Notes for Working Seminar:
On k-free values of irreducible polynomials 05/18/99

Halberstam \& Roth (1951): For every $\varepsilon>0$ and $x \geq x_{0}(\varepsilon)$, there is a k-free number in the interval $(x, x+$ $\left.x^{1 /(2 k)+\varepsilon}\right]$.

Nair (1976, 1979): He extended the approach to algebraic number fields.
Theorem (Nair, 1979): Let $f(x) \in \mathbb{Z}[x]$ with $f(x)$ irreducible and $\operatorname{gcd}(f(m): m \in \mathbb{Z})=1$. Let $n=\operatorname{deg} f$, and let k be an integer $\geq n+1$. There is a constant c such that for x sufficiently large, there is an integer $m \in\left(x, x+c x^{\theta}\right]$, where $\theta=n /(2 k-n+1)$, such that $f(m)$ is k-free.

Theorem (Huxley \& Nair for $n \geq 2$ in 1980, Trifonov for $n=1$ in 1995): One can take $\theta=n /(2 k-n+2)$ above.

Theorem (Filaseta, 1993): One can take $\theta=n /(2 k-n+r)$ above where $r \sim \sqrt{2 n}$.
Comment: Similar results can be obtained for $k \leq n$ but not too small compared to n (see the next theorem).
Theorem (Nair, 1976): Let $f(x) \in \mathbb{Z}[x]$ with $f(x)$ irreducible and $\operatorname{gcd}(f(m): m \in \mathbb{Z})=1$. Let $n=\operatorname{deg} f$, and let k be an integer $\geq\left(\sqrt{2}-\frac{1}{2}\right) n$. Then there are infinitely many integers m such that $f(m)$ is k-free.

Comment: Previous results were obtained by Nagel (for $k \geq n$ in 1922) and Erdős (for $k \geq n-1$ in 1953). Nagel's result contained an asymptotic formula for the number of such $m \leq x$ with $f(m)$ being k-free; Erdős' result did not. Later Hooley (1967) established asymptotics for $k \geq n-1$. For small n, Hooley's result is the best known. Nair obtained his theorem above with asymptotics for the number of $m \leq x$ with $f(m)$ being k-free, improving on Hooley's result when n is sufficiently large.

Question 1: Can one use differences to prove Hooley's result?
Question 2: Can the Swinnerton-Dyer approach be extended to number fields and, if so, what does it imply about k-free values of polynomials?

Question 3: Is $m^{4}+1$ squarefree for infinitely many integers m ?
Notation: $f(x) \in \mathbb{Z}[x]$
$f(x)$ irreducible
$\operatorname{gcd}(f(m): m \in \mathbb{Z})=1$
$n=\operatorname{deg} f$
$k \geq 2$
$f(\theta)=0$
R is the ring of integers in $\mathbb{Q}(\theta)$
Basic Idea 1: Count $m \leq x$ such that $f(m)$ is not divisible by p^{k} where $p \leq \varepsilon \log x$. The number of such m is

$$
\prod_{p \leq \varepsilon \log x}\left(1-\frac{\rho\left(p^{k}\right)}{p^{k}}\right) x+o(x)
$$

Basic Idea 2: Let $T=x \sqrt{\log x}$. Find an upper bound for the number of $m \leq x$ such that $f(m)$ is divisible by p^{k}
where $\varepsilon \log x<p \leq T$. Using that $\rho\left(p^{k}\right)$ is bounded for p large, the number of such m is

$$
\ll \sum_{\varepsilon \log x<p \leq T}\left(\frac{x}{p^{k}}+1\right) \ll \frac{x}{\sqrt{\log x}}
$$

Main Idea: Find an upper bound for $P(x)$, the number of $m \leq x$ such that $f(m)$ is divisible by p^{k} with $p>T$. Nair shows that there are E_{1}, \ldots, E_{r} such that

$$
P(x) \leq \max _{E \in\left\{E_{1}, \ldots, E_{r}\right\}} \mid\left\{u \in R:|u|>T^{1 / n}, u^{k} v=E(m-\theta) \text { for some } m \in \mathbb{Z} \cap[1, x], v \in R, \text { and } u \text { primary }\right\} \mid
$$

Here, u being "primary" means any two conjugates have the same order.
Comment: One should actually count pairs (u, v) above. The above is correct provided that we divide $[1, x]$ into subintervals of length $H \ll T^{k / n}$ and deal with the subintervals separately.

Notation: $I \subseteq[1, x]$
$|I| \leq H$
S is the set in the bound for $P(x)$ above restricted to $m \in I$
$S(t)=\left\{u \in S: t^{1 / n}<|u| \leq(2 t)^{1 / n}\right\}$
$y=m^{\prime}-\theta$ for some $m^{\prime} \in I$
Classical Use of Differences: Observe that

$$
\frac{E(m-\theta)}{u^{k}}=\frac{E y}{u^{k}}+O\left(\frac{H}{|u|^{k}}\right)
$$

Consider appropriate forms $P_{s}(u, \alpha)$ and $Q_{s}(u, \alpha)$ in $\mathbb{Z}[u, \alpha]$ of degree s such that

$$
\frac{E\left(m_{1}-\theta\right)}{u^{k}} P_{s}(u, \alpha)-\frac{E\left(m_{2}-\theta\right)}{(u+\alpha)^{k}} Q_{s}(u, \alpha)
$$

has small absolute value (in particular, <1 so that $H /|u|^{k-s}<1$ forcing us to restrict to $H \ll t^{(k-s) / n}$). Ideally, we would like to conclude that since the expression above is an algebraic integer with absolute value <1, it must be zero.

Difficulty: Algebraic integers (even from a fixed number field) can have arbitrarily small absolute value without being equal to 0 .

Solution: Apply $\sigma \in \operatorname{Gal}(\mathbb{Q}(\theta) / \mathbb{Q})$ to the above (to obtain a conjugate of the expression). Using that u and $u+\alpha$ are primary, the conjugate obtained will still have small absolute value (in particular, <1). But some conjugate of a non-zero algebraic integer MUST $\mathrm{BE} \geq 1$. Hence, we can deduce the expression above is 0 .

Comment: One then continues as in the classical Halberstam-Roth method.
Additional Difficulty: How does one count $u \in R$ with $|u| \asymp t^{1 / n}$?
Solution: Write $u=u_{1} \omega_{1}+\cdots+u_{n} \omega_{n}$ where $u_{j} \in \mathbb{Z}$ and $\omega_{1}, \ldots, \omega_{n}$ form an integral basis for R. For $u \in S(t)$, one has each $\left|u_{j}\right|$ is $\ll t^{1 / n}$ (and some $\left|u_{j}\right| \gg t^{1 / n}$). Consider the hypercube

$$
\left\{\left(u_{1}, \ldots, u_{n}\right): u_{j} \in \mathbb{Z},\left|u_{j}\right| \ll t^{1 / n} \text { for each } j\right\}
$$

Divide it into sub-cubes with edge length ℓ. One gets $\ll\left(\left(t^{1 / n} / \ell\right)+1\right)^{n}$ such sub-cubes. One picks ℓ so that there are $\ll 1$ different u that can lie in a sub-cube and $S(t)$ (via the Halberstam-Roth method).

