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On k-free values of irreducible polynomials
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Halberstam & Roth (1951): For every " > 0 and x � x0("), there is a k-free number in the interval (x; x +

x1=(2k)+"].

Nair (1976, 1979): He extended the approach to algebraic number �elds.

Theorem (Nair, 1979): Let f(x) 2 Z[x] with f(x) irreducible and gcd(f(m) : m 2 Z) = 1. Let n = deg f , and let

k be an integer � n+ 1. There is a constant c such that for x suÆciently large, there is an integer m 2 (x; x+ cx�],
where � = n=(2k � n+ 1), such that f(m) is k-free.

Theorem (Huxley & Nair for n � 2 in 1980, Trifonov for n = 1 in 1995): One can take � = n=(2k � n+ 2)

above.

Theorem (Filaseta, 1993): One can take � = n=(2k � n+ r) above where r �
p
2n.

Comment: Similar results can be obtained for k � n but not too small compared to n (see the next theorem).

Theorem (Nair, 1976): Let f(x) 2 Z[x] with f(x) irreducible and gcd(f(m) : m 2 Z) = 1. Let n = deg f , and let

k be an integer �
�p

2� 1
2

�
n. Then there are in�nitely many integers m such that f(m) is k-free.

Comment: Previous results were obtained by Nagel (for k � n in 1922) and Erd}os (for k � n� 1 in 1953). Nagel's

result contained an asymptotic formula for the number of such m � x with f(m) being k-free; Erd}os' result did
not. Later Hooley (1967) established asymptotics for k � n � 1. For small n, Hooley's result is the best known.

Nair obtained his theorem above with asymptotics for the number of m � x with f(m) being k-free, improving on

Hooley's result when n is suÆciently large.

Question 1: Can one use di�erences to prove Hooley's result?

Question 2: Can the Swinnerton-Dyer approach be extended to number �elds and, if so, what does it imply about

k-free values of polynomials?

Question 3: Is m4 + 1 squarefree for in�nitely many integers m?

Notation: f(x) 2 Z[x]
f(x) irreducible
gcd(f(m) : m 2 Z) = 1

n = deg f
k � 2

f(�) = 0

R is the ring of integers in Q(�)

Basic Idea 1: Count m � x such that f(m) is not divisible by pk where p � " logx. The number of such m is

Y
p�" log x

�
1� �(pk)

pk

�
x+ o(x):

Basic Idea 2: Let T = x
p
logx. Find an upper bound for the number of m � x such that f(m) is divisible by pk



where " logx < p � T . Using that �(pk) is bounded for p large, the number of such m is

�
X

" log x<p�T

� x

pk
+ 1

�
� xp

logx
:

Main Idea: Find an upper bound for P (x), the number of m � x such that f(m) is divisible by pk with p > T .
Nair shows that there are E1; : : : ; Er such that

P (x) � max
E2fE1;:::;Erg

���
n
u 2 R : juj > T 1=n; ukv = E(m� �) for some m 2 Z\ [1; x]; v 2 R; and u primary

o���:

Here, u being \primary" means any two conjugates have the same order.

Comment: One should actually count pairs (u; v) above. The above is correct provided that we divide [1; x] into

subintervals of length H � T k=n and deal with the subintervals separately.

Notation: I � [1; x]
jI j � H
S is the set in the bound for P (x) above restricted to m 2 I

S(t) = fu 2 S : t1=n < juj � (2t)1=ng
y = m0 � � for some m0 2 I

Classical Use of Di�erences: Observe that

E(m� �)

uk
=

Ey

uk
+O

� H

jujk
�
:

Consider appropriate forms Ps(u; �) and Qs(u; �) in Z[u; �] of degree s such that

E(m1 � �)

uk
Ps(u; �)�

E(m2 � �)

(u+ �)k
Qs(u; �)

has small absolute value (in particular, < 1 so that H=jujk�s < 1 forcing us to restrict to H � t(k�s)=n). Ideally,

we would like to conclude that since the expression above is an algebraic integer with absolute value < 1, it must be

zero.

DiÆculty: Algebraic integers (even from a �xed number �eld) can have arbitrarily small absolute value without

being equal to 0.

Solution: Apply � 2 Gal(Q(�)=Q ) to the above (to obtain a conjugate of the expression). Using that u and u+ �
are primary, the conjugate obtained will still have small absolute value (in particular, < 1). But some conjugate of

a non-zero algebraic integer MUST BE � 1. Hence, we can deduce the expression above is 0.

Comment: One then continues as in the classical Halberstam-Roth method.

Additional DiÆculty: How does one count u 2 R with juj � t1=n?

Solution: Write u = u1!1+ � � �+un!n where uj 2 Z and !1; : : : ; !n form an integral basis for R. For u 2 S(t), one

has each juj j is � t1=n (and some juj j � t1=n). Consider the hypercube

f(u1; : : : ; un) : uj 2 Z; jujj � t1=n for each jg:

Divide it into sub-cubes with edge length `. One gets �
�
(t1=n=`) + 1

�n
such sub-cubes. One picks ` so that there

are � 1 di�erent u that can lie in a sub-cube and S(t) (via the Halberstam-Roth method).


