Some Polynomial Factoring

Problems From Past

West Coast

Number Theory Conferences

by Michael Filaseta

University of South Carolina

Joint Work with

A. Borisov, T.-Y. Lam, O. Trifonov

Classes of polynomials having one non-cyclotomic irreducible factor, Acta Arith. 90 (1999), 121-153.

Conjecture (F., 1986):

Let n be an integer ≥ 2, and let

$$
f(x)=1+x+x^{2}+\cdots+x^{n} .
$$

Then $f^{\prime}(x)$ is irreducible over the rationals.

Examples:

$$
\begin{aligned}
& n=2: f^{\prime}(x)=2 x+1 \\
& n=3: f^{\prime}(x)=3 x^{2}+2 x+1 \\
& n=4: f^{\prime}(x)=4 x^{3}+3 x^{2}+2 x+1 \\
& \vdots
\end{aligned}
$$

1986: true if $n=p-1 \geq 2$ or if $n=p^{r}$

Conjecture (T.-Y. Lam):

Let n and k be integers with $n \geq 2$ and $1 \leq k \leq$ $n-1$, and let

$$
f(x)=1+x+x^{2}+\cdots+x^{n} .
$$

Then $f^{(k)}(x)$ is irreducible over \mathbb{Q}.

Examples:

$$
\begin{aligned}
& \frac{f^{(n-1)}(x)}{(n-1)!}=n x+1=\binom{n}{1} x+\binom{n-1}{0} \\
& \frac{f^{(n-2)}(x)}{(n-2)!}=\binom{n}{2} x^{2}+\binom{n-1}{1} x+\binom{n-2}{0} \\
& \frac{f^{(n-3)}(x)}{(n-3)!}=\binom{n}{3} x^{3}+\binom{n-1}{2} x^{2} \\
&+\binom{n-2}{1} x+\binom{n-3}{0}
\end{aligned}
$$

Conjecture (J. Lagarias \& E. Gutkin, 1991):

Let n be an integer ≥ 4, and let

$$
p(x)=(n-1)\left(x^{n+1}-1\right)-(n+1)\left(x^{n}-x\right) .
$$

Then

- $p(x)$ is $(x-1)^{3}$ times an irreducible polynomial if n is even
- $p(x)$ is $(x-1)^{3}(x+1)$ times an irreducible polynomial over \mathbb{Q} if n is odd.

Comment: In connection to a problem concerning billiards, Eugene Gutkin was interested in showing that the polynomials $p(x)$ have no roots in common other than from the indicated cyclotomic factors.

Theorem 1. Let $\varepsilon>0$. For all but $O\left(t^{1 / 3+\varepsilon}\right)$ positive integers $n \leq t$, the derivative of the polynomial $1+x+x^{2}+\cdots+x^{n}$ is irreducible.

Theorem 2. Fix a positive integer k. For all but $o(t)$ positive integers $n \leq t$, the k th derivative of $1+x+x^{2}+\cdots+x^{n}$ is irreducible.

Theorem 3. Fix a positive integer m. If n is sufficiently large and $f(x)=1+x+x^{2}+\cdots+x^{n}$, then the polynomial $f^{(n-m)}(x)$ is irreducible.

Theorem 4. Let $\varepsilon>0$. For all but $O\left(t^{4 / 5+\varepsilon}\right)$ positive integers $n \leq t$, the polynomial

$$
p(x)=(n-1)\left(x^{n+1}-1\right)-(n+1)\left(x^{n}-x\right),
$$

is such that $p(x)$ is $(x-1)^{3}$ times an irreducible polynomial if n is even and $p(x)$ is $(x-1)^{3}(x+1)$ times an irreducible polynomial if n is odd.

Joint Work with Ognian Trifonov

(West Coast Number Theory Conference, 1997)

In 1951, Grosswald investigated the irreducibility over the rationals of the Bessel polynomials

$$
y_{n}(x)=\sum_{j=0}^{n} \frac{(n+j)!}{2^{j}(n-j)!j!} x^{j}
$$

He conjectured that $y_{n}(x)$ is irreducible for every positive integer n. Establishing the irreducibility of $y_{n}(x)$ for "all" n was also the last problem he posed at a West Coast Number Theory Conference.

Theorem 5. Let n be a positive integer, and let $a_{0}, a_{1}, \ldots, a_{n}$ be arbitrary integers with

$$
\left|a_{0}\right|=\left|a_{n}\right|=1
$$

Then

$$
\sum_{j=0}^{n} a_{j} \frac{(n+j)!}{2^{j}(n-j)!j!} x^{j}
$$

is irreducible.

Theorem 1. Let $\varepsilon>0$. For all but $O\left(t^{1 / 3+\varepsilon}\right)$ positive integers $n \leq t$, the derivative of the polynomial

$$
f(x)=1+x+x^{2}+\cdots+x^{n}
$$

is irreducible.

Basic Ideas of Proof:

- Write $f(x)$ and $f^{\prime}(x)$ in a "nice" form.

$$
\begin{gathered}
f(x)=\frac{x^{n+1}-1}{x-1} \\
f^{\prime}(x)=\frac{n x^{n+1}-(n+1) x^{n}+1}{(x-1)^{2}}
\end{gathered}
$$

- Work with $w(x)=x^{n+1}-(n+1) x+n$.

We want to show that its non-cyclotomic part is irreducible.

$$
w(x)=x^{n+1}-(n+1) x+n
$$

- Suppose $w(x)=g(x) h(x)$ where $g(x)$ and $h(x)$ are monic in $\mathbb{Z}[x]$ and $g(1) \neq 0$. We want to show $h(x)$ must equal $(x-1)^{2}$ for "most" n.
- Define

$$
A=\sum_{g(\beta)=0}\left(\beta-\frac{1}{\beta}\right), B=\sum_{h(\gamma)=0}\left(\gamma-\frac{1}{\gamma}\right)
$$

and observe that $n A B \in \mathbb{Z}$.
The expression B has the property that $B=0$ if and only if $h(x)=(x-1)^{2}$. If $B \neq 0$, then $n A B$ is a non-zero integer. We show that typically this does not happen by finding upper and lower bounds for $n|A B|$ that are inconsistent for most n.

- Consider the complex roots of $w(x)$.

The complex roots α satisfy

$$
1 \leq|\alpha| \leq 1+\frac{5 \log n}{n}
$$

From

$$
A=\sum_{g(\beta)=0}\left(\beta-\frac{1}{\beta}\right)=\sum_{g(\beta)=0}\left(\beta-\frac{1}{\bar{\beta}}\right)
$$

we deduce that

$$
|A| \leq 10 \log n
$$

Similarly, $|B| \leq 10 \log n$. Therefore,

$$
n|A B| \leq 100 n(\log n)^{2}
$$

$$
w(x)=x^{n+1}-(n+1) x+n
$$

- If $p \mid(n+1)$, consider the p-adic roots of $w(x)$.

$$
\begin{aligned}
n+1 & =p^{\ell} m \\
& \Longrightarrow w(x) \equiv\left(x^{m}-1\right)^{p^{\ell}} \quad(\bmod p)
\end{aligned}
$$

The p-adic roots of $w(x)$ form clusters of roots around the p-adic m th roots of unity. Considering the Newton polygon of $w(x+\zeta)$ where $\zeta^{m}=1$, one shows that around each $\zeta \neq 1$, there are ℓ clusters of roots satisfying:
(i) The roots in each cluster all belong to the same irreducible p-adic factor of $w(x)$.
(ii) There are a multiple of p roots in each cluster.

One uses (i) and (ii) to show that $\nu_{p}(A)$ and $\nu_{p}(B)$ are positive. Hence, $p^{2} \mid n A B$.

- If $p \mid n$, consider the p-adic roots of $w(x)$.

In a similar fashion, one deduces here that at least one of $\nu_{p}(A)$ and $\nu_{p}(B)$ is positive so that $p \mid n A B$.

- Set up the inequalities on $n|A B|$ (if $B \neq 0$).

$$
\left(\prod_{p \mid(n+1)} p\right)^{2}\left(\prod_{p \mid n} p\right) \leq n|A B| \leq 100 n(\log n)^{2}
$$

- For most n the expression on the left is about n^{3}.

