Schinzel's Theorem: If there is an $f(x) \in \mathbb{Z}[x]$ with $f(1) \neq-1$ such that $f(x) x^{n}+1$ is reducible for all $n \geq 0$, then there is an odd covering of the integers.

Notation: Let $\zeta_{n}=e^{2 \pi i / n}$ and $\Phi_{n}(x)=\prod_{1 \leq k \leq n, \operatorname{gcd}(k, n)=1}\left(x-\zeta_{n}^{k}\right)$.
Lemma 1: $\Phi_{n}(x)=\prod_{d \mid n}\left(x^{d}-1\right)^{\mu(n / d)}=\prod_{d \mid n}\left(x^{n / d}-1\right)^{\mu(d)}$.
Proof: The factor $x-\zeta_{n}^{k}$ is a factor of $x^{n / d}-1$ precisely when n / d is a multiple of $n / \operatorname{gcd}(n, k)$ (i.e., when $d \mid \operatorname{gcd}(n, k)$. Thus, $x-\zeta_{n}^{k}$ appears in the right-most product above with exponent $\sum_{d \mid \operatorname{gcd}(n, k)} \mu(d)$. The rest is clear.

Lemma 2: $\quad \Phi_{p n}(x)=\left\{\begin{array}{ll}\Phi_{n}\left(x^{p}\right) & \text { if } p \mid n \\ \Phi_{n}\left(x^{p}\right) / \Phi_{n}(x) & \text { if } p \nmid n\end{array}\right.$.
Proof: Use Lemma 1. If $p \mid n$, then $\Phi_{p n}(x)=\prod_{p d \mid p n}\left(x^{p d}-1\right)^{\mu(p n / p d)}=\prod_{d \mid n}\left(x^{p d}-1\right)^{\mu(n / d)}=$ $\Phi_{n}\left(x^{p}\right)$. If $p \nmid n$, then $\Phi_{p n}(x)=\prod_{p d \mid p n}\left(x^{p d}-1\right)^{\mu(p n / p d)} \prod_{d \mid n}\left(x^{d}-1\right)^{\mu(p n / d)}=\Phi_{n}\left(x^{p}\right) / \Phi_{n}(x)$.

Lemma 3: Suppose m and n are integers with $m / n=p^{r}$ for some prime p and some positive integer r. Then $\Phi_{m}\left(\zeta_{n}\right)=p w$ for some $w \in \mathbb{Z}\left[\zeta_{n}\right]$.

Proof: Consider three cases: (i) $m=p n$ and $p \nmid n$, (ii) $m=p^{r} n$ with $r>1$ and $p \nmid n$, and (iii) $m=p^{u} t$ and $n=p^{v} t$ with $u>v>0$. Let ξ denote an arbitrary primitive nth root of 1 (so $\xi \in \mathbb{Z}\left[\zeta_{n}\right]$). For (i), observe that Lemma 2 implies

$$
\Phi_{m}(x)=\frac{\Phi_{n}\left(x^{p}\right)}{\Phi_{n}(x)}=\prod_{\substack{1 \leq k \leq n \\ \operatorname{gcd}(k, n)=1}}\left(\frac{x^{p}-\xi^{k p}}{x-\xi^{k}}\right)=\prod_{\substack{1 \leq k \leq n \\ \operatorname{gcd}(k, n)=1}}\left(x^{p-1}+\xi^{k} x^{p-2}+\xi^{2 k} x^{p-3}+\cdots+\xi^{(p-1) k}\right)
$$

In particular, $\Phi_{m}(\xi)$ has the factor (take $\left.k=1\right) p \xi^{p-1}$. For (ii), use Lemma 2 again to obtain $\Phi_{m}\left(\zeta_{n}\right)=\Phi_{p n}\left(\zeta_{n}^{p^{r-1}}\right)$ and apply the argument for (i) with $\xi=\zeta_{n}^{p^{r-1}}$. For (iii), use Lemma 2 as before to obtain $\Phi_{m}\left(\zeta_{n}\right)=\Phi_{p^{u-v} t}\left(\zeta_{n}^{p^{v}}\right)=\Phi_{p^{u-v} t}\left(\zeta_{t}\right)$. Now, cases (i) and (ii) imply $\Phi_{m}\left(\zeta_{n}\right)=p w$ for some $w \in \mathbb{Z}\left[\zeta_{t}\right] \subseteq \mathbb{Z}\left[\zeta_{n}\right]$ (since $\zeta_{t}=\zeta_{n}^{p^{v}}$).

Lemma 4: Let p be a prime, and let m be a positive integer such that p divides m. Then $x^{p}=\zeta_{m}$ has no solutions $x \in \mathbb{Q}\left(\zeta_{m}\right)$.

Proof: Let $\zeta=\zeta_{m}$. The roots of $x^{p}-\zeta=0$ are $\zeta_{p m} \zeta_{p}^{k}$ where $0 \leq k \leq p-1$. Note that $\zeta_{p}=\zeta_{m}^{m / p} \subseteq \mathbb{Q}(\zeta)$. Thus, $x^{p}=\zeta$ and $x \in \mathbb{Q}(\zeta)$ imply $\zeta_{p m} \in \mathbb{Q}(\zeta)$, a contradiction.

Lemma 5: Suppose $f(x)=-g(x)^{p}$ for some prime p and $f(x) x^{n}+1$ is divisible by $\Phi_{m}(x)$ where $p \mid m$. Then $n \equiv 0(\bmod p)$.

Proof: Assume $p \nmid n$. Then there are integers u and v such that $-n u+p v=1$. Since also $f(\zeta) \zeta^{n}+1=0$, we deduce that $-f(\zeta)=\zeta^{-n}$. Hence, $\left(g(\zeta)^{u} \zeta^{v}\right)^{p}=\zeta^{-n u+p v}=\zeta$. Thus, $x^{p}=\zeta$ has a solution $x \in \mathbb{Q}(\zeta)$, contradicting Lemma 4 .

