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Turan’s Problem (1960’s)

Show that there is a C such that if

r

f(z) = a2’ € Zz],

7=0

then there 1s an irreducible
g(z) =) bja’ € Za]
=0

such that

r

> b —a;l <C.

j=0

Comment: The problem remains open. If we
take g(x) = ijo bjx’ € Z[x] where possibly s >
r, then the problem has been resolved by Schinzel.



Coverings of the Integers:

A covering of the integers is a system of congru-
ences
r=a; (modm,)

having the property that every integer satisfies at
least one such congruence.

Example 1:

r =0 (mod 2)
r =1 (mod 2)



Example 2:

Open Problem:

Does there exist an “odd covering” of the in-
tegers, a finite covering consisting of distinct odd
moduli > 17

Erdés: $25 (for proof none exists)

Selfridge: $2000 (for explicit example)



Sierpinski’s Application:

There exist infinitely many (even a positive pro-
portion of) positive integers k such that k x 2™ 4+ 1
is composite for all non-negative integers n.

Selfridge’s Example: &k = 78557
(smallest known)

Polynomial Question: Does there exist a poly-
nomial f(x) € Z|x| such that f(x)x™ 4+ 1 is re-
ducible for all non-negative integers n?

Require: f(1) # —1

Answer: Nobody knows.



Schinzel’s Example:

(522 + 628 4 32° 4 8x° + 923 + 622 + 8z + 3)x™ + 12

is reducible for all non-negative integers n

Schinzel’s Theorem 1: If there is an f(z) €
Z|x] such that f(1) # —1 and f(x)z™ + 1 is re-
ducible for all non-negative integers n, then there
is an odd covering of the integers.

Equivalently, if there is an f(x) € Z|z] such that
f(0) # 0, f(1) # —1, and 2™ + f(x) is reducible
for all non-negative integers n, then there is an odd
covering of the integers.



First Attack on Turan’s Problem

Consider
o(z) = " + ()
If f(0) =0 or f(1) = —1, then consider instead
g(x) = 2" + flz) + 1.

If one can show g(x) is irreducible for some n, then
Turdan’s problem (modified so degg > deg f is al-
lowed) is resolved with C' = 2.

Comment: Schinzel’s Theorem 1 implies that
this is probably not easy. One would have to re-
solve the odd covering problem first.



Second Attack on Turan’s Problem

Consider
glx) =™ 2" + f(x).
If f(0) =0, then consider instead

glx) =™ " + f(x) £ 1.



Schinzel’s Theorem 2: For every

/'a

flz) =) aja! € Zlx],

7=0

there exist infinitely many irreducible

g(z) = Z bzl € Z[x]

such that
max{r,s} 9 if f(O) # 0
> laj—bj < .
=0 always.

One of these is such that

s < exp (57 + ) (| fII* +3)),

where

™
112 =Y al.
j=0



Comment: Schinzel obtained a more general re-
sult concerning the irreducibility of polynomials of

the form
Ax™ + Bz" + f(x),

where A and B are non-zero integers. If f(0) # 0
and f(1) # —A — B, then he shows there are m
and n for which this polynomial is irreducible and

n < m < exp ((5r+2log |AB|+7)(|| fI*+A%+B?)).

Question: Can the upper bound on m be im-
proved to a bound which is less than exponential
in r, the degree of f(x)?



Notation:

f(z) =zt f(1/x)
f(z) reciprocal means f(z) = +f(x)

the non-reciprocal part of f(x) is f(x)
removed of its irreducible reciprocal fac-
tors (sort of)



Theorem (F., Ford, Konyagin). Let u(x) and
v(x) be in Z|x| with

u(0) # 0, v(0) # 0, and ged(u(z),v(z)) = 1.

Let r; and ro denote the number of non-zero terms
in u(z) and v(x), respectively. If

1
m > max{Q X 52N_1,2max{degu,degv}(5N_1 + Z)}

where
N =2 Hu||2 4+ 2 HvH2 + 2r1 + 2ry — 7,

then the non-reciprocal part of u(z)x™ + v(x) is
irreducible unless one of the following holds:

(i) The polynomial —u(x)v(x) is a pth power for
some prime p dividing m.

(ii) One of +wu(x) or +wv(x) is a 4th power, the
other is 4 times a 4th power, and 4|m.



Theorem (F., Ford, Konyagin). The non-
reciprocal part of u(x)z™ + v(x) is irreducible un-
less . ...

Comment: Schinzel had a similar result with a
weaker lower bound on m. But simply improving
this lower bound does not give us directly what we
want.

Set-Up for Turan’s Problem: Take
u(x) =A and v(x)= Bzx" + f(x)

to deduce something about the irreducibility of the
non-reciprocal part of

Ax™ 4+ Bx"™ + f(x).

Main Difficulty: How does one show that such
polynomials usually do not have reciprocal factors?



Ax™ 4+ Bzx"™ + f(x)
M<m<2M and N<n<2N

Idea: Show that if M and N are large enough,
then there are many polynomials of this form with-
out irreducible reciprocal factors.

Case I: Reciprocal non-cyclotomic polynomials

Case II: Cyclotomic polynomials



G(x) = Ax™ 4+ Bzx"™ + f(x)
M<m<2M and N<n<2N

Case I: Reciprocal non-cyclotomic polynomials

» For fixed n € (N,2N] and a fixed reciprocal
non-cyclotomic irreducible polynomial g(x),
there is at most 1 value of m for which g(x)

divides G(x).

» For fixed n € (N,2N], there are < 4N re-
ciprocal non-cyclotomic irreducible polyno-
mials g(z) dividing a polynomial of the form

G(x).

» There are < N? pairs (m, n) for which G(z)
is divisible by a reciprocal non-cyclotomic
irreducible polynomial.



G(z) = Ax™ + Bx" + f(x) = Az™ 4+ v(x)

» For fixed n € (N,2N], there are < 2N re-
ciprocal non-cyclotomic irreducible polyno-
mials g(z) dividing a polynomial of the form

G(x).

Any such g(x) must divide
198y (1/2)G(x) — Az™ T4V G(1 /)
= 98y (1/2)v(z) — A%gde8"

a polynomial of degree 2degv < 4N that does not
depend on m.



G(r) = Ax™ + Bx" + f(x) = Az™ 4+ v(x)
M<m<2M and N<n<2N

Case II: Cyclotomic polynomials

» Similar to the previous case, each cyclotomic
polynomial must divide

pdee “o(1/x)v(z) — A?gdes v

a polynomial of degree 2degv < 4N. Hence,
if ®y(z)|G(z), then ¢(£) < 4N.

» One can show that if ®,(x) divides a poly-
nomial G(z) for some /¢, then there is such
an ¢ all of whose prime divisors are no more
than the number of non-zero terms of G(x).

Hence, we may suppose that if p|¢, then
p<N.



G(x) = Ax™ 4+ Bzx"™ + f(x)
M<m<2M and N<n<2N

Idea: Count pairs (m,n) such that ®,(x)|G(x)

for some

telL={0:0>26(f) <4N,p|t = p< N}.

Want: There are < M N such pairs.

Comment: Schinzel considers 4 cases:
(i) B# +A,£2A,4+(1/2)A

(i) B=42A,4+(1/2)A

(iii) B=—-A4

(

iv) B



G(x) = Ax™ 4+ Bzx"™ + f(x)
M<m<2M and N<n<2N
L={0:0>2,¢(f) <4N,p|l = p< N}
Case (i): B# +A,4+2A,+(1/2)A

» Schinzel showed that if one fixes ¢ € £ and
considers two intervals I C (M,2M] and
J C (N,2N]| with |I| = |J| = ¢, then the
number of pairs (m,n) € I x J for which
G(¢;) = 0 is bounded by 1.



G(x) = Ax™ 4+ Bzx"™ + f(x)
M<m<2M and N<n<2N
L={l:0>2,¢() <AN,p|{ = p < N}
Case (i): B# +A,+2A,+(1/2)A

Therefore, it follows that the number of “bad”
pairs (m,n) is bounded by

> (T +1)(F+1)

el
MN M
<D m 3T
el el

2

(% _ 1>MN+4MlogN

I

2
—MN.
3

I



Theorem: Given f(x) = Zajxj € Z|x], there

j=0
are infinitely many irreducible g(z) = ijxj S
j=0

Z|x] such that

max{r,s}

Z ]aj—bj|§5.

=0
One of these is such that

s < 4drexp (4| f]1* + 12).

Comment: The above is a consequence of Case
(i). If one considers the other cases combined with
a variation on sieves, then one can replace the
bound “5” with “3” provided the bound on s is
weakened but still made to depend polynomially
on r.



