Irreducibility and Coprimality
Algorithms for
Sparse Polynomials

joint work with Andrzej Schinzel

§ Introduction

Suppose we want to check the primality

of
N = 230402457 1.

How fast can we do this computation?
How fast can we expect to do it?

If the number of binary operations for a
computation is bounded by a polynomial

in the length of the input, then we say
it can be done in polynomial time.

§ Introduction

Suppose we want to check the primality

of
N = 230402457 1.

How fast can we do this computation?
How fast can we expect to do it?
What is the length of the input?
The number N contains 30402457 bits.

Determining if N is prime in 304024572
steps would be good.

§ Introduction

Suppose we want to check the primality

of
N = 230402457 1.

How fast can we do this computation?
How fast can we expect to do it?
‘What is the length of the input?

To clarify, typing

2730402457-1

takes 12 keystrokes.

But this is a talk about polynomials
f(z) € Zx].

Suppose f has degree n, height < H and
< r TIoi<=eT0 terms.

maximum coefficient
in absolute value

all terms are
non-zero

But this is a talk about polynomials
f(x) € Z[z].

Suppose f has degree n, height < H and
< r non-zero terms.

Traditionally, f(x) has n+ 1 coefficients
and each coefficient can have “length”
on the order of log H so that the total
length of the input is of order nlog H.

Actually, I should say n( log H + log n)

But this is a talk about polynomials
f(z) € Zx].

Suppose f has degree n, height < H and
< r non-zero terms.

Lenstra, Lenstra and
Lovasz showed that
one can factor f in
time that is polyno-
mial in n and log H.

But this is a talk about polynomials
f(z) € Zx].

Suppose f has degree n, height < H and
< r non-zero terms.

‘We might expect an algorithm exists that
runs in time that is polynomial in logn,
r and log H except that the factors might
well take time that is polynomial in n
and log H to output.

Example: Factor
101 L 77 _ 76 _ 213 4 12 g
The answer is
(1} o 1)(1:100 + m99 + z98 + :E97
4 x()ﬁ + :C95 4 x94 + $93 4 x92
+ 1:91 + IQU + ."1289 + (1388 + 1:87
+ ,’1186 + 1‘85 + £U84 + m83 + £682
4 .’E81 + :CSO 4 x79 + :E78 4 x77
4 2$76 + :1375 4 z74 + I73 4 z72
+ $71 + x70 + 3669 + m68 + 30'67

+ J:66 + :D65 + 1364 + 11363 + z62
+ xﬁl + xGO + x59 + w58 + 3957
+ w56 + $55 + $54 + $53 + z52
+ 1:51 + m50 + 1:49 + m48 + z47
+ x46 + :L'45 + x44 + x43 + x42
+ 1:41 + 1,40 + $39 + 138 + 1:37
+ m36 + m35 + 1334 + m33 + 132
4 x31 + $30 4 ng + x28 4 x27
+ 5826 + 125 + 1324 + :1323 + z22
+ 2621 + w20 + 1’19 + mlS + ml?

+116+I15+114+a)13+111
+$10+$9+$8+(L‘7+3’,’6+(I!5
tatrad 2?2 t1)

‘We might expect an algorithm exists that
runs in time that is polynomial in logn,
r and log H except that the factors might
well take time that is polynomial in n
and log H to output.

But this is a talk about irreducibility
testing of polynomials

f(z) € Zlz].
Here, it is more reasonable to expect an
algorithm to run in time that is polyno-

mial in logn, r and log H.

But we won’t do that.

Thereom (A. Schinzel and M.F.): There
exist
cp=ci(H,r) and c3=ca(H,7r)
and an algorithm that decides if a given
nonreciprocal f(x) € Z[x] of degree n,
which has height < H and < r non-
zero terms, is irreducible and that runs
in time
O(c1(logn)“2).

f(z) is reciprocal means that
if f(a) =0, then a # 0 and f(1/a) =0

Thereom (A. Schinzel and M.F.): There
exist
cp=ci(H,r) and c3=ca(H,7r)
and an algorithm that decides if a given
nonrectprocal f(x) € Z[x] of degree n,
which has height < H and < r non-
zero terms, is irreducible and that runs
in time
O(c1(logn)“2).

f(x) is reciprocal means that

fz) = £2i8Ff(1/2)

Thereom (A. Schinzel and M.F.): There
exist

cp=ci(H,r) and c3=ca(H,7r)

and an algorithm that decides if a given
nonreciprocal f(x) € Z[x] of degree n,

whi s height < H and < r non-
zero , is irreducible and that runs
n t

O(c1(logn)“?).

fz) # £at8lf(1/2)

Thereom (A. Schinzel and M.F.): There
exist
cp=ci(H,r) and c3=ca(H,7r)
and an algorithm that decides if a given
nonrectprocal f(x) € Z[x] of degree n,
which has height < H and < r non-
zero terms, is irreducible and that runs
n time
O(cy1(logn)“).
Remark: If the polynomial is reducible,

then it is possible to determine a non-
trivial factor in the same time but ...




o If f has a cyclotomic factor, then the
algorithm will detect this and output
an m € Z1 with ®,,(x) a factor.

o If f has no cyclotomic factor but has
a reciprocal factor, then the algorithm
will give an explicit reciprocal factor.

o Otherwise, the algorithm outputs the
complete factorization of f(z) into
irreducible polynomials over Q.

Comment: It is not even obvious that
such output can be given in time that is
less than polynomial in deg f.

o If f has a cyclotomic factor, then the
algorithm will detect this and output
an m € Z1 with ®,,(x) a factor.

e If f has no cyclotomic factor but has
a reciprocal factor, then the algorithm
will give an explicit reciprocal factor.

o Otherwise, the algorithm outputs the
complete factorization of f(x) into
irreducible polynomials over Q.

The algorithm does these in the order
listed.

Corollary: If f(x) € Z[z] is nonrecipro-
cal and reducible, then f(x) has a non-
trivial factor in Z[x] which contains <
c(r, H) terms.

Example: For almost any a; € Z with
laj| < 1000 and any positive integers
€1,...,€e100, if the polynomial

ag + a1z + asx® + - -+ + a19pxl00

is reducible over QQ, then it has a non-
trivial factor with < ¢ terms.

o If f has a cyclotomic factor, then the
algorithm will detect this and output
an m € Z1 with ®,,(x) a factor.

Theorem (A. Schinzel and M.F., 2004):
There is an algorithm which determines
if a given f(x) € Z[x] of degree n>1,
which has height H and r > 1 non-zero
terms, has a cyclotomic factor and that
runs tn time big-oh of

c1(H,r)(log )"

as r tends to infinity.

o If f has a cyclotomic factor, then the
algorithm will detect this and output
an m € Z1 with ®,,(x) a factor.

Lemma: Let f(x) € Z[x] have r non-
zero terms. If f(x) is divisible by a
cyclotomic polynomial, then there is a
positive integer m such that ®p, ()| f(x)
and every prime factor of m is < r.

o If f has a cyclotomic factor, then the
algorithm will detect this and output
an m € Z1 with ®,,(x) a factor.

The division algorithm for polynomials
takes time that is polynomial in the de-
grees of the input polynomials.

2100 _ 218 11 — (& + 2+ 1)g(x) + r(z)
g(x) has 96 terms

r(z) = 10101047822 —191229192—60075671

o If f has a cyclotomic factor, then the
algorithm will detect this and output
an m € Z1 with ®,,(x) a factor.

The division algorithm for polynomials
takes time that is polynomial in the de-
grees of the input polynomials.

So how does one check if @, (z)|f(x)?

If m is small, this is easy (reduce the
exponents of f(x) mod m and do the
division).

o If f has a cyclotomic factor, then the
algorithm will detect this and output
an m € Z1 with ®,,(x) a factor.

2100 _ 288 41 — (28 4+ 23 4+ 1)q(a) +r(x)

219 — 2% 41 = (2° — 1)ga(a) + ra(e)

r(z) = ro(z) (mod 8 + 23 4 1)

ro(w) = 2% — 288 4+ 1 (mod 2 — 1)

mlOO —

=z (modz?—1)

o If f has a cyclotomic factor, then the
algorithm will detect this and output
an m € Z1 with ®,,(x) a factor.

2100 _ 488 11 — (254 23+ 1)q(z) +r(z)
2! — 2% +1 = (@ - Daa(2) + ra(2)

r(@) = ra(@) (mod @+ o + 1)
ro(x) = 2'%° — 288 + 1 (mod 2° — 1)

ro(x) = S LNIPS | (mod a:6+w3+1)

o If f has a cyclotomic factor, then the
algorithm will detect this and output
an m € Z1 with ®,,(x) a factor.

2100 _ 488 11 — (251 23 + 1)q(z) +r(z)
2100 — 2% 11 = (27 — 1)ga(2) + r2(x)

r(x) =rz(x) (mod z® +2® +1)
r@)=—-2"+xz+1 (mod 28+ a3+1)

r@)=a*+2¢+1 (mod 2b+a3+1)

o If f has a cyclotomic factor, then the
algorithm will detect this and output
an m € Z1 with ®,,(x) a factor.

To check whether a fixed ®,(z) divides
f(x), check instead whether

@™ —1)| f(x)- [] % —1).
i

o If f has no cyclotomic factor but has
a reciprocal factor, then the algorithm
will give an explicit reciprocal factor.

‘We’ll come back to this.

e Otherwise, the algorithm outputs the
complete factorization of f(z) into
irreducible polynomials over Q.

F@) =3 aah
j=0

f has no reciprocal factors

(other than constants)

e Otherwise, the algorithm outputs the
complete factorization of f(z) into
irreducible polynomials over Q.

r
f(z) = Z a]-z’ij
j=0
F= F(%l,%g,...,&?r)

= arzy + -+ ajxy + ag,

f(z) = F(md],mdQ, e, a:dT)

i=0 j=1

tf(w) = Zaj:tdf, F(x1,...,@;) = ag+ Zajzj

dy vy
1) Pl = (M) |
dr Ut

d; = mj1v1t-tmyvg, 1 <i<r

i=0 j=1

[f(w) = Zaja;df, F(x1,y...,@;) = ag+ Z a;x;

(1) di=myvi+-4myv, 1<i<r

(m;;) will come from a finite set
depending only on F

v; € Z show exist for some (m;;)




f(z) = Za]-z"J, F(zyy...,x,) = ap+ Zaja:j ]

=0 j=1

f(z) = Zaj:t‘lh F(ziy...,z) = ao+ Zajmj ]

=0 j=1

| f(z) = Zaj:tdf, F(x1,y... @) = ag+ Zajzj

=0 j=1

(1) di =myvi+-Fmyvg, 1<i <7

F(y ey oy gyt
yj=z%, 1<j5<t

F(zdl, z%, ... ,mdr) = f(x)

Thought: A factorization in Z[yy, ..., y¢]
implies a factorization of f(x) in Z[x].

(1) di =myvit-tmyo, 1<i<r

F(y "y gy gyt
yj=x%, 1<j5<t
F(zdl,mdz, - ,mdr) = f(x)

Counter-Thought: We want m;; and v;
in Z, but not necessarily positive.

1) di=myvi+-4myv, 1<i<r

m m My
(:JF(yl 11"'yt lt’_"’yi 71...ylnrt)
®
G
y'lull__yzitF(y;nll___y;nlt’.”’ y;nrl___y;nrt)

Recall: Factor and substitute y; = z¥.

f(z) = Zaj;tdf, F(x1,...,@;) = ag+ Z a;x;

=0 j=1

(1) di=myvi+-4myv, 1<i<r

m My

TR T (TR T T
=F1(y1s--->yt) - Fs(y1,-- -, yt)

)

(2

(3) f(:L') = H mwiFi(zvlv seey l.’Ut)
=1

Recall: Factor and substitute y; = zV.

f(z) = Za]-z"J, F(zyy...,x,) = ap+ Zaja:j ]

=0 j=1

(1) di =myvi+-Fmyvg, 1<i <7

m.

=Fi1(y1,---59t) - - Fs(y1,---,yt)

i)

(2)

3)  f(2) =[] «“iF(a", ... 2%

=1

Conclusion: (1) and (2) imply (3)

Theorem (A. Schinzel, 1969): Fix

F = arzy + -+ + a121 + ao,
with a; nonzero integers. There exists
a finite computable set of matrices S
with integer entries, depending only on
F, with the following property:

Suppose the vector
—
d = <dlad27'°'vd7’> S ZT?
with dr > +++ > dy > 0, is such that
@) = P,z .., 2t

has no non-constant reciprocal factor.

Then 3 r xt matrix M = (m;;) € S of
rank t < r and a vector
v = <’01,’02,...,Ut> S Zt

such that

dy vy

=M

dy Ut

holds and the factorization given by

uy u miy mit mpy Myt
Y1 Y F(yl tYp e Yy " Y )

:Fl(ylv"-vyt)"'Fs(yh--':yi)

n Zlyi, ..., yt] into irreducibles implies

f(z) = H zViF; (¥, ..., x")

=1

as a product of polynomials in Z[x] each
of which is either irreducible over Q or
a constant.

This all works for “some” (m;;) € S.

1) di=mijvi+-Fmyv, 1<i<r

o) YLy B (gL et
=F1(y1,---»yt) - Fs(y1, .-+ yt)
yj=x%, 1<j<t
S
B) f@) =[] iF@E™,. .. 2%

=1

This Part of Algorithm:

e Compute set of matrices S.

The set of matrices depends on
F = arxy 4 - -+ + ayzy + ao,

not on dy,da,...,dy.

This Part of Algorithm:
e Compute set of matrices S.

e Determine all solutions to (1).
(1) d; =mpvrttmyg, 1<i<r

Easy Lemma: There’s an algorithm that
determines for a given integral matrix
(m;j) € S whether (1) holds for some
vj € Z. If it does, the solution is unique
and the algorithm outputs the solution.
The algorithm runs in time O, pr(logn).

This Part of Algorithm:
e Compute set of matrices S.
e Determine all solutions to (1).

e For each solution, completely factor
JF(ygn” "_ylnn,’.__’ y;nrl ___y;nrt)'

TR Thad (TR TR G VU S T

= Fi(y1,---

(2

yyt) s Fs(y1s -5 ut)

This Part of Algorithm:
e Compute set of matrices S.
e Determine all solutions to (1).

e For each solution, completely factor

Ty ey My ey ).

e Substitute y; = 2" to obtain (3)’s.

S
®B)  f@) =[] «“iFi@™,...,2")
=1
Each «ViF;(z"1,...
irreducible for some solution to (1).

, ) is a constant or

This Part of Algorithm:

e Compute set of matrices S.

e Determine all solutions to (1).

e For each solution, completely factor
JF(yT” ",ylnn,’"" y;nrl ___y;ﬂrt)'

e Substitute y; = 2% to obtain (3)’s.

e Choose (3) with the largest number
of non-constant zWiF;(z"!,...,x"%).

@ f@ =[] R

=1

o If f has no cyclotomic factor but has
a reciprocal factor, then the algorithm
will give an explicit reciprocal factor.

‘We’ve checked:
f does not have a cyclotomic factor.

‘We want to know:

Does f have a reciprocal factor?

o If f has no cyclotomic factor but has
a reciprocal factor, then the algorithm
will give an explicit reciprocal factor.

Does f have a reciprocal factor?
Suppose w(x) is a reciprocal factor.
w(a) =0 = a#0 and w(l/a)=0

— f(@)=0 and g(a) =0,
where g(z) = 296 f(1/z) # f(=)

We want to compute ged(f,g).




o If f has no cyclotomic factor but has
a reciprocal factor, then the algorithm
will give an explicit reciprocal factor.

In general, if f and g are sparse polyno-
mials around degree n in Z[z], how does
one compute ged(f,g)?

Some items to keep in mind:

— The Euclidean algorithm will run in
time that is polynomial in n, not log n.

o If f has no cyclotomic factor but has
a reciprocal factor, then the algorithm
will give an explicit reciprocal factor.

— Plaisted (1977) has shown that this
problem is at least as hard as any prob-
lem in NP.

Plaisted’s takes f and g to be divisors of

2N — 1 where N is a product of small

primes.

We are interested in the case that both
f and g do not have a cyclotomic factor.

Theorem (A. Schinzel and M.F.): There
is an algorithm which takes as input
two polynomials f(x) and g(x) in Zx],
each of degree < m and height < H
and having < r+1 nonzero terms, with
at least one of f(x) and g(x) free of
any cyclotomic factors, and outputs the
value of gedy(f(x),g(x)) and runs in
time Oy g (logn).

Corollary:  If f(x),g(x) € Z[x] with
f(z) or g(x) not divisible by a cyclo-
tomic polynomaial, then gedy(f(x), g(x))
has O, (1) terms.

Example: For almost any a;,b; € Z with
laj| <1000 and |b;| < 1000 and positive

integers ey, ..., e1g0 and f1,..., f100, the
greatest common divisor of
100 100
f(x) = Z ajz® and g(x) = Z bjwfj
j=0 j=0

has < ¢ terms.

Corollary:  If f(z),g(z) € Z[z] with
f(z) or g(x) not divisible by a cyclo-
tomic polynomial, then gedy(f(x), g(x))
has O, g (1) terms.

Note that if a and b are relatively prime
positive integers, then

ged (zab —1,(z* — 1)(z? — 1))
_(z* = 1)(z1’ —1)

B r—1
which can have arbitrarily many terms.

’

Theorem (A. Schinzel and M.F.): There
is an algorithm which takes as input
two polynomials f(x) and g(x) in Zx],
each of degree < m and height < H
and having < r+1 nonzero terms, with
at least one of f(x) and g(x) free of
any cyclotomic factors, and outputs the
value of gedy(f(x),g(x)) and runs in
time OTVH(log n).

k k
f@=3 a% — Fi(x)=Y ajz,
j=1 j=1

Lemma (Bombieri and Zannier): Let
Fy, Fp € @[mla"'amk]

be coprime polynomials. There exists
a number ci(F1, F3) with the following
property. If W = (ui,...,ug) € 7k,
£ # 0 is algebraic and

Fi(€",...,€%) = Fy(€",...,£%) = 0,
then either € is a root of unity or there

exists a non-zero vector ¥ € ZF having
length at most ¢1 and orthogonal to .

k k
f(z)= Z ajwdj — Fi(z)= Z ajx;
Jj=1 j=1

Lemma (Bombieri and Zannier): Let
F,Fp e Q[mla'”awk]
be coprime polynomials. There exists

a number cy(Fy, F») with the following

property. If f(§) = g(§) = 0, then there
exists a non-zero vector ¥ € ZF having
length at most c¢1 and orthogonal to .

i):<d17"'7dk>

Idea: The lattice of vectors orthogonal
to @ is (k—1)-dimensional so that there
exists a vector (ej,...,er_1) and a ma-
trix M in ZF~1 satisfying

dy ey
d,2 - M. 6.2
dj, €kx—1

So
k—1
di =) mijej,
=1

with the m;; € Z bounded.

k—1
di = Z mij€;
j=1
k k k—1
fx)=> a@h=> a; [] («%)™%
i=1 i=1 j=1
@) k k—1
m;i
Fl (yla---vyk—l)zzai y]‘ /
i=1 j=1
2
FP@e,. .. a%1) = f(z)
2
FP@",...,a%1) = g(a)

k k—1
2 m;j
FP o) = > ag [[ )
i=1  j=1
k—

k 1
2 m;;
F (yrse o) = Dobi [y "
i=1  j=1
Issues to Deal With:

e Bombieri & Zannier’s work requires
relatively prime multivariate poly-
nomials.

Issues to Deal With:

e Bombieri & Zannier’s work requires
relatively prime multivariate poly-
nomials.

Divide by ged(F\?, F{?)).

Keep track of the gcd’s. They are
part of ged(f (), g(w))-

Issues to Deal With:

e Bombieri & Zannier’s work requires
relatively prime multivariate poly-
nomials.

e Bombieri & Zannier’s work requires

polynomials.

@ k k—1 .
FiPiseu1) = ai [[yy ™
J

i=1 j=1

@ k k—1

P myi

By (yiseesyr) = > b [[ w7
=1 j=1

Issues to Deal With:

e Bombieri & Zannier’s work requires
relatively prime multivariate poly-
nomials.

e Bombieri & Zannier’s work requires
polynomials.

Use J F?) and J F?.

Issues to Deal With:

e Bombieri & Zannier’s work requires
relatively prime multivariate poly-
nomials.

e Bombieri & Zannier’s work requires
polynomials.

e Some variables may be missing.

ko k-1

2 mij

FP 1, yen) = >oai [T ™
=1 j=1

Issues to Deal With:

e Bombieri & Zannier’s work requires
relatively prime multivariate poly-
nomials.

e Bombieri & Zannier’s work requires
polynomials.

e Some variables may be missing.

e The induction step may end before
it ends.

So what?




