
Notes for Working Seminar:

On k-free values of polynomials II
�
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Equations to Solve (in several variables):

D1z1 �D2z2 +D3z3 = 0(1)

D1z1
2 �D2z2

2 +D3z3
2 = D(2)

Two Quadratics of Interest:

D1 ((D1 +D3) z1 �D2z2)
2 �D2D3z2

2 (D1 �D2 +D3) = D3 (D1 +D3)D(3)

D1D3 (z1 � z3)
2 �D2 (D1 �D2 +D3) z2

2 = (D1 +D3)D(4)

Comments: Equation (3) follows from solving for z3 in (1), substituting into (2), and completing a square. Equation (4)

appears to be more useful, however. If we set � = z1 � z3 and � = z2 so that (4) becomes a quadratic in � and �, then

observe that solutions in � and � correspond to solutions in z1, z2, and z3 (use the de�nitions of � and � together with (1) to

determine unique values for z1, z2, and z3). Observe that in (3) we can rewrite the �rst expression which is squared as follows:

(D1 +D3) z1 �D2z2 = D3z1 + (D1z1 �D2z2) :

From (1), the last expression in parentheses is �D3z3. Making this substitution results in (4). On the other hand, if one uses

(3) directly, one should take into account that the �rst expression which is squared in (3) is divisible by D3.

Summary: We are interested in bounding the number of solutions to the quadratic

D1D3�
2 �D2 (D1 �D2 +D3) �

2 = (D1 +D3)D:(5)

Here, � and � each belong to the set

S =
�
a1!1 + � � �+ an!n : aj 2 Z; jaj j � A for each j

	
;

where A = o
�
t1=n

�
(and !1; : : : ; !n form an integral basis for the ring R of integers in Q(�) where � is a root of the polynomial

f(x)).

Background Material: We count integers m 2 (X;X + h] such that f(m) is k-free. The polynomial f(x) is irreducible in

Z[x] and of degree n. We will want h � X. We restrict estimates to m 2 I � (X;X + h] with jIj � H. Here, H � tk=n

(note that we are mainly interested in the case when k < n). Of concern to us is the case when t > T = X
p
logX. Recall

that estimating the number of such m as above has been reduced to estimating the number of zj as in (1) and (2). These zj
correspond to a di�erence of uj 's (or xj 's in Trifonov's write-ups) in a set of the type described by S except with A replaced

by t1=n. If we restrict to a smaller sub-hypercube (so that the uj 's are \close" to one another), then the di�erences zj belong

to a set of the type S.
Recall also that the uj 's we are interested in are primary. The uj 's correspond to u satisfying an equation of the form

E(m� �) = u
k
v(6)

where E is some �xed element of R and where v 2 R (v depending on m and u). Taking norms of both sides of (6) (the norm

of m� � is f(m) divided by the leading coeÆcient of f(x)) and using that the norm of v is at least 1 and the norm of u is

� t (each of its conjugates being � t1=n), we deduce Xn � tk so that t� Xn=k. Observe that this implies H � X � h (so

the comment about k < n above doesn't serve much of a purpose - the point is that if k � n, then showing f(m) is k-free

for some m 2 (X; 2X] is trivial and does not require estimating the number of uj as above). We �x y of the form E(m0 � �)

where m0 is an integer in I, and consider the function F (u) = y=uk. Using (6), we deduce

v =
E(m� �)

uk
= F (u) +O(Æ);

where Æ = Ht�k=n (since jIjjuj�k � Ht�k=n). In other words, the function F (u) is within O(Æ) of being an element v of R.

This is nothing spectacular as the elements of R will typically be dense in the complex plane. But something more is true.

Note that F (u) = y=uk is an element of the �eld Q(�). Not only does the di�erence v� F (u) have a small absolute value but

also the same is true of the di�erences �(v)� �(F (u)) for every � in the Galois group G of Q(�) over Q. Each of these will

have absolute value O(Æ).

�These are working notes and may be prone to errors.



We are considering the determinant

D = det

0
BB@

1 1 1 1

u0 u1 u2 u3
u20 u21 u22 u23
v0 v1 v2 v3

1
CCA(7)

together with D0, D1, D2, and D3 obtained by considering determinants of respective minors along the third row. For each

j 2 f0; 1; 2; 3g, we have E(mj � �) = ukj vj for some integer mj 2 I.

Two Preliminary Estimates:

Lemma 1. [Recall that A = o(t1=n).] For each � 2 G (the Galois group),

Xt
�(k+3)=n +O

�
HA

3
t
�k=n

�
� �(D)� XA

6
t
�(k+3)=n +O

�
HA

3
t
�k=n

�

and, for each j 2 f0; 1; 2; 3g,

Xt
�(k+2)=n +O

�
HAt

�k=n�� �(Dj)� XA
3
t
�(k+2)=n +O

�
HAt

�k=n�
:

Lemma 2. Suppose that for some � 2 G that some �(Dj)� B. Then there exist integers i1 and i2 with 0 � i1 < i2 � 3 such

that

�(ui2 � ui1)� B
1=3

t
(k+2)=(3n)

X
�1=3 +O

�
H

1=3
A
1=3

X
�1=3

t
2=(3n)�

:

Also,

�(D)� Bt
�1=n +O

�
HAt

�(k+1)=n
�
+O

�
HA

3
t
�k=n

�
:

The First Case: Suppose that for some � 2 G that some �(Dj) � B. Lemma 2 implies that the uj 's cannot all lie in a

sub-hypercube with edge length "L for some " > 0 where L is the bound given for �(ui2 � ui1 ). The terminology to \lie in a

sub-hypercube" requires some explanation. We consider a hypercube

C = f(a1; : : : ; an) : aj 2 Z; jaj j � t
1=n for 1 � j � ng

and say u lies in the hypercube if there is an n-tuple (a1; : : : ; an) 2 C such that u = a1!1+ � � �+an!n. Therefore, we are saying

that if u0, u1, u2, and u3 are expressed as linear combinations of the basis elements !1; : : : ; !n, then there is an !i such that

the four coeÆcients of !i do not all lie in an interval of length "L. We deduce that there are �
�
t1=n=L

�n � t=Ln such uj 's.

This expression needs to be multiplied by h=H � X=H (assuming H � X) to take into account the di�erent intervals I.

Another Preliminary Estimate:

Lemma 3. Let G = f�1; : : : ; �ng, and let z1; : : : ; zn be n complex numbers. Let "1; : : : ; "n be n positive real numbers. The

number of pairs (�; �) with � and � in S such that, for every j 2 f1; 2; : : : ; ng,

j�j(�=�)� zj j < "j

is �
nY

j=1

�
"jA

2 + 1
�
2n
. If the roots of f(x) are all real, then this bound can be replaced by �

nY
j=1

�
"jA

2 + 1
�n

.

The Second Case: In the case that �(Dj)� B for every � 2 G and each j, we return to the situation in the summary. We

choose the Dj = b
(j)
1
!1+ � � �+ b

(j)
n !n. The conditions for this case imply that each jb(j)i j is � B. Thus, each Dj can be chosen

in � Bn ways. There are therefore � B3n possibilities for D1, D2, and D3 in (5). From (5), we can deduce the situation in

Lemma 3. Crossing our �ngers, we may be able to choose "� At�1=n (it may help to note that D=Dj has some cancellations

in the di�erences ui � uj). Then one would get a bound in this case of (at best) B3nA3nt�1 +O
�
t=An

�
. In this case, there is

no need for other factors (a solution in � and � corresponds to unique uj which in turn can only occur � 1 times as f(x) � 0

(mod pk) has � 1 positive solutions � X when p > T ).


