Notes for Working Seminar: On k-free values of irreducible polynomials 05/18/99

Halberstam & Roth (1951): For every $\varepsilon > 0$ and $x \ge x_0(\varepsilon)$, there is a k-free number in the interval $(x, x + x^{1/(2k)+\varepsilon}]$.

Nair (1976, 1979): He extended the approach to algebraic number fields.

Theorem (Nair, 1979): Let $f(x) \in \mathbb{Z}[x]$ with f(x) irreducible and $gcd(f(m) : m \in \mathbb{Z}) = 1$. Let $n = \deg f$, and let k be an integer $\geq n + 1$. There is a constant c such that for x sufficiently large, there is an integer $m \in (x, x + cx^{\theta}]$, where $\theta = n/(2k - n + 1)$, such that f(m) is k-free.

Theorem (Huxley & Nair for $n \ge 2$ in 1980, Trifonov for n = 1 in 1995): One can take $\theta = n/(2k - n + 2)$ above.

Theorem (Filaseta, 1993): One can take $\theta = n/(2k - n + r)$ above where $r \sim \sqrt{2n}$.

Comment: Similar results can be obtained for $k \leq n$ but not too small compared to n (see the next theorem).

Theorem (Nair, 1976): Let $f(x) \in \mathbb{Z}[x]$ with f(x) irreducible and $gcd(f(m) : m \in \mathbb{Z}) = 1$. Let $n = \deg f$, and let k be an integer $\geq (\sqrt{2} - \frac{1}{2})n$. Then there are infinitely many integers m such that f(m) is k-free.

Comment: Previous results were obtained by Nagel (for $k \ge n$ in 1922) and Erdős (for $k \ge n-1$ in 1953). Nagel's result contained an asymptotic formula for the number of such $m \le x$ with f(m) being k-free; Erdős' result did not. Later Hooley (1967) established asymptotics for $k \ge n-1$. For small n, Hooley's result is the best known. Nair obtained his theorem above with asymptotics for the number of $m \le x$ with f(m) being k-free, improving on Hooley's result when n is sufficiently large.

Question 1: Can one use differences to prove Hooley's result?

Question 2: Can the Swinnerton-Dyer approach be extended to number fields and, if so, what does it imply about k-free values of polynomials?

Question 3: Is $m^4 + 1$ squarefree for infinitely many integers m?

Notation: $f(x) \in \mathbb{Z}[x]$ f(x) irreducible $gcd(f(m) : m \in \mathbb{Z}) = 1$ $n = \deg f$ $k \ge 2$ $f(\theta) = 0$ R is the ring of integers in $\mathbb{Q}(\theta)$

Basic Idea 1: Count $m \leq x$ such that f(m) is not divisible by p^k where $p \leq \varepsilon \log x$. The number of such m is

$$\prod_{p \le \varepsilon \log x} \left(1 - \frac{\rho(p^k)}{p^k} \right) x + o(x).$$

Basic Idea 2: Let $T = x\sqrt{\log x}$. Find an upper bound for the number of $m \le x$ such that f(m) is divisible by p^k

where $\varepsilon \log x . Using that <math>\rho(p^k)$ is bounded for p large, the number of such m is

$$\ll \sum_{\varepsilon \log x$$

Main Idea: Find an upper bound for P(x), the number of $m \le x$ such that f(m) is divisible by p^k with p > T. Nair shows that there are E_1, \ldots, E_r such that

$$P(x) \le \max_{E \in \{E_1, \dots, E_r\}} \left| \left\{ u \in R : |u| > T^{1/n}, u^k v = E(m-\theta) \text{ for some } m \in \mathbb{Z} \cap [1, x], v \in R, \text{ and } u \text{ primary } \right\} \right|$$

Here, u being "primary" means any two conjugates have the same order.

Comment: One should actually count pairs (u, v) above. The above is correct provided that we divide [1, x] into subintervals of length $H \ll T^{k/n}$ and deal with the subintervals separately.

Notation: $I \subseteq [1, x]$ $|I| \le H$ S is the set in the bound for P(x) above restricted to $m \in I$ $S(t) = \{u \in S : t^{1/n} < |u| \le (2t)^{1/n}\}$ $y = m' - \theta$ for some $m' \in I$

Classical Use of Differences: Observe that

$$\frac{E(m-\theta)}{u^k} = \frac{Ey}{u^k} + O\left(\frac{H}{|u|^k}\right)$$

Consider appropriate forms $P_s(u, \alpha)$ and $Q_s(u, \alpha)$ in $\mathbb{Z}[u, \alpha]$ of degree s such that

$$\frac{E(m_1-\theta)}{u^k}P_s(u,\alpha)-\frac{E(m_2-\theta)}{(u+\alpha)^k}Q_s(u,\alpha)$$

has small absolute value (in particular, < 1 so that $H/|u|^{k-s} < 1$ forcing us to restrict to $H \ll t^{(k-s)/n}$). Ideally, we would like to conclude that since the expression above is an algebraic integer with absolute value < 1, it must be zero.

Difficulty: Algebraic integers (even from a fixed number field) can have arbitrarily small absolute value without being equal to 0.

Solution: Apply $\sigma \in \text{Gal}(\mathbb{Q}(\theta)/\mathbb{Q})$ to the above (to obtain a conjugate of the expression). Using that u and $u + \alpha$ are primary, the conjugate obtained will still have small absolute value (in particular, < 1). But some conjugate of a non-zero algebraic integer MUST BE ≥ 1 . Hence, we can deduce the expression above is 0.

Comment: One then continues as in the classical Halberstam-Roth method.

Additional Difficulty: How does one count $u \in R$ with $|u| \simeq t^{1/n}$?

Solution: Write $u = u_1\omega_1 + \cdots + u_n\omega_n$ where $u_j \in \mathbb{Z}$ and $\omega_1, \ldots, \omega_n$ form an integral basis for R. For $u \in S(t)$, one has each $|u_j|$ is $\ll t^{1/n}$ (and some $|u_j| \gg t^{1/n}$). Consider the hypercube

$$\{(u_1,\ldots,u_n): u_j \in \mathbb{Z}, |u_j| \ll t^{1/n} \text{ for each } j\}.$$

Divide it into sub-cubes with edge length ℓ . One gets $\ll ((t^{1/n}/\ell) + 1)^n$ such sub-cubes. One picks ℓ so that there are $\ll 1$ different u that can lie in a sub-cube and S(t) (via the Halberstam-Roth method).