multiplicities. Note the comment after Proposition 1. Suppose that pjjm. Observe that

the condition p > z � k implies p divides only one of the k numbers between n � k + 1

and n+ 1, so pjjQ0�i�k(n+ 1� i). Suppose now that m 6= n+ 1 so r > 0. We can apply

Proposition 1 (ii) as pjjQ1�i�k(n+ 1� i) implies ` = 1. We are now ready to show

Lemma 19. Suppose that w(x) = g(x)h(x) with A, B, C, and D de�ned as in Proposition

1. Suppose further that each of g(x) and h(x) has a root di�erent from 1 and that there

is a prime p > k such that pjjQ1�i�k(n+ 1� i). Then either AB 6= 0 or CD 6= 0.

Proof. We begin by showing that either A or C is non-zero and either B or D is non-zero.

Observe that

A+C =
X

g(�)=0

�
1� 1

�

�
:

The roots � of w(x) other than 1 have absolute value > 1 (by Lemma 10) so that the

numbers 1=� are strictly inside the unit circle centered at the origin in the complex plane.

This implies that the real part of each summand above is non-negative and at least one

summand is positive. We deduce that the right-hand side above is non-zero and, hence,

either A or C is non-zero. Similarly, one obtains that either B or D is non-zero.

If A = 0, then we have C 6= 0 and we assumeD = 0. Proposition 1 (ii) implies �(B) > 0.

On the other hand, the de�nition of A and B together with the coe�cients of w(x) give

(4) A+B =
X

w(�)=0

�
�� 1

�

�
=

k(n+ 1)

n
:

Since p - k(n + 1) and A = 0, we deduce that �(A + B) = �(B) � 0. This apparent

contradiction implies that D 6= 0 so that CD 6= 0. A similar argument can be done to

show that if C = 0, then AB 6= 0. The lemma follows. �

We now give the proof of Theorem 2. We �x k � 2 (the case k = 1 is covered by

Theorem 1). We begin by presenting the argument for k = 3 and k � 5 and then explain the
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necessary changes in the argument for k = 2 and k = 4. We consider z su�ciently large and,

in particular, � k. Let t > 0. For m an integer with n�k+1 � m � n�k+3, we consider

p such that pjm and p > z (if it exists). For each choice of r = n�m+1 2 fk�2; k�1; kg,
we construct u(x) as above and count the number of bad pairs corresponding to u(x). We

let T denote the set of n � t for which �(u(�)) > 0 for some such m and p. By Lemma

18, there are � t log log t=
p
z log z bad pairs (m0; p). With ` and m0 as in Proposition 1,

we see that since p > z and p`m0 � t, we have ` � (log t)=(log p) � (log t)=(log z). The

number of n 2 T is bounded by the number of triples (m0; p; `) with (m0; p) a bad pair for

some u(x) (with r 2 fk � 2; k � 1; kg) and ` � (log t)=(log z). Therefore, we deduce that

jT j � t log log tp
z log z

� log t

log z
=

t(log t) log log tp
z log3 z

:

We will consider those p for which pjjm (in other words, the case when ` = 1). If n � t

and n 62 T , then the equation �(w(�)) = ` = 1 holds whenever n� k+ 1 � m � n� k+3,

m = p`m0 = pm0, p - m0, � 6= 1, and �m
0

= 1. Therefore, we can apply Proposition 1 for

these n, m, and p. However, before doing so, it will be convenient for us to restrict our

attention to n for which n(n� 1) � � � (n�k+1) is not divisible by a large powerful number

(a positive integer d such that if p is a prime divisor of d, then p2jd). More precisely, we

set

T 0 = fn � t : 9 a powerful number d > k!kt1=2 dividing n(n� 1) � � � (n� k + 1)g:

We wish to ignore the elements of T 0; however, �rst we obtain an upper bound for jT 0j.
Let n 2 T 0, and let p be a prime divisor of d where d is the largest powerful number

dividing n. Consider those p that occur as a factor of more than one of n + 1 � i with

i 2 f1; 2; : : : ; kg. Clearly p � k. For each such p, there are trivially no more than k � 1

di�erent i 2 f1; 2; : : : ; kg such that pjj(n + 1 � i). Set d(i) = gcd(n + 1 � i; d), and let

d0(i) denote the largest powerful number dividing d(i). Then
Qk

i=1(d(i)=d
0(i)) dividesQ

p�k p
k�1. Note that d =

Q
k

i=1 d(i). We deduce that

t1=2 <
d

k!k
�
Qk

i=1 d(i)Q
p�k p

k�1
�

kY
i=1

d0(i) =
Y

1�i�k

Y
p
e jj(n+1�i)

e�2

pe �
Y

1�i�k

� Y
p
e jj(n+1�i)

e�2

p[e=2]
�3

:

Thus, one of the numbers n + 1 � i with i 2 f1; 2; : : : ; kg is divisible by the square of an

integer > t1=(6k). Hence,

jT 0j � k + k
X

`>t1=(6k)

t

`2
� t(6k�1)=(6k):

Now, we consider n � t with n 62 T [ T 0 and assume that f (k)(x) is reducible. Lemma

10 implies that f (k)(x) can be expressed as a product of two polynomials with roots

di�erent from 1. It follows that w(x) = g(x)h(x) where each of g(x) and h(x) are monic
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polynomials with integer coe�cients each having a root di�erent from 1. We �x m 2
fn � k + 1; n � k + 2; n � k + 3g, and consider the notation of Proposition 1 (so, in

particular, pjm) with the sums involving A, B, C, and D being taken over all roots to

their multiplicities. Again, we suppose pjjm and p > z � k. We use Lemma 19 to obtain

that either both A and B are non-zero or both C and D are non-zero.

Suppose that AB 6= 0. Since pjjm where m 2 fn� k+1; n� k+2; n� k+3g and since

p > z � k, we deduce that

p
���� Y

1�i�k
(n+ 1� i):

Since k � 3, we have r = n�m+ 1 � k� 2 > 0. We apply Proposition 1 (ii), noting that

` = 1. We deduce that either �(A) > 0 or �(B) > 0.

Analogous to the proof of Theorem 1, we consider a multiple of AB that lies in Z. Since

n 62 T 0, we can express n(n� 1) � � � (n� k + 1) as the product of two positive integers n1
and n2 where n1 is a powerful number, n1 � k!kt1=2, n2 is squarefree, and gcd(n1; n2) = 1.

Note that g(0)A 2 Z, h(0)B 2 Z, and

(5) g(0)h(0) =
(�1)k�1

k!

Y
1�i�k

(n+ 1� i) =
(�1)k�1n1n2

k!
:

It follows that each prime p dividing the denominator of A or B (as reduced fractions)

must divide n1n2. Suppose p divides the denominator of A or B and pjn2. Since n2 is

squarefree, (5) implies that p divides at most one of g(0) and h(0). Since g(0)A and h(0)B

are integers, we deduce that p divides at most one of the denominators of A and B. On the

other hand, if p divides exactly one of these denominators, then (4) implies that p divides

n. It follows now that n1nAB 2 Z.
We bound jAj and jBj using an argument similar to that used to obtain (2). The proof

of Lemma 7 is easily modi�ed to give that each root � of w(x) satis�es

1 � j�j < 1 +Ok

�
log n

n

�
:

Now, the argument for (2) gives that each of A and B is � log n. We obtain

n1nAB �
�
t1=2

�
t(log t)2 � t2:

In the case that AB 6= 0 we deduce that

(6)

n�k+3Y
m=n�k+1

� Y
pjjm;p>z

p

�
� t2:

We show next that this same inequality holds in the case that CD 6= 0.

Suppose that CD 6= 0. We follow the above argument for the case AB 6= 0 with the

following changes. Both C and D are rational numbers by Proposition 1 and furthermore

algebraic integers since g(x) and h(x) are monic. Hence, C and D and, hence, CD are
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in Z. Instead of the bound on j�j for roots � of w(x) obtained above, we use the weaker

bound j�j � 1. We deduce that each of C and D is � t. Now, (6) follows as before.

We have shown that if n 62 T [ T 0 and f (k)(x) is reducible, then (6) holds (where so far

we are only considering k = 3 and k � 5). We show now that (6) does not hold for very

many n � t. To get the result stated in the theorem, it is in fact su�cient to show that

for almost all m � t, one has Y
pjjm; p>z

p � m1�(1=(k+2)):

Let T 00 denote the set of m � t for which this inequality does not hold. Observe that if

m 2 T 00, then either (i) m is divisible by the square of a prime > z, or (ii) m divided by

the product above is divisible only by primes � z. The number of m � t for which (i)

holds is

�
X
m�t

X
p>z

p
2jm

1 �
X
p>z

X
m�t
p
2jm

1 �
X
p>z

t

p2
� t

z log z
:

For the number of m � t satisfying (ii), we de�ne S to be the set of such m which exceedp
t. The number of remaining m is clearly �

p
t. For each m 2 S, we haveY

p�z

Y
1�j<1
p
j jm

p � m1=(k+2) > t1=(2k+4):

Therefore, X
m2S

X
p�z

X
1�j<1
p
j jm

log p >
jSj log t
2k + 4

:

On the other hand, for z su�ciently large,X
m2S

X
p�z

X
1�j<1
p
j jm

log p �
X

1�m�t

X
p�z

X
1�j<1
p
j jm

log p

�
X
p�z

(log p)

1X
j=1

X
1�m�t
p
j jm

1 �
X
p�z

(log p)

1X
j=1

t

pj
=
X
p�z

t(log p)

p � 1
� 2t log z:

It follows that

jSj � t log z

log t
:

We take z = (log t)10. Combining all the estimates above (including the ones for T and T 0),
we deduce that the number of n � t for which f (k)(x) is reducible is O(t log log t= log t).

Next, we consider the cases k = 4 and k = 2. The case k = 4 is identical to the above

except that we replacem 2 fn�k+1; n�k+2; n�k+3g with m 2 fn�3; n�2; ng. Thus,
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r = n �m + 1 2 f1; 3; 4g and, as noted after the proof of Lemma 16, each corresponding

u(x) has no cyclotomic divisors. For k = 2, we consider only m 2 fn � 1; n + 1g so that

r 2 f0; 2g. The argument is slightly di�erent here as each prime divisor p of n+1 satisfying

p > k does not divide the constant term of w(x). In other words, with r = 0, we are led

to applying Proposition 1 (i) rather than (ii). In this case, we deduce that each of �(A),

�(B), �(C), and �(D) is positive. For r = 2, one makes use of Proposition 1 (ii) as before.

We deduce that � Y
pjj(n+1);p>z

p

�2� Y
pjj(n�1);p>z

p

�
� t2

instead of (6). The remainder of the argument for k = 2 is the same as before. Theorem

2 follows.

6. Proof of Theorem 4

We set

w(x) = p(x) = (n� 1)(xn+1 � 1)� (n+ 1)(xn � x):

We begin by describing the location of the complex zeroes of w(x).

Lemma 20. Let n � 2. Then 1 is a root of w(x) with multiplicity 3. Furthermore, if n

is odd, then �1 is a root of w(x) with multiplicity 1.

A proof of Lemma 20 can be given directly by considering the values of w(x) and its

derivatives at 1 and �1. We omit the details.

Lemma 21. Let n � 2. If w(�) = 0, then j�j = 1.

Proof. Observe that if � is not an integer multiple of 2�=(n� 1), then

sin(n+1
2
�)

sin(n�1
2
�)

=
ei(n+1)�=2 � e�i(n+1)�=2

ei(n�1)�=2 � e�i(n�1)�=2
=

ei(n+1)� � 1

ein� � ei�
=

e�i(n+1)� � 1

e�in� � e�i�
:

Denote the left-hand side above by F (�). It follows that if F (�) = (n + 1)=(n � 1), then

e�i� is a root of w(x). For each positive integer k < (n� 1)=2,

2k

n+ 1
<

2k

n� 1
<

2(k + 1)

n+ 1
:

De�ne

Ik =

�
2�k

n+ 1
;
2�k

n� 1

�[�
2�k

n� 1
;
2�(k + 1)

n+ 1

�
:

Then it is easily checked that F (�) takes on every real value for � 2 Ik. In particular, for

each positive integer k < (n � 1)=2, there is a � 2 Ik such that F (�) = (n + 1)=(n � 1)

and, consequently, w(e�i�) = 0. If n is even, then we obtain n � 2 distinct roots of w(x)

di�erent from �1 of the form ei�. If n is odd, then we obtain n� 3 distinct roots of w(x)

di�erent from �1 of the form ei�. Combining this information with Lemma 20 implies the

desired result. �
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We consider w(x) = g(x)h(x) as in the propositions. We take g(x) so that g(1) 6= 0 and

g(�1) 6= 0. If p(x) does not factor as in the theorem, then we can �nd such g(x) and h(x)

with each containing at least one root other than 1 and �1. We assume we have such a

factorization of w(x), and de�ne A, B, C 0, and D0 as in the propositions. Observe that if

we obtain a contradiction for all but O(t(4=5)+") di�erent n � t, then Lemma 20 implies

the theorem.

Let p be an odd prime divisor of n + 1, and de�ne ` and m0 as in Proposition 2.

Observe that w(x) � (n� 1)(xn+1 � 1) (mod p`). If � 6= �1 and �m
0

= 1, then w(�)� =

(n+1)(��1)(�+1). Clearly, �(�) = 0. Also, Lemma 6 implies that �(��1) = �(�+1) = 0.

It follows that �(w(�)) = `. From Proposition 2, we obtain �(C 0) and �(D0) are positive.
Let p be an odd prime divisor of n, and de�ne ` and m0 as in Proposition 3. Then

w(x) � �(xn � 1)(x + 1) (mod p`). If � 6= 1 and �m
0

= 1, then w(�) = 2n(� � 1). We

deduce that �(w(�)) = `. From Proposition 3, we obtain �(C 0) and �(D0) are positive.
By Lemma 21, the roots of w(x) have absolute value 1. We easily deduce that A =

B = 0. Let p be an odd prime divisor of n � 1, and de�ne ` and m0 as in Proposition

4. Then w(x) � �(n + 1)(xn�1 � 1)x (mod p`). If � 6= �1 and �m
0

= 1, then w(�) =

(n � 1)(� � 1)(� + 1). As in the case pj(n + 1) above, we obtain �(w(�)) = `. From

Proposition 4, we obtain that at least one of �(C 0) > 0 and �(D0) > 0 holds.

Lemma 21 implies that for each root � of w(x), the real part of 1��2 is positive unless

� = �1. Since we are considering g(x) and h(x) to each have a root other than �1, the
real parts of C 0 and D0 are positive. Also, Lemma 21 implies that C 0 and D0 are each� n.

Since the leading coe�cient of w(x) is n � 1, we deduce that (n � 1)2C 0D0 is a non-zero

integer with absolute value � (n� 1)2n2.

Combining the above information, we see that if n � t, then� Y
pj(n+1);p>2

p

�2� Y
pjn;p>2

p

�2� Y
pj(n�1);p>2

p

�
� (n� 1)2jC 0D0j � (n� 1)2n2 � t4:

Theorem 4 now follows as a consequence of Lemma 8.
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