The irreducibility of $x^{2p} - x^p + m^p$

Seminar Notes: 02/17/06

This talk is from joint work with Florian Luca, Pante Stănică, and Rob Underwood concerning the polynomials:

$$f_{p,m}(x) = 1 + \sum_{i=0}^{(p-1)/2} (-1)^i \frac{p}{p-i} {p-i \choose i} m^i x^{p-2i},$$

Theorem 1. Let $p \ge 5$ be prime. Let K be the splitting field of $f_{p,1}(x)$ over \mathbb{Q} . Then the Galois group of K/\mathbb{Q} is cyclic of order p-1.

Theorem 2. Let $p \ge 5$ be a prime, and let $m \ge 2$ be an integer. The Galois group of the splitting field K/\mathbb{Q} of $f_{p,m}$ is a subgroup of the symmetric group S_p of order p(p-1) generated by a cycle of length p and a cycle of length p-1.

Lemma. Let p be an odd prime and let m be an integer with $m \ge 2$. Then the polynomial $x^{2p} - x^p + m^p$ is irreducible.

Notation: $N = 1 - 4m^p$ $\gamma = (1 + \sqrt{N})/2$, a root of $x^2 - x + m^p$ λ is a fixed p^{th} root of γ , a root of $x^{2p} - x^p + m^p$ D < 0 is a squarefree integer, D|N, and N/D is a square, so $\mathbb{Q}(\gamma) = \mathbb{Q}(\sqrt{N}) = \mathbb{Q}(\sqrt{D})$

Basic Steps of One Argument:

- For an irreducible $f(x) \in \mathbb{Q}[x]$ and a $g(x) \in \mathbb{Q}[x]$, the polynomial f(g(x)) is irreducible over \mathbb{Q} if and only if $g(x) \alpha$ is irreducible over $\mathbb{Q}(\alpha)$ where α is an arbitrary fixed root of f(x).
- Take $f(x) = x^2 x + m^p = (x \gamma)(x \overline{\gamma})$ and $g(x) = x^p$.
- The polynomial $x^p \gamma$ is reducible in $\mathbb{Q}(\gamma)$ if and only if γ is a p^{th} power in $\mathbb{Q}(\gamma)$.
- Fix α and $\beta = \overline{\alpha}$ in $\mathbb{Q}(\sqrt{D})$ with

$$\alpha^{p} = \frac{1 + \sqrt{1 - 4m^{p}}}{2} = \frac{1 + \sqrt{N}}{2} \qquad \text{and} \qquad \beta^{p} = \frac{1 - \sqrt{1 - 4m^{p}}}{2} = \frac{1 - \sqrt{N}}{2}$$

- Deduce $\alpha\beta = m$ and $\alpha + \beta = \pm 1$.
- Set $\alpha = (a+b\sqrt{D})/2$ and use that $2^{p-1}+2^{p-1}\sqrt{N} = 2^p \alpha^p = (a+b\sqrt{D})^p = A+B\sqrt{D}$. Then $a^p \equiv 2^{p-1} \equiv 1 \pmod{p}$. Deduce $\alpha + \beta = +1$.
- The above implies α and β are both roots of $x^2 x + m$.
- Write $\alpha = se^{i\theta}$ and $\beta = se^{-i\theta}$ where s > 0 and $\theta \in [0, 2\pi)$.
- From $s = \sqrt{m}$, $\cos \theta = 1/(2\sqrt{m})$ and $s^p \cos(p\theta) = \Re(\alpha^p) = 1/2$, deduce $\cos(p\theta) = 1/(2m^{p/2})$.
- Write cos(pθ) = 2^{p-1}(cos θ)^p 2^{p-3}p(cos θ)^{p-2} + · · · , where what remains on the right is a sum of smaller odd powers of cos θ times p times rational integers and the coefficient of each term (cos θ)^j on the right is divisible by 2^{j-1}. This can be seen by setting w = e^{iθ} + e^{-iθ} = 2 cos θ and considering w^k = ∑_{j=0}^k (^k_j)e^{(k-2j)iθ} where k is odd; then express 2 cos(pθ) = e^{ipθ} + e^{-ipθ} in terms of the w^k.
- Note $\cos(p\theta) = 2^{p-1}(\cos\theta)^p$, and deduce $(2\cos\theta)^2$ is a root of a monic $u(x) \in \mathbb{Z}[x]$ with $\deg u = (p-3)/2$.
- As $m \ge 2$, we have $(2\cos\theta)^2 = 1/m \notin \mathbb{Z}$, a contradiction.