Notes for Seminar:
The Odd Covering Problem and Its Relatives, Part IV
(Cut-and-Paste from Previous Notes)
Lemma 2: $\quad \Phi_{p n}(x)=\left\{\begin{array}{ll}\Phi_{n}\left(x^{p}\right) & \text { if } p \mid n \\ \Phi_{n}\left(x^{p}\right) / \Phi_{n}(x) & \text { if } p \nmid n\end{array}\right.$.
Lemma 3: Suppose m and n are integers with $m / n=p^{r}$ for some prime p and some positive integer r. Then $\Phi_{m}\left(\zeta_{n}\right)=p w$ for some $w \in \mathbb{Z}\left[\zeta_{n}\right]$.
Lemma 4: Let p be a prime, and let m be a positive integer such that p divides m. Then $x^{p}=\zeta_{m}$ has no solutions $x \in \mathbb{Q}\left(\zeta_{m}\right)$.

Lemma 5: Suppose $f(x)=-g(x)^{p}$ for some prime p and $f(x) x^{n}+1$ is divisible by $\Phi_{m}(x)$ where $p \mid m$. Then $n \equiv 0(\bmod p)$.

Proof: Assume $p \nmid n$. Then there are integers u and v such that $-n u+p v=1$. Since also $f(\zeta) \zeta^{n}+1=0$, we deduce that $-f(\zeta)=\zeta^{-n}$. Hence, $\left(g(\zeta)^{u} \zeta^{v}\right)^{p}=\zeta^{-n u+p v}=\zeta$. Thus, $x^{p}=\zeta$ has a solution $x \in \mathbb{Q}(\zeta)$, contradicting Lemma 4.

Lemma 7: Let m be an integer >1. Then $\Phi_{m}(1)=\left\{\begin{array}{ll}p & \text { if } m=p^{r} \text { for some } r \in \mathbb{Z}^{+} \\ 1 & \text { otherwise }\end{array}\right.$.
Proof: Clearly, $\Phi_{p}(1)=p$. If $m=p^{r} k$ with k and r positive integers such that $p \nmid k$, then Lemma 2 implies $\Phi_{m}(1)=\Phi_{p k}\left(1^{p^{r-1}}\right)=\Phi_{p k}(1)$. The lemma follows if $k=1$. If $k>1$, then applying Lemma 2 again we obtain $\Phi_{m}(1)=\Phi_{p k}(1)=\Phi_{k}\left(1^{p}\right) / \Phi_{k}(1)=1$.

Lemma 8: Let m and ℓ be integers with $m \geq 1$ and $\ell \geq 0$. For $\alpha \in \mathbb{Q}\left(\zeta_{m}\right)$, let $N(\alpha)=$ $N_{\mathbb{Q}\left(\zeta_{m}\right) / \mathbb{Q}}(\alpha)$ denote the norm of α. Then $N\left(\zeta_{m}^{\ell}-1\right)$ is divisible by a prime p if and only if $m / \operatorname{gcd}(\ell, m)$ is a power of p.

Proof: Apply Lemma 7 and use that $N\left(\zeta_{m}^{\ell}-1\right)= \pm \Phi_{m / \operatorname{gcd}(\ell, m)}(1)^{\phi(m) / \phi(m / \operatorname{gcd}(\ell, m))}$.

Claim: Suppose $m_{j}=p^{t} m_{0}$ and $m_{i}=p^{s} m_{0}$, where p is prime, m_{0} is an integer >1 such that $p \nmid m_{0}$, and t and s are integers with $t>s \geq 0$. Then $a_{j} \equiv a_{i}\left(\bmod m_{0}\right)$.

Recall: $\Phi_{m_{j}}(x)$ divides $f(x) x^{n}+1$ if and only if $n \equiv a_{j}\left(\bmod m_{j}\right), 0 \leq a_{j}<m_{j}$
Proof of Claim: Let $k \in \mathbb{Z}^{+} \cup\{0\}$ such that

$$
a_{i}+(k-1) m_{i}<a_{j} \leq a_{i}+k m_{i} .
$$

Let $\ell=a_{i}+k m_{i}-a_{j}$. Then $\ell \in\left[0, m_{i}\right)$. Since $\Phi_{m_{i}}(x)$ divides $f(x) x^{a_{i}+k m_{i}}+1$ and $\Phi_{m_{j}}(x)$ divides $f(x) x^{a_{j}}+1$, we deduce that there are $u(x)$ and $v(x)$ in $\mathbb{Z}[x]$ such that

$$
f(x) x^{a_{i}+k m_{i}}+1=-\Phi_{m_{i}}(x) u(x) \quad \text { and } \quad f(x) x^{a_{i}+k m_{i}}=f(x) x^{\ell+a_{j}}=-x^{\ell}+\Phi_{m_{j}}(x) v(x)
$$

Hence,

$$
\Phi_{m_{i}}(x) u(x)+\Phi_{m_{j}}(x) v(x)=x^{\ell}-1
$$

Letting $x=\zeta_{m_{i}}$ above and applying Lemma 3, we obtain $p w=\zeta_{m_{i}}^{\ell}-1$ for some $w \in \mathbb{Z}\left[\zeta_{m_{i}}\right]$. Applying Lemma 8, we deduce that m_{0} divides ℓ. The definition of ℓ and the fact that m_{0} divides both ℓ and m_{i} imply the claim.

