Lemma 6: Suppose $f(x)x^a + 1$ is divisible by $\Phi_m(x)$ for some positive integer m. Then $f(x)x^n + 1$ is divisible by $\Phi_m(x)$ if and only if $n \equiv a \pmod{m}$.

Proof: Let $F(x) = f(x)x^n + 1$. If $n \equiv a \pmod{m}$, then clearly $F(\zeta_m) = 0$ so that F(x) is divisible by $\Phi_m(x)$. If F(x) is divisible by $\Phi_m(x)$, the equality

$$0 = \zeta_m^{n-a} (f(\zeta_m)\zeta_m^a + 1) - F(\zeta_m) = \zeta_m^{n-a} - 1$$

implies $n \equiv a \pmod{m}$.

Comment: Note that if $f(x)x^n + 1$ is divisible by g(x) for some irreducible $g(x) \in \mathbb{Z}[x]$ and for at least two different nonnegative integers n, then $g(x) = \Phi_m(x)$ for some m.

Lemma 7: Let *m* be an integer > 1. Then $\Phi_m(1) = \begin{cases} p & \text{if } m = p^r \text{ for some } r \in \mathbb{Z}^+\\ 1 & \text{otherwise} \end{cases}$.

Proof: Clearly, $\Phi_p(1) = p$. If $m = p^r k$ with k and r positive integers such that $p \nmid k$, then Lemma 2 implies $\Phi_m(1) = \Phi_{pk}(1^{p^{r-1}}) = \Phi_{pk}(1)$. The lemma follows if k = 1. If k > 1, then applying Lemma 2 again we obtain $\Phi_m(1) = \Phi_{pk}(1) = \Phi_k(1^p)/\Phi_k(1) = 1$.

Lemma 8: Let *m* and ℓ be integers with $m \ge 1$ and $\ell \ge 0$. For $\alpha \in \mathbb{Q}(\zeta_m)$, let $N(\alpha) = N_{\mathbb{Q}(\zeta_m)/\mathbb{Q}}(\alpha)$ denote the norm of α . Then $N(\zeta_m^{\ell} - 1)$ is divisible by a prime *p* if and only if $m/\operatorname{gcd}(\ell, m)$ is a power of *p*.

Proof: Apply Lemma 7 and use that $N(\zeta_m^{\ell} - 1) = \pm \Phi_{m/\gcd(\ell,m)}(1)^{\phi(m)/\phi(m/\gcd(\ell,m))}$.

Comment: We only need the "only if" part of Lemma 8 which follows from $N(\zeta_m^{\ell} - 1)$ dividing a power of $\Phi_{m/\gcd(\ell,m)}(1)$.

Main Lemma: Let $f(x) \in \mathbb{Z}[x]$, and suppose *n* is sufficiently large (depending on *f*). Then the non-reciprocal part of $f(x)x^n + 1$ is irreducible or identically ± 1 unless one of the following holds:

- (i) -f(x) is a *p*th power for some prime *p* dividing *n*.
- (ii) f(x) is 4 times a 4th power and n is divisible by 4.

Proof of Theorem Assuming Main Lemma: We suppose (as we may) that $f(0) \neq 0$. Since $x^{2^t} + 1 = \Phi_{2^{t+1}}(x)$ is irreducible for every $t \in \mathbb{Z}^+$, we deduce $f(x) \neq 1$. Let $\tilde{f}(x) = x^{\deg f} f(1/x)$. Then each reciprocal factor g(x) of $F(x) = f(x)x^n + 1$ divides

$$f(x)\widetilde{F}(x) - x^{\deg f}F(x) = f(x)\left(x^{n+\deg f} + \widetilde{f}(x)\right) - x^{\deg f}\left(f(x)x^n + 1\right) = f(x)\widetilde{f}(x) - x^{\deg f}F(x) - x$$

In particular, there is a finite list of irreducible reciprocal factors that can divide $f(x)x^n + 1$ as n varies. Each reciprocal non-cyclotomic irreducible factor divides at most one polynomial of the form $f(x)x^n + 1$. By the Main Lemma, we deduce that there are $\Phi_{m_1}(x), \ldots, \Phi_{m_r}(x)$ such that if n is sufficiently large and both (i) and (ii) do not hold, then $\Phi_{m_j}(x)|(f(x)x^n + 1)$ for some j. Note that (ii) does not hold since otherwise $f(x)x^n + 1$ could not be divisible by a cycltomic polynomial (if $\Phi_m(x)$ were a factor, then $f(\zeta_m)\zeta_m^n = -1$, contradicting that the left side has even norm and the right side has odd norm) so that $f(x)x^n + 1$ is irreducible whenever $4 \nmid n$ and n is sufficiently

large. We may suppose that there is an a_j such that $\Phi_{m_j}(x)|(f(x)x^{a_j}+1)$. Let \mathcal{P} denote the set of primes p for which f(x) is minus a pth power. We remove from consideration any m_j divisible by a $p \in \mathcal{P}$ (but abusing notation we keep the range of subscripts). Then Lemmas 5 and 6 imply that the congruences

 $x \equiv 0 \pmod{p}$ for $p \in \mathcal{P}$ and $x \equiv a_j \pmod{m_j}$ for $j \in \{1, 2, \dots, r\}$

cover the integers.

Claim: Suppose $m_j = p^t m_0$ and $m_i = p^s m_0$, where p is prime, m_0 is an integer > 1 such that $p \nmid m_0$, and t and s are integers with $t > s \ge 0$. Then $a_j \equiv a_i \pmod{m_0}$.

Take p = 2 in the Claim. We replace $x \equiv a_j \pmod{m_j}$ and $x \equiv a_i \pmod{m_i}$ with $x \equiv a_j \pmod{m_0}$. If for some j there is no i as above, we still replace $x \equiv a_j \pmod{m_j}$ with $x \equiv a_j \pmod{m_0}$. Then we are left with a covering with moduli that are distinct odd numbers together with possibly powers of 2. Observe that $\sum_{j=1}^{\infty} 1/2^j = 1$ implies that there is an $a \in \mathbb{Z}$ and a $k \in \mathbb{Z}^+$ such that no integer satisfying $x \equiv a \pmod{2^k}$ satisfies one of the congruences in our covering with moduli a power of 2. Denote by $x \equiv a'_j \pmod{m'_j}$ the congruences with m'_j odd. Let u and v be integers such that

$$2^k u + v \left(\prod m'_j\right) = 1.$$

For any $n \in \mathbb{Z}$, consider the number $m = a + 2^k u(n-a)$. Then $m \equiv n \pmod{m'_j}$ for every m'_j and $m \equiv a \pmod{2^k}$. It follows that $n \equiv m \equiv a'_j \pmod{m'_j}$ for some m'_j . Therefore, every $n \in \mathbb{Z}$ satisfies one of the congruences $x \equiv a'_j \pmod{m'_j}$. So these congruences form an odd covering of the integers.