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Irreducibility:
A polynomialf(x) ∈ Q[x] is irreducibleprovided

• f(x) has degree at least1,
• f(x) does not factor as a product of two polynomials

in Q[x] each of degree≥ 1.
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Some Goals of the Talk:

• Give a general discussion of the irreducibility of some
classical polynomials

• Show connections to

– problems in the distribution of primes

– diophantine questions

– transcendence type results

– Galois theory

– wavelets
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• Bessel Polynomials

Some Polynomials NOT to be Discussed:

• Cyclotomic Polynomials(too well-known)

• Chebyshev Polynomials(too easy)

• Bernoulli Polynomials(except for a special case)

• Legendre Polynomials(too hard)
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=
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Theorem 1 (I. Schur, 1929): Let n be a positive inte-
ger, and leta0, a1, · · · , an denote arbitrary integers with
|a0| = |an| = 1. Then

an
xn

n!
+ an−1

xn−1

(n − 1)!
+ · · · + a1x + a0

is irreducible.
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Theorem (1996):Leta0, a1, . . . , an denote arbitrary in-
tegers with|a0| = 1, and let

f(x) =
n∑

j=0

ajx
j/j!.

If 0 < |an| < n, thenf(x) is irreducible unless

(an, n) ∈
{
(±5, 6), (±7, 10)

}
in which cases eitherf(x) is irreducible orf(x) is the
product of two irreducible polynomials of equal degree. If
|an| = n, then for some choice ofa1, . . . , an−1 ∈ Z
anda0 = ±1, we have thatf(x) is divisible byx ± 1.
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L
(α)
n (x) =

exx−α

n!

dn
(
xn+αe−x

)
dxn

=
n∑

j=0

(n + α) · · · (j + 1 + α)(−x)j

(n − j)!j!

L
(0)
n (x) = Ln(x) (the Laguerre Polynomials)
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n (x) = (n + 1)

n∑
j=0

(
n

j

)
(−x)j

(j + 1)!

Theorem 2 (I. Schur): Let n be a positive integer, and
let a0, a1, · · · , an denote arbitrary integers with|a0| =

|an| = 1. Then

an
xn

(n + 1)!
+ an−1

xn−1

n!
+ · · · + a1

x

2
+ a0

is irreducible (over the rationals) unlessn = 2r − 1 > 1

(whenx ± 2 can be a factor) orn = 8 (when a quadratic
factor is possible).



Theorem (joint with M. Allen): For n an integer≥ 1,
define

f(x) =
n∑

j=0

aj
xj

(j + 1)!

where theaj ’s are arbitrary integers with|a0| = 1. Write

n + 1 = k′2u with k′ odd

and

(n + 1)n = k′′2v3w with gcd(k′′, 6) = 1.

If
0 < |an| < min{k′, k′′},

thenf(x) is irreducible.
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Theorem (joint with T.-Y. Lam): Let α be a rational
number which is not a negative integer. Then for all but

finitely many positive integersn, the polynomialL
(α)
n (x)

is irreducible over the rationals.
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L
(α)
n (x) =

n∑
j=0

(n + α) · · · (j + 1 + α)(−x)j

(n − j)!j!

A Special Case: α = n
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Background:

• Van der Waerden showed that for “almost all” polyno-
mialsf(x) ∈ Z[x], the Galois group associated with
f(x) is the symmetric groupSn.

• Schur showedL
(0)
n (x) has Galois groupSn.

• Schur showedL
(1)
n (x) has Galois groupAn (the alter-

nating group) ifn is odd.

• Schur showed
n∑

j=0

xj

j!
has Galois groupAn if 4|n.

• Schur did not find a sequence of polynomials having
Galois groupAn with n ≡ 2 (mod 4).
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Theorem (R. Gow, 1989):If n > 2 is even andL
(n)
n (x)

is irreducible, then the Galois group ofL
(n)
n (x) is An.

Comment: Gow also showed thatL
(n)
n (x) is irreducible

if
•n = 2pk wherek ∈ Z+ andp > 3 is prime

•n = 4pk wherek ∈ Z+ andp > 7 is prime

Conjecture: If n > 2, thenL
(n)
n (x) is irreducible.



Theorem (joint work with R. Williams): For almost all

positive integersn the polynomialL
(n)
n (x) is irreducible

(and, hence, has Galois groupAn for almost alln ≡ 2

(mod 4)). More precisely, the number ofn ≤ t such

thatL
(n)
n (x) is reducible is

� exp

(
9 log(2t)

log log(2t)

)
.

Furthermore, for all but finitely manyn, L
(n)
n (x) is either

irreducible orL
(n)
n (x) is the product of a linear polyno-

mial times an irreducible polynomial of degreen − 1.
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(
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Theorem (joint work with R. Williams): For all but

O
(
exp(9 log(2t)/ log log(2t))

)
positive integersn ≤ t, the polynomial

f(x) =
n∑

j=0

aj

(
2n

n − j

)
xj

j!

is irreducible over the rationals for every choice of integers
a0, a1, . . . , an with |a0| = |an| = 1.

Comment: The number ofn ≤ t for which f(x) is
reducible for some choice ofaj as above is

� log t.
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Is the irreducibility of L
(n)
n (x) doable for all n > 2?

The proof for almost alln is not effective. Ifn is large

enough,L
(n)
n (x) cannot have aquadratic factorbut what’s

“large enough”?

However, in joint work with O. Trifonov (and input from
R. Tijdeman, F. Beukers, and our next speaker), the argu-
ment can now be made effective. What’s needed is:

There exist explicit numbersα andβ > 0 such
that, forn ≥ α,

n(n + 1) = 2k3`m =⇒ m > nβ.
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The Ramanujan-Nagell equation

x2 + 7 = 2n

has as its only solutions(±x, n) in

{(1, 3), (3, 4), (5, 5), (11, 7), (181, 15)}.

Moreover, there exist explicit numbersα and
β > 0 such that, forx ≥ α,

x2 + 7 = 2nm =⇒ m ≥ xβ.
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u2j = (2j − 1)(2j − 3) · · · 3 · 1



The Hermite Polynomials:

H2n(x) = (−1)nu2n

n∑
j=0

(−1)j
(

n

j

)
x2j

u2j

H2n+1(x) = (−1)nu2n+2x

n∑
j=0

(−1)j
(

n

j

)
x2j

u2j+2



H2n(x) = (−1)nu2n

n∑
j=0

(−1)j
(

n

j

)
x2j

u2j

H2n+1(x) = (−1)nu2n+2x

n∑
j=0

(−1)j
(

n

j

)
x2j

u2j+2

Theorem 3 (I. Schur, 1929): For n > 1 and arbitrary
integersaj with |a0| = |an| = 1, the polynomial

f(x) =
n∑

j=0

ajx
2j/u2j

is irreducible.



H2n(x) = (−1)nu2n

n∑
j=0

(−1)j
(
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)
x2j
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H2n+1(x) = (−1)nu2n+2x
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j=0

(−1)j
(
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x2j
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Theorem 4 (I. Schur, 1929): For n ≥ 1 and arbitrary
integersaj with |a0| = |an| = 1, the polynomial

f(x) =
n∑

j=0

ajx
2j/u2j+2

is irreducible unless2n is of the form3u−1 with u > 1.
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E. Gutkin (speaking in the Dynamical Systems ses-
sion this evening) dealt with a certain billards question.
J. Lagarias posed a related conjecture at the West Coast
Number Theory Conference in 1991:

Letn ≥ 4 and

p(x) = (n − 1)
(
xn+1 − 1

)
− (n + 1)

(
xn − x

)
.

Thenp(x) is (x − 1)3 times an irreducible
polynomial ifn is even and(x − 1)3(x + 1)
times an irreducible polynomial ifn is odd.

Joint Work With A. Borisov, T.-Y. Lam, O. Trifonov:

True for all butO(t4/5+ε) values ofn ≤ t.
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the polynomialf(x) above is irreducible for all but finitely
many pairs(an, n).
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Theorem (joint with M. Allen): For n an integer≥ 1,
define

f(x) =
n∑

j=0

aj
x2j

u2j+2

where theaj ’s are arbitrary integers with|a0| = 1. Write

2n + 1 = k′3u with 3 - k′

and

(2n+1)(2n − 1) = k′′3v5w with (k′′, 15) = 1.

If
0 < |an| < min{k′, k′′},

then f(x) is irreducible for all but finitely many pairs
(an, n).
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The Bessel Polynomials:

yn(x) =
n∑

j=0

(n + j)!

2j(n − j)!j!
xj

Brief History:

• E. Grosswald studied the irreducibility of the Bessel poly-
nomials in 1951 and conjectured their irreducibility. He
obtained a variety of special cases of irreducibility.

• In 1995, M.F. showed that all but finitely many Bessel
polynomials are irreducible.

• O. Trifonov and M.F. have now shown that all Bessel
polynomials are irreducible.
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The Bessel Polynomials:

yn(x) =
n∑

j=0

(n + j)!

2j(n − j)!j!
xj

Theorem (joint with O. Trifonov): If a0, a1, . . . , an

are arbitrary integers with|a0| = |an| = 1, then

n∑
j=0

aj
(n + j)!

2j(n − j)!j!
xj

is irreducible.
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• Newton polygons are used to show that if certain condi-
tions on divisibility by primes holds, thenf(x) is irre-
ducible.

A result of M.G. Dumas (in 1906) eliminates pos-
sible degrees for the factors of a polynomial using
information about the divisibility of the coefficients
by a given primep (forming Newton polygons with
respect top).



• Newton polygons are used to show that if certain condi-
tions on divisibility by primes holds, thenf(x) is irre-
ducible.

“Two such factorization schemes with a common,
non-trivial factorization, will be calledcompatible.
Otherwise, we call them incompatible. It is clear
that if one can exhibit two incompatible factor-
ization schemes, one thereby will have proved the
irreducibility of the polynomial considered.”

Emil Grosswald
Bessel Polynomials
Lecture Notes Series



• Newton polygons are used to show that if certain condi-
tions on divisibility by primes holds, thenf(x) is irre-
ducible.

Idea: To consider factorization schemes using
many primes and show that they are incompatible.
For a polynomial of degreen and ak ∈ [1, n/2],
find a primep such that the Newton polygon with
respect top does not allow for a factor off(x) to
have degreek.



• Analysis to show that the conditions hold; usually this
involves cases to eliminate possible factors depending
on the size of their degrees.



• Analysis to show that the conditions hold; usually this
involves cases to eliminate possible factors depending
on the size of their degrees.

Example:

For1 ≤ k ≤ n/2, show∏
pr‖(2n−1)(2n−3)···(2n−2k+1)

p≥2k+1

pr > 2n − 1.
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n!

A Special Case: α = n

Theorem (joint with A. Adelberg): A positive proportion

of the polynomialsB
(n)
n (x) are Eisenstein (and, hence,

irreducible). More precisely, if the number ofn ≤ t for

whichB
(n)
n (x) is Eisenstein isB(t), then

B(t) > t/5 for t sufficiently large.


