The irreducibility of $x^{2 p}-x^{p}+m^{p}$

Seminar Notes: 02/17/06

This talk is from joint work with Florian Luca, Pante Stănică, and Rob Underwood concerning the polynomials:

$$
f_{p, m}(x)=1+\sum_{i=0}^{(p-1) / 2}(-1)^{i} \frac{p}{p-i}\binom{p-i}{i} m^{i} x^{p-2 i}
$$

Theorem 1. Let $p \geq 5$ be prime. Let K be the splitting field of $f_{p, 1}(x)$ over \mathbb{Q}. Then the Galois group of K / \mathbb{Q} is cyclic of order $p-1$.

Theorem 2. Let $p \geq 5$ be a prime, and let $m \geq 2$ be an integer. The Galois group of the splitting field K / \mathbb{Q} of $f_{p, m}$ is a subgroup of the symmetric group S_{p} of order $p(p-1)$ generated by a cycle of length p and a cycle of length $p-1$.

Lemma. Let p be an odd prime and let m be an integer with $m \geq 2$. Then the polynomial $x^{2 p}-x^{p}+m^{p}$ is irreducible.

Notation: $\quad N=1-4 m^{p}$
$\gamma=(1+\sqrt{N}) / 2$, a root of $x^{2}-x+m^{p}$
λ is a fixed $p^{\text {th }}$ root of γ, a root of $x^{2 p}-x^{p}+m^{p}$
$D<0$ is a squarefree integer, $D \mid N$, and N / D is a square, so $\mathbb{Q}(\gamma)=\mathbb{Q}(\sqrt{N})=\mathbb{Q}(\sqrt{D})$

Basic Steps of One Argument:

- For an irreducible $f(x) \in \mathbb{Q}[x]$ and a $g(x) \in \mathbb{Q}[x]$, the polynomial $f(g(x))$ is irreducible over \mathbb{Q} if and only if $g(x)-\alpha$ is irreducible over $\mathbb{Q}(\alpha)$ where α is an arbitrary fixed root of $f(x)$.
- Take $f(x)=x^{2}-x+m^{p}=(x-\gamma)(x-\bar{\gamma})$ and $g(x)=x^{p}$.
- The polynomial $x^{p}-\gamma$ is reducible in $\mathbb{Q}(\gamma)$ if and only if γ is a $p^{\text {th }}$ power in $\mathbb{Q}(\gamma)$.
- Fix α and $\beta=\bar{\alpha}$ in $\mathbb{Q}(\sqrt{D})$ with

$$
\alpha^{p}=\frac{1+\sqrt{1-4 m^{p}}}{2}=\frac{1+\sqrt{N}}{2} \quad \text { and } \quad \beta^{p}=\frac{1-\sqrt{1-4 m^{p}}}{2}=\frac{1-\sqrt{N}}{2} .
$$

- Deduce $\alpha \beta=m$ and $\alpha+\beta= \pm 1$.
- Set $\alpha=(a+b \sqrt{D}) / 2$ and use that $2^{p-1}+2^{p-1} \sqrt{N}=2^{p} \alpha^{p}=(a+b \sqrt{D})^{p}=A+B \sqrt{D}$. Then $a^{p} \equiv 2^{p-1} \equiv 1$ $(\bmod p)$. Deduce $\alpha+\beta=+1$.
- The above implies α and β are both roots of $x^{2}-x+m$.
- Write $\alpha=s e^{i \theta}$ and $\beta=s e^{-i \theta}$ where $s>0$ and $\theta \in[0,2 \pi)$.
- From $s=\sqrt{m}, \cos \theta=1 /(2 \sqrt{m})$ and $s^{p} \cos (p \theta)=\Re\left(\alpha^{p}\right)=1 / 2$, deduce $\cos (p \theta)=1 /\left(2 m^{p / 2}\right)$.
- Write $\cos (p \theta)=2^{p-1}(\cos \theta)^{p}-2^{p-3} p(\cos \theta)^{p-2}+\cdots$, where what remains on the right is a sum of smaller odd powers of $\cos \theta$ times p times rational integers and the coefficient of each term $(\cos \theta)^{j}$ on the right is divisible by 2^{j-1}. This can be seen by setting $w=e^{i \theta}+e^{-i \theta}=2 \cos \theta$ and considering $w^{k}=\sum_{j=0}^{k}\binom{k}{j} e^{(k-2 j) i \theta}$ where k is odd; then express $2 \cos (p \theta)=e^{i p \theta}+e^{-i p \theta}$ in terms of the w^{k}.
- Note $\cos (p \theta)=2^{p-1}(\cos \theta)^{p}$, and deduce $(2 \cos \theta)^{2}$ is a root of a monic $u(x) \in \mathbb{Z}[x]$ with $\operatorname{deg} u=(p-3) / 2$.
- As $m \geq 2$, we have $(2 \cos \theta)^{2}=1 / m \notin \mathbb{Z}$, a contradiction.

