Seminar Notes: Some Proofs Associated with Irreducibility Theorems

Theorem: Let $a_{0}, a_{1}, \ldots, a_{n}$ denote arbitrary integers with $\left|a_{0}\right|=1$, and let $f(x)=\sum_{j=0}^{n} a_{j} x^{j} / j$!.
If $0<\left|a_{n}\right|<n$, then $f(x)$ is irreducible unless $\left(a_{n}, n\right) \in\{(\pm 5,6),(\pm 7,10)\}$.
Lemma 1 (Dumas): The Newton polygon of $g(x) h(x)$ with respect to a prime is determined from the Newton polygons of $g(x)$ and of $h(x)$ with respect to the same prime as illustrated below.

NEWTON POLYGON OF SOME $f(x)$

Lemma 2. Let $a_{0}, a_{1}, \ldots, a_{n}$ denote arbitrary integers with $\left|a_{0}\right|=1$, and let $f(x)=\sum_{j=0}^{n} a_{j} x^{j} / j$!. Let $k \in[1, n / 2] \cap \mathbb{Z}$. Suppose $r \in \mathbb{Z}^{+}$and a prime p satisfy:
(i) $p \geq k+1$
(ii) $p^{r} \mid n(n-1) \cdots(n-k+1)$
(iii) $p^{r} \nmid a_{n}$

Then $f(x)$ cannot have a factor of degree k.
Proof: Assume $F(x)=n!f(x)$, with coefficients $b_{j}=a_{j} n!/ j!$, has a factor $g(x) \in \mathbb{Z}[x]$ of degree k, and consider the Newton polygon of $F(x)$ with respect to p.

- The $n-k+1$ right-most spots have y-coordinates $\geq r$.
- The left-most spot has y-coordinate $<r$.
- The spots $\left(j, \nu\left(b_{n-j}\right)\right.$ for $j \in\{k-1, k, \ldots, n\}$ are on or above edges with positive slope.
- Each edge has slope $<1 / k$.
- An edge with positive slope cannot be a translated edge of the Newton polygon of $g(x)$.
- The other edges cannot contain all the translated edges of the Newton polygon of $g(x)$.

Lemma 1 implies a contradiction.
The Rest of the Story: Lemma 2 and analytic estimates lead to a proof of the theorem.
Reducible Examples: Consider $f(x)=\sum_{j=0}^{n} a_{j} x^{j} /(j+1)$! where $n=2^{k} m \geq 3$ and $n+1=3^{\ell} m^{\prime}$ with k, ℓ, m, and m^{\prime} are positive integers and $\operatorname{gcd}\left(m m^{\prime}, 6\right)=1$. Take $a_{n}=m m^{\prime}, a_{n-1}=m r$, $a_{n-2}=s, a_{n-3}=a_{n-4}=\cdots=a_{3}=0, a_{2}=-y, a_{1}=w+y$ and rewrite $(n+1)!f(x) /\left(\mathrm{mm}^{\prime}\right)$ as

$$
g(x)=x^{n}+3^{\ell} r x^{n-1}+3^{\ell} 2^{k} s x^{n-2}-3^{\ell-1} 2^{k-1}(n-1)!y x^{2}+3^{\ell} 2^{k-1}(n-1)!(w+y) x+3^{\ell} 2^{k}(n-1)!
$$

The idea is to show $g(x)$ has the factor $q(x)=x^{2}-3 x-6$. In other words, we want to show that $g(x) \bmod q(x)=0$. The basic approach for "determining" the value of $g(x) \bmod q(x)$ is outlined.

- For $j \geq 0$, define integers c_{j} and b_{j} by $x^{j} \equiv c_{j}+b_{j} x(\bmod q(x))$.
- Observe that $c_{j+1}=3 c_{j}+6 c_{j-1}$ and $b_{j+1}=3 b_{j}+6 b_{j-1}$ for $j \geq 1$.
- Use $A^{j}=\left(\begin{array}{cc}c_{j} & b_{j} \\ c_{j+1} & b_{j+1}\end{array}\right)$ where $A=\left(\begin{array}{ll}0 & 1 \\ 6 & 3\end{array}\right)$ to get information about the c_{j} and b_{j}. (Examples: $c_{j} b_{j+1}-c_{j+1} b_{j}= \pm 6^{j}$ for $j \geq 0 ; \nu_{2}\left(c_{j}\right)=1$ and $\nu_{2}\left(b_{j}\right)=0$ for $j>1$)

Comment: The above approach can be used to compute the remainder efficiently when dividing a sparse polynomial by a small degree polynomial.

