SOME POLYNOMIAL FACTORING

PROBLEMS FROM PAST

WEST COAST

NUMBER THEORY CONFERENCES

by Michael Filaseta

University of South Carolina

Joint Work with

A. Borisov, T.-Y. Lam, O. Trifonov

Classes of polynomials having one non-cyclotomic irreducible factor, Acta Arith. **90** (1999), 121–153.

Conjecture (F., 1986):

Let n be an integer ≥ 2 , and let $f(x) = 1 + x + x^2 + \dots + x^n$.

Then f'(x) is irreducible over the rationals.

Examples:

$$n = 2: f'(x) = 2x + 1$$

$$n = 3: f'(x) = 3x^2 + 2x + 1$$

$$n = 4: f'(x) = 4x^3 + 3x^2 + 2x + 1$$

:
:

1986: true if $n = p - 1 \ge 2$ or if $n = p^r$

Conjecture (T.-Y. Lam):

Let n and k be integers with $n \ge 2$ and $1 \le k \le n-1$, and let $f(x) = 1 + x + x^2 + \dots + x^n$. Then $f^{(k)}(x)$ is irreducible over \mathbb{Q} .

Examples:

$$\frac{f^{(n-1)}(x)}{(n-1)!} = nx + 1 = \binom{n}{1}x + \binom{n-1}{0}$$
$$\frac{f^{(n-2)}(x)}{(n-2)!} = \binom{n}{2}x^2 + \binom{n-1}{1}x + \binom{n-2}{0}$$
$$\frac{f^{(n-3)}(x)}{(n-3)!} = \binom{n}{3}x^3 + \binom{n-1}{2}x^2$$
$$+ \binom{n-2}{1}x + \binom{n-3}{0}$$

Conjecture (J. Lagarias & E. Gutkin, 1991):

Let *n* be an integer
$$\geq 4$$
, and let

 $p(x) = (n-1)(x^{n+1} - 1) - (n+1)(x^n - x).$

Then

- p(x) is $(x 1)^3$ times an irreducible polynomial if n is even
- p(x) is $(x 1)^3(x + 1)$ times an irreducible polynomial over \mathbb{Q} if n is odd.

Comment: In connection to a problem concerning billiards, Eugene Gutkin was interested in showing that the polynomials p(x) have no roots in common other than from the indicated cyclotomic factors.

Theorem 1. Let $\varepsilon > 0$. For all but $O(t^{1/3+\varepsilon})$ positive integers $n \le t$, the derivative of the polynomial $1 + x + x^2 + \cdots + x^n$ is irreducible.

Theorem 2. Fix a positive integer k. For all but o(t) positive integers $n \leq t$, the kth derivative of $1 + x + x^2 + \cdots + x^n$ is irreducible.

Theorem 3. Fix a positive integer m. If n is sufficiently large and $f(x) = 1 + x + x^2 + \cdots + x^n$, then the polynomial $f^{(n-m)}(x)$ is irreducible.

Theorem 4. Let $\varepsilon > 0$. For all but $O(t^{4/5+\varepsilon})$ positive integers $n \leq t$, the polynomial

 $p(x) = (n-1)(x^{n+1} - 1) - (n+1)(x^n - x),$

is such that p(x) is $(x - 1)^3$ times an irreducible polynomial if n is even and p(x) is $(x - 1)^3(x + 1)$ times an irreducible polynomial if n is odd.

Joint Work with Ognian Trifonov

(West Coast Number Theory Conference, 1997)

In 1951, Grosswald investigated the irreducibility over the rationals of the Bessel polynomials

$$y_n(x) = \sum_{j=0}^n \frac{(n+j)!}{2^j (n-j)! j!} x^j.$$

He conjectured that $y_n(x)$ is irreducible for every positive integer n. Establishing the irreducibility of $y_n(x)$ for "all" n was also the last problem he posed at a West Coast Number Theory Conference.

Theorem 5. Let n be a positive integer, and let a_0, a_1, \ldots, a_n be arbitrary integers with

$$|a_0| = |a_n| = 1.$$

Then

$$\sum_{j=0}^{n} a_j \frac{(n+j)!}{2^j (n-j)! j!} x^j$$

is irreducible.

Theorem 1. Let $\varepsilon > 0$. For all but $O(t^{1/3+\varepsilon})$ positive integers $n \le t$, the derivative of the polynomial $f(x) = 1 + x + x^2 + \dots + x^n$ is irreducible.

Basic Ideas of Proof:

• Write f(x) and f'(x) in a "nice" form.

$$f(x) = \frac{x^{n+1} - 1}{x - 1}$$
$$f'(x) = \frac{nx^{n+1} - (n+1)x^n + 1}{(x - 1)^2}$$

• Work with $w(x) = x^{n+1} - (n+1)x + n$.

We want to show that its non-cyclotomic part is irreducible.

$$w(x) = x^{n+1} - (n+1)x + n$$

• Suppose w(x) = g(x)h(x) where g(x) and h(x)are monic in $\mathbb{Z}[x]$ and $g(1) \neq 0$. We want to show h(x) must equal $(x - 1)^2$ for "most" n.

• Define

$$A = \sum_{g(\beta)=0} \left(\beta - \frac{1}{\beta}\right), \ B = \sum_{h(\gamma)=0} \left(\gamma - \frac{1}{\gamma}\right)$$

and observe that $nAB \in \mathbb{Z}$.

The expression B has the property that B = 0if and only if $h(x) = (x - 1)^2$. If $B \neq 0$, then nAB is a non-zero integer. We show that typically this does not happen by finding upper and lower bounds for n|AB| that are inconsistent for most n. • Consider the complex roots of w(x).

The complex roots α satisfy

$$1 \le |\alpha| \le 1 + \frac{5\log n}{n}.$$

From

$$A = \sum_{g(\beta)=0} \left(\beta - \frac{1}{\beta}\right) = \sum_{g(\beta)=0} \left(\beta - \frac{1}{\overline{\beta}}\right),$$

we deduce that

$$|A| \le 10 \log n.$$

Similarly, $|B| \leq 10 \log n$. Therefore,

 $n|AB| \le 100n(\log n)^2.$

$$w(x) = x^{n+1} - (n+1)x + n$$

• If p|(n+1), consider the *p*-adic roots of w(x).

$$n+1 = p^{\ell}m$$

$$\implies w(x) \equiv (x^m - 1)^{p^{\ell}} \pmod{p}$$

The *p*-adic roots of w(x) form clusters of roots around the *p*-adic *m*th roots of unity. Considering the Newton polygon of $w(x + \zeta)$ where $\zeta^m = 1$, one shows that around each $\zeta \neq 1$, there are ℓ clusters of roots satisfying:

- (i) The roots in each cluster all belong to the same irreducible *p*-adic factor of w(x).
- (ii) There are a multiple of p roots in each cluster.

One uses (i) and (ii) to show that $\nu_p(A)$ and $\nu_p(B)$ are positive. Hence, $p^2|nAB$.

• If p|n, consider the *p*-adic roots of w(x).

In a similar fashion, one deduces here that at least one of $\nu_p(A)$ and $\nu_p(B)$ is positive so that p|nAB.

• Set up the inequalities on n|AB| (if $B \neq 0$).

$$\left(\prod_{p|(n+1)} p\right)^2 \left(\prod_{p|n} p\right) \le n|AB| \le 100n(\log n)^2$$

• For most n the expression on the left is about n^3 .