On the factorization of x^2+x and the non-factorization of x^2+7

by Michael Filaseta
University of South Carolina

Joint Work with M. Bennett & O. Trifonov

Part I: On the factorization of x^2+x

Part I: On the factorization of x(x+1)

Part I: On the factorization of n(n+1)

Part I: On the factorization of n(n+1)

Well-Known: The largest prime factor of n(n+1) tends to infinity with n.

Part I: On the factorization of n(n+1)

Well-Known: The largest prime factor of n(n+1) tends to infinity with n.

Let p_1, p_2, \ldots, p_r be primes. There is an N such that if $n \geq N$ and

$$n(n+1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

for some integer m, then m > 1.

$$n(n+1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

for some integer m, then m > 1.

$$n(n+1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

for some integer m, then m > 1.

$$n(n+1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

for some integer m, then m > 1.

$$n(n+1)$$
 divisible only by primes $\leq 11 \Longrightarrow n \leq$

$$n(n+1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

for some integer m, then m > 1.

$$n(n+1)$$
 divisible only by primes $\leq 11 \Longrightarrow n \leq$
... only by primes $\leq 41 \Longrightarrow n \leq$

$$n(n+1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

for some integer m, then m > 1.

$$n(n+1)$$
 divisible only by primes $\leq 11 \Longrightarrow n \leq 9800$... only by primes $\leq 41 \Longrightarrow n \leq$

$$n(n+1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

for some integer m, then m > 1.

Lehmer: Gave some explicit estimates:

n(n+1) divisible only by primes $\leq 11 \Longrightarrow n \leq 9800$... only by primes $\leq 41 \Longrightarrow n \leq 63927525375$

$$n(n+1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

for some integer m, then m > 1.

$$n(n+1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

for some integer m, then m > 1.

$$n \geq N$$
 and $n(n+1) = p_1^{e_1} p_1^{e_2} \cdots p_r^{e_r} m$ for some integer m , then $m > 1$

$$n(n+1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

$$n(n+1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

$$n(n+1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

$$abc$$
-conjecture $\implies \theta =$

$$n(n+1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

$$abc$$
-conjecture $\implies \theta = 1 - \varepsilon$

$$n(n+1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

for some integer m, then $m > n^{\theta}$.

$$abc$$
-conjecture $\implies \theta = 1 - \varepsilon$

unconditionally one can obtain $\theta =$

$$n(n+1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

for some integer m, then $m > n^{\theta}$.

$$abc$$
-conjecture $\implies \theta = 1 - \varepsilon$

unconditionally one can obtain $\,\theta=1-arepsilon\,$

$$n(n+1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

for some integer m, then $m > n^{\theta}$.

$$abc$$
-conjecture $\implies \theta = 1 - \varepsilon$

unconditionally one can obtain $\, heta = 1 - arepsilon \,$ (ineffective)

$$n(n+1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

for some integer m, then $m > n^{\theta}$.

Effective Approach:

$$n(n+1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

for some integer m, then $m > n^{\theta}$.

Effective Approach: (Linear Forms of Logarithms)

$$n(n+1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

for some integer m, then $m > n^{\theta}$.

Effective Approach: (Linear Forms of Logarithms)

$$\theta = \frac{c}{\log \log n}$$

$$n(n+1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

for some integer m, then $m > n^{\theta}$.

Effective Approach: (Linear Forms of Logarithms)

$$\theta = \frac{c}{\log \log n}$$

Problem: Can we narrow the gap between these ineffective and effective results?

Theorem (R. Gow, 1989): If n > 2 is even and

$$L_n^{(n)}(x) = \sum_{j=0}^n inom{2n}{n-j} rac{(-x)^j}{j!}$$

is irreducible, then the Galois group of $\boldsymbol{L}_{n}^{(n)}(x)$ is \boldsymbol{A}_{n} .

Theorem (R. Gow, 1989): If n > 2 is even and

$$L_n^{(n)}(x) = \sum_{j=0}^n {2n \choose n-j} rac{(-x)^j}{j!}$$

is irreducible, then the Galois group of $L_n^{(n)}(x)$ is A_n .

Theorem (joint work with R. Williams): For almost all positive integers n the polynomial $L_n^{(n)}(x)$ is irreducible (and, hence, has Galois group A_n for almost all even n).

Theorem (R. Gow, 1989): If n > 2 is even and

$$L_n^{(n)}(x) = \sum_{j=0}^n {2n \choose n-j} rac{(-x)^j}{j!}$$

is irreducible, then the Galois group of $L_n^{(n)}(x)$ is A_n .

Theorem (joint work with R. Williams): For almost all positive integers n the polynomial $L_n^{(n)}(x)$ is irreducible (and, hence, has Galois group A_n for almost all even n).

Work in Progress with Trifonov: We're attempting to show the irreducibility of $L_n^{(n)}(x)$ for all n > 2.

Theorem (R. Gow, 1989): If n > 2 is even and

$$L_n^{(n)}(x) = \sum_{j=0}^n {2n \choose n-j} rac{(-x)^j}{j!}$$

is irreducible, then the Galois group of $L_n^{(n)}(x)$ is A_n .

Theorem (joint work with R. Williams): For almost all positive integers n the polynomial $L_n^{(n)}(x)$ is irreducible (and, hence, has Galois group A_n for almost all even n).

Work in Progress with Trifonov: $L_n^{(n)}(x)$ is irreducible for n large and $n \equiv 2 \pmod{4}$.

Theorem (R. Gow, 1989): If n > 2 is even and

$$L_n^{(n)}(x) = \sum_{j=0}^n {2n \choose n-j} rac{(-x)^j}{j!}$$

is irreducible, then the Galois group of $L_n^{(n)}(x)$ is A_n .

Theorem (joint work with R. Williams): For almost all positive integers n the polynomial $L_n^{(n)}(x)$ is irreducible (and, hence, has Galois group A_n for almost all even n).

Work in Progress with Trifonov: $L_n^{(n)}(x)$ is irreducible for n large and $n \equiv 2 \pmod{4}$. This is effective.

$$n(n+1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

$$n(n+1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

for some integer m, then $m > n^{\theta}$.

Theorem: If $n \geq 9$ and

$$n(n+1) = 2^k 3^\ell m,$$

then

$$m \geq$$

$$n(n+1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

for some integer m, then $m > n^{\theta}$.

Theorem: If $n \geq 9$ and

$$n(n+1) = 2^k 3^\ell m,$$

then

$$m \ge n^{1/4}$$
.

Conjecture: For n > 512,

$$n(n+1) = 2^u 3^v m \implies m > \sqrt{n}$$
.

Conjecture: For n > 512,

$$n(n+1) = 2^u 3^v m \implies m > \sqrt{n}.$$

Comment: The conclusion holds for

$$512 < n \le$$

Conjecture: For n > 512,

$$n(n+1) = 2^u 3^v m \implies m > \sqrt{n}$$
.

Comment: The conclusion holds for

$$512 < n \le 10^{1000}.$$

Part II: On the non-factorization of x^2+7

Part II: On the non-factorization of x^2+7

Classical Ramanujan-Nagell Theorem: If x and n are positive integers satisfying

$$x^2 + 7 = 2^n,$$

then

$$x \in \{1, 3, 5, 11, 181\}.$$

Part II: On the non-factorization of $x^2 + 7$

Classical Ramanujan-Nagell Theorem: If x and n are positive integers satisfying

$$x^2 + 7 = 2^n,$$

then

$$x \in \{1, 3, 5, 11, 181\}.$$

Problem: If $x^2 + 7 = 2^n m$ and x is not in the set above, then can we say that m must be large?

$$x^2 + 7 = 2^n m$$

$$x^2 + 7 = 2^n m$$

$$\left(\frac{x+\sqrt{-7}}{2}\right)\left(\frac{x-\sqrt{-7}}{2}\right) = \left(\frac{1+\sqrt{-7}}{2}\right)^{n-2}\left(\frac{1-\sqrt{-7}}{2}\right)^{n-2}m$$

$$x^{2} + 7 = 2^{n}m$$

$$\left(\frac{x + \sqrt{-7}}{2}\right) \left(\frac{x - \sqrt{-7}}{2}\right) = \left(\frac{1 + \sqrt{-7}}{2}\right)^{n-2} \left(\frac{1 - \sqrt{-7}}{2}\right)^{n-2} m$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$\text{difference is constant} \qquad \text{prime}$$

Theorem: If x, n and m are positive integers satisfying

$$x^2 + 7 = 2^n m$$
 and $x \notin \{1, 3, 5, 11, 181\},$

then

$$m \geq ???$$

Theorem: If x, n and m are positive integers satisfying

$$x^2 + 7 = 2^n m$$
 and $x \notin \{1, 3, 5, 11, 181\},$

then

$$m \ge x^{1/2}$$
.

Part III: The Method

$$n(n+1) = 3^k 2^\ell m$$

$$n(n+1)=3^k2^\ell m$$
 $3^km_1-2^\ell m_2=\pm 1$

$$n(n+1) = 3^k 2^\ell m$$
 $3^k m_1 - 2^\ell m_2 = \pm 1$

Main Idea: Find "small" integers P,Q, and E such that $3^kP-2^\ell Q=E.$

$$n(n+1) = 3^k 2^\ell m$$
 $3^k m_1 - 2^\ell m_2 = \pm 1$

Main Idea: Find "small" integers P, Q, and E such that $3^kP-2^\ell Q=E.$

$$n(n+1) = 3^k 2^\ell m$$
 $3^k m_1 - 2^\ell m_2 = \pm 1 \quad \leftarrow \quad \times Q$

Main Idea: Find "small" integers P, Q, and E such that

$$3^kP-2^\ell Q=E. \qquad \leftarrow \ \times m_2$$

$$n(n+1) = 3^k 2^\ell m$$
 $3^k m_1 - 2^\ell m_2 = \pm 1$

Main Idea: Find "small" integers P, Q, and E such that $3^kP-2^\ell Q=E$.

Then

$$3^k (Qm_1 - Pm_2) = \pm Q - Em_2.$$

$$n(n+1) = 3^k 2^\ell m$$
 $3^k m_1 - 2^\ell m_2 = \pm 1$

Main Idea: Find "small" integers P, Q, and E such that $3^kP-2^\ell Q=E$.

Then

$$3^k (Qm_1 - Pm_2) = \pm Q - Em_2.$$

Main Idea: Find "small" integers P, Q, and E such that

$$3^k P - 2^\ell Q = E$$

and

$$Qm_1 - Pm_2 \neq 0$$
.

Then

$$3^{k}\left(Qm_{1}-Pm_{2}
ight)=\pm Q-Em_{2}.$$

Main Idea: Find "small" integers P, Q, and E such that

$$3^k P - 2^\ell Q = E$$

and

$$Qm_1 - Pm_2 \neq 0$$
.

Then

$$3^k \left(Q m_1 - P m_2 \right) = \pm Q - E m_2.$$

Obtain an upper bound on 3^k .

Main Idea: Find "small" integers P, Q, and E such that

$$3^k P - 2^\ell Q = E$$

and

$$Qm_1 - Pm_2 \neq 0$$
.

Then

$$3^{k}\left(Qm_{1}-Pm_{2}
ight)=\pm Q-Em_{2}.$$

Obtain an upper bound on 3^k . Since $3^k m_1 \geq n$, it follows that m_1 and, hence, $m = m_1 m_2$ are not small.

The "small" integers P, Q, and E are obtained through the use of Padé approximations for $(1-x)^k$.

The "small" integers P, Q, and E are obtained through the use of Padé approximations for $(1-x)^k$.

More precisely, there exist $P,\ Q,\ ext{and}\ E ext{ in } \mathbb{Z}[x]$ with $\deg P = \deg Q = r$ and $\deg E = k-r-1$ such that $P_r(x) - (1-x)^k Q_r(x) = x^{2r+1} E_r(x).$

What's Needed for the Method to Work:

One largely needs to be dealing with two primes (like 2 and 3) with a difference of powers of these primes being small (like $3^2 - 2^3 = 1$).

What's Needed for the Method to Work:

One largely needs to be dealing with two primes (like 2 and 3) with a difference of powers of these primes being small (like $3^2 - 2^3 = 1$).

In the case of $x^2+7=2^nm$, the difference of the primes $(1+\sqrt{-7})/2$ and $(1-\sqrt{-7})/2$ each raised to the $13^{\rm th}$ power has absolute value ≈ 2.65 and the prime powers themselves have absolute value ≈ 90.51 .