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Coverings of the Integers:

A covering of the integers is a system of
congruences

x � aj (mod mj)

having the property that every integer sat-
is�es at least one such congruence.

Example 1:

x � 0 (mod 2)

x � 1 (mod 2)



Example 2:

x � 0 (mod 2)

x � 2 (mod 3)

x � 1 (mod 4)

x � 1 (mod 6)

x � 3 (mod 12)

Open Problem:

Does there exist an \odd covering" of the
integers, a �nite covering consisting of dis-
tinct odd moduli > 1?

Erd}os: $25 (for proof none exists)

Selfridge: $2000 (for explicit example)



Sierpinski's Application:

There exist in�nitely many (even a posi-
tive proportion of) positive integers k such
that k � 2n + 1 is composite for all non-
negative integers n.

Selfridge's Example: k = 78557
(smallest known)

Polynomial Question: Does there exist a
polynomial f(x) 2 Z[x] such that f(x)xn+1
is reducible for all non-negative integers n?

Require: f(1) 6= �1

Answer: Nobody knows.



Schinzel's Example:

(5x9+6x8+3x6+8x5+9x3+6x2+8x+3)xn+12

is reducible for all non-negative integers n

Schinzel's Theorem: If there is an f(x) 2
Z[x] such that f(1) 6= �1 and f(x)xn + 1
is reducible for all non-negative integers n,
then there is an odd covering of the integers.

Key Idea: Investigate non-cyclotomic fac-
tors of f(x)xn + 1, and show that typically
the non-cyclotomic part of f(x)xn +1 is ir-
reducible.



Key Idea: Investigate non-cyclotomic fac-
tors of f(x)xn + 1, and show that typically
the non-cyclotomic part of f(x)xn +1 is ir-
reducible.

Observation: One gets a non-trivial fac-
torization of f(x)xn + 1 when one of the
following holds:

(i) f(x) is minus a pth power and pjn

(ii) f(x) is 4 times a 4th power and 4jn.

Note: 4x4+1 = (2x2+2x+1)(2x2�2x+1)

Schinzel: For �xed f(x) 2 Z[x] and n

suÆciently large, the non-cyclotomic part
of f(x)xn +1 is irreducible unless (i) or (ii)
holds.



Schinzel: For �xed f(x) 2 Z[x] and n

suÆciently large, the non-cyclotomic part
of f(x)xn + 1 is irreducible unless one of
the following holds:

(i) f(x) is minus a pth power and pjn

(ii) f(x) is 4 times a 4th power and 4jn.

Schinzel's Example:

(5x9+6x8+3x6+8x5+9x3+6x2+8x+3)xn+12

is reducible for all non-negative integers n

In fact, for each n, the above polynomial is
divisible by one of

�k(x) where k 2 f2; 3; 4; 6; 12g:



Notation:

irreducibility will be over the integers

if f(x) =

nX
j=0

ajx
j , then kfk =

vuut nX
j=0

a2j

~f(x) = xdeg ff(1=x)

~f(x) will be called the reciprocal of f(x)

f(x) reciprocal means ~f(x) = �f(x)

the non-reciprocal part of f(x) is f(x)
removed of its irreducible reciprocal fac-
tors (sort of)



~f(x) = xdeg ff(1=x)

~f(x) will be called the reciprocal of f(x)

f(x) reciprocal means ~f(x) = �f(x)

the non-reciprocal part of f(x) is f(x) re-
moved of its irreducible reciprocal factors

Comment: Given f(x) 2 Z[x], if n is suf-
�ciently large and f(x)xn+1 is divisible by
an irreducible reciprocal polynomial g(x),
then g(x) is cyclotomic.

Therefore, for n large, the non-cyclotomic
part of f(x)xn + 1 and non-reciprocal part
of f(x)xn + 1 are the same.



Schinzel: For �xed f(x) 2 Z[x] and n

suÆciently large, the non-reciprocal part of
f(x)xn + 1 is irreducible unless one of the
following holds:

(i) f(x) is minus a pth power and pjn

(ii) f(x) is 4 times a 4th power and 4jn.

Forget Everything Said Except Note:

We want to say something about when
the non-reciprocal part of f(x)xn + 1 is ir-
reducible.



Theorem (F., Ford, Konyagin). Let
f(x) and g(x) be in Z[x] with

f(0) 6= 0; g(0) 6= 0; and gcd(f(x); g(x)) = 1:

Let r1 and r2 denote the number of non-zero
terms in f(x) and g(x), respectively. If

n � max

�
2�5

2N�1
; 2max

�
deg f; deg g

	�
5
N�1

+
1

4

��

where

N = 2 kfk2 + 2 kgk2 + 2r1 + 2r2 � 7;

then the non-reciprocal part of f(x)xn +
g(x) is irreducible unless one of the follow-
ing holds:

(i) The polynomial�f(x)g(x) is a pth power
for some prime p dividing n.

(ii) One of �f(x) or �g(x) is a 4th power,
the other is 4 times a 4th power, and 4jn.



Capelli's Theorem: Let F be a �eld. The
polynomial xn+a 2 F [x] is reducible if and
only if either (i) a is minus a pth power in F
for a prime p dividing n or (ii) a is 4 times
a 4th power in F and 4 divides n.

Idea: Take F = Q (x). Instead of f(x)xn+
g(x), consider f(x)yn + g(x) which is re-
ducible in Q(x) if and only if yn+f(x)=g(x)
is. Apply Capelli's Theorem.

Problem: If f(x)xn + g(x) is reducible,
then f(x)yn + g(x) may be irreducible

Want:

If the non-reciprocal part of f(x)xn + g(x)
is reducible, then f(x)yn+g(x) is reducible.



Another Related Problem:

Suppose that a1; a2; : : : ; ar are distinct non-
negative integers written in increasing order
and that we wish to determine an integer
k � 2 such that

aj mod k < k=2 for each j 2 f1; 2; : : : ; rg:

The value k = 2ar+1 satis�es this property.

Examples of sets S = fa1; : : : ; arg for which
this choice of k � 2 is minimal are given by

f3; 5g and f50; 68; 125g:

Fix r. Is it true that if ar is suÆciently
large, then one can always �nd a smaller k
with this property?



Want:

If the non-reciprocal part of f(x)xn + g(x)
is reducible, then f(x)yn+g(x) is reducible.

Let F (x) = f(x)xn + g(x). If the non-
reciprocal part of F (x) is reducible, then
there are non-reciprocal u(x) and v(x) with

F (x) = u(x)v(x).

Consider

W (x) = u(x)~v(x).

Then

F (x) eF (x) = u(x)v(x)~u(x)~v(x) =W (x)fW (x).

Compare the coeÆcients of xdegF on the
left and right. On the left it is kFk2, and
on the right it is kWk2. Hence,

kWk = kFk:



F (x) = f(x)xn + g(x)

F (x) = u(x)v(x) and W (x) = u(x)~v(x)

kWk = kFk

Hence, the number of non-zero terms among
both F (x) and W (x) is bounded by

kfk2 + kgk2 + r1 + r2;

which is independent of n.

Take a positive integer k (not too small and
not too large) such that each exponent in

F , W , eF , and fW is < k=2 when reduced
modulo k.



Exponents in F ,W , eF ,fW mod k are < k=2.

F (x) =

rX
j=0

ajx
dj ! G1(x; y) =

rX
j=0

ajx
djy

`j

eF (x) = rX
j=0

ajx
dr�dj ! G2(x; y) =

rX
j=0

ajx
d
0

jy
`
0

j

G1(x; x
k
) = F (x) and G2(x; x

k
) = eF (x)

G1(x; y)G2(x; y) =

tX
j=0

gj(x)y
j

deg gj(x) < k for all j

tX
j=0

gj(x)x
kj

= G1(x; x
k
)G2(x; x

k
) = F (x) eF (x)



W (x) =

sX
j=0

bjx
ej ! H1(x; y) =

rX
j=0

ajx
ejy

mj

fW (x) =

sX
j=0

bjx
er�ej ! H2(x; y) =

sX
j=0

bjx
e
0

j y
m

0

j

H1(x; x
k
) = W (x) and H2(x; x

k
) = fW (x)

H1(x; y)H2(x; y) =

t
0X

j=0

hj(x)y
j

deg hj(x) < k for all j

t
0X

j=0

hj(x)x
kj

= H1(x; x
k
)H2(x; x

k
) = W (x)fW (x)



tX
j=0

gj(x)x
kj

= G1(x; x
k
)G2(x; x

k
) = F (x) eF (x)

t
0X

j=0

hj(x)x
kj

= H1(x; x
k
)H2(x; x

k
) = W (x)fW (x)

tX
j=0

gj(x)x
kj =

t0X
j=0

hj(x)x
kj

gj(x) = hj(x) for all j

G1(x; y)G2(x; y) =

tX
j=0

gj(x)y
j

H1(x; y)H2(x; y) =

t0X
j=0

hj(x)y
j

G1(x; y)G2(x; y) = H1(x; y)H2(x; y)



G1(x; y)G2(x; y) = H1(x; y)H2(x; y)

G1(x; x
k) = F (x) & G2(x; x

k) = eF (x)
H1(x; x

k) =W (x) & H2(x; x
k) = fW (x)

G1, G2, H1, & H2 are pairwise distinct.

Each is reducible.

F (x) =

rX
j=0

ajx
dj ; G1(x; y) =

rX
j=0

ajx
djy`j

F (x) = f(x)xn + g(x)

G1(x; y) = f(x)xdy` + g(x)



F (x) = f(x)xn + g(x)

G1(x; y) = f(x)xdy` + g(x)

Conclusion: If the non-reciprocal part of
f(x)xn + g(x) is reducible, then

f(x)xdy` + g(x)

is reducible.

Apply Capelli's Theorem.


