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Tur�an's Problem (1960's)

Show that there is a C such that if

f(x) =

rX
j=0

ajx
j 2 Z[x];

then there is an irreducible

g(x) =

rX
j=0

bjx
j 2 Z[x]

such that
rX

j=0

jbj � aj j � C:

Comment: The problem remains open. If we

take g(x) =
Ps

j=0 bjx
j 2 Z[x] where possibly s >

r, then the problem has been resolved by Schinzel.



Coverings of the Integers:

A covering of the integers is a system of congru-

ences

x � aj (mod mj)

having the property that every integer satis�es at

least one such congruence.

Example 1:

x � 0 (mod 2)

x � 1 (mod 2)



Example 2:

x � 0 (mod 2)

x � 2 (mod 3)

x � 1 (mod 4)

x � 1 (mod 6)

x � 3 (mod 12)

Open Problem:

Does there exist an \odd covering" of the in-

tegers, a �nite covering consisting of distinct odd

moduli > 1?

Erd}os: $25 (for proof none exists)

Selfridge: $2000 (for explicit example)



Sierpinski's Application:

There exist in�nitely many (even a positive pro-

portion of) positive integers k such that k�2n+1
is composite for all non-negative integers n.

Selfridge's Example: k = 78557

(smallest known)

Polynomial Question: Does there exist a poly-

nomial f(x) 2 Z[x] such that f(x)xn + 1 is re-
ducible for all non-negative integers n?

Require: f(1) 6= �1

Answer: Nobody knows.



Schinzel's Example:

(5x9 + 6x8 + 3x6 + 8x5 + 9x3 + 6x2 + 8x+ 3)xn + 12

is reducible for all non-negative integers n

Schinzel's Theorem 1: If there is an f(x) 2

Z[x] such that f(1) 6= �1 and f(x)xn + 1 is re-
ducible for all non-negative integers n, then there

is an odd covering of the integers.

Equivalently, if there is an f(x) 2 Z[x] such that

f(0) 6= 0, f(1) 6= �1, and xn + f(x) is reducible

for all non-negative integers n, then there is an odd

covering of the integers.



First Attack on Tur�an's Problem

Consider

g(x) = xn + f(x):

If f(0) = 0 or f(1) = �1, then consider instead

g(x) = xn + f(x)� 1:

If one can show g(x) is irreducible for some n, then
Tur�an's problem (modi�ed so deg g > deg f is al-

lowed) is resolved with C = 2.

Comment: Schinzel's Theorem 1 implies that

this is probably not easy. One would have to re-

solve the odd covering problem �rst.



Second Attack on Tur�an's Problem

Consider

g(x) = xm � xn + f(x):

If f(0) = 0, then consider instead

g(x) = xm � xn + f(x)� 1:



Schinzel's Theorem 2: For every

f(x) =

rX
j=0

ajx
j 2 Z[x];

there exist in�nitely many irreducible

g(x) =

sX
j=0

bjx
j 2 Z[x]

such that

maxfr;sgX
j=0

jaj � bj j �

�
2 if f(0) 6= 0

3 always.

One of these is such that

s < exp
�
(5r + 7)(kfk2 + 3)

�
;

where

kfk2 =

rX
j=0

a2j :



Comment: Schinzel obtained a more general re-
sult concerning the irreducibility of polynomials of

the form

Axm +Bxn + f(x);

where A and B are non-zero integers. If f(0) 6= 0

and f(1) 6= �A � B, then he shows there are m
and n for which this polynomial is irreducible and

n < m < exp
�
(5r+2 log jABj+7)(kfk2+A2+B2)

�
:

Question: Can the upper bound on m be im-

proved to a bound which is less than exponential

in r, the degree of f(x)?



Notation:

~f(x) = xdeg ff(1=x)

f(x) reciprocal means ~f(x) = �f(x)

the non-reciprocal part of f(x) is f(x)

removed of its irreducible reciprocal fac-
tors (sort of)



Theorem (F., Ford, Konyagin). Let u(x) and
v(x) be in Z[x] with

u(0) 6= 0; v(0) 6= 0; and gcd(u(x); v(x)) = 1:

Let r1 and r2 denote the number of non-zero terms
in u(x) and v(x), respectively. If

m � max

�
2� 52N�1; 2max

�
deg u;deg v

	�
5N�1 +

1

4

��

where

N = 2 kuk2 + 2 kvk2 + 2r1 + 2r2 � 7;

then the non-reciprocal part of u(x)xm + v(x) is

irreducible unless one of the following holds:

(i) The polynomial �u(x)v(x) is a pth power for

some prime p dividing m.

(ii) One of �u(x) or �v(x) is a 4th power, the

other is 4 times a 4th power, and 4jm.



Theorem (F., Ford, Konyagin). The non-
reciprocal part of u(x)xm + v(x) is irreducible un-

less : : : .

Comment: Schinzel had a similar result with a

weaker lower bound on m. But simply improving

this lower bound does not give us directly what we

want.

Set-Up for Tur�an's Problem: Take

u(x) = A and v(x) = Bxn + f(x)

to deduce something about the irreducibility of the

non-reciprocal part of

Axm +Bxn + f(x):

Main DiÆculty: How does one show that such

polynomials usually do not have reciprocal factors?



Axm +Bxn + f(x)

M < m � 2M and N < n � 2N

Idea: Show that if M and N are large enough,
then there are many polynomials of this form with-

out irreducible reciprocal factors.

Case I:Reciprocal non-cyclotomic polynomials

Case II:Cyclotomic polynomials



G(x) = Axm +Bxn + f(x)

M < m � 2M and N < n � 2N

Case I:Reciprocal non-cyclotomic polynomials

I For �xed n 2 (N; 2N ] and a �xed reciprocal

non-cyclotomic irreducible polynomial g(x),

there is at most 1 value of m for which g(x)

divides G(x).

I For �xed n 2 (N; 2N ], there are � 4N re-

ciprocal non-cyclotomic irreducible polyno-

mials g(x) dividing a polynomial of the form

G(x).

I There are� N2 pairs (m;n) for which G(x)

is divisible by a reciprocal non-cyclotomic

irreducible polynomial.



G(x) = Axm +Bxn + f(x) = Axm + v(x)

I For �xed n 2 (N; 2N ], there are � 2N re-
ciprocal non-cyclotomic irreducible polyno-

mials g(x) dividing a polynomial of the form

G(x).

Any such g(x) must divide

xdeg vv(1=x)G(x)�Axm+deg vG(1=x)

= xdeg vv(1=x)v(x) �A2xdeg v

a polynomial of degree 2 deg v � 4N that does not

depend on m.



G(x) = Axm +Bxn + f(x) = Axm + v(x)

M < m � 2M and N < n � 2N

Case II:Cyclotomic polynomials

I Similar to the previous case, each cyclotomic

polynomial must divide

xdeg vv(1=x)v(x) �A2xdeg v;

a polynomial of degree 2 deg v � 4N . Hence,

if �`(x)jG(x), then �(`) � 4N .

I One can show that if �`(x) divides a poly-

nomial G(x) for some `, then there is such

an ` all of whose prime divisors are no more

than the number of non-zero terms of G(x).

Hence, we may suppose that if pj`, then
p � N .



G(x) = Axm +Bxn + f(x)

M < m � 2M and N < n � 2N

Idea: Count pairs (m;n) such that �`(x)jG(x)
for some

` 2 L = f` : ` � 2; �(`) � 4N; pj` =) p � Ng:

Want: There are < MN such pairs.

Comment: Schinzel considers 4 cases:

(i) B 6= �A;�2A;�(1=2)A,

(ii) B = �2A;�(1=2)A

(iii) B = �A

(iv) B = A



G(x) = Axm +Bxn + f(x)

M < m � 2M and N < n � 2N

L = f` : ` � 2; �(`) � 4N; pj` =) p � Ng

Case (i): B 6= �A;�2A;�(1=2)A

I Schinzel showed that if one �xes ` 2 L and

considers two intervals I � (M; 2M ] and

J � (N; 2N ] with jIj = jJ j = `, then the

number of pairs (m;n) 2 I � J for which
G(�`) = 0 is bounded by 1.



G(x) = Axm +Bxn + f(x)

M < m � 2M and N < n � 2N

L = f` : ` � 2; �(`) � 4N; pj` =) p � Ng

Case (i): B 6= �A;�2A;�(1=2)A

Therefore, it follows that the number of \bad"

pairs (m;n) is bounded by

X
`2L

�M
`

+ 1
��N

`
+ 1
�

�
X
`2L

MN

`2
+ 3

X
`2L

M

`

�

��2
6
� 1
�
MN + 4M logN

�
2

3
MN:



Theorem: Given f(x) =

rX
j=0

ajx
j 2 Z[x], there

are in�nitely many irreducible g(x) =

sX
j=0

bjx
j 2

Z[x] such that

maxfr;sgX
j=0

jaj � bj j � 5:

One of these is such that

s � 4r exp
�
4kfk2 + 12

�
:

Comment: The above is a consequence of Case

(i). If one considers the other cases combined with
a variation on sieves, then one can replace the

bound \5" with \3" provided the bound on s is

weakened but still made to depend polynomially

on r.


