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The number N contains 30402457 bits.

If the number of binary operations for a
computation is bounded by a polynomial
in the length of the input, then we say
it can be done in polynomial time.

A computation can be done in polyno-
mial time if the number of binary op-
erations needed for the computation is
bounded by a polynomial in the length
of the input.

§ Introduction

Suppose we want to check the primality
of

N = 230402457 − 1.

How fast can we do this computation?

How fast can we expect to do it?

What is the length of the input?

To clarify, typing

takes 12 keystrokes.

2^30402457-1

§ Introduction

Suppose we want to check the primality
of

N = 230402457 − 1.

How fast can we do this computation?

How fast can we expect to do it?

What is the length of the input?

To clarify, typing

takes 12 keystrokes.

2^30402457-1

§ Introduction

Suppose we want to check the primality
of

N = 230402457 − 1.

How fast can we do this computation?

How fast can we expect to do it?

What is the length of the input?

To clarify, typing

takes 12 keystrokes.

2^30402457-1

§ Introduction

Suppose we want to check the primality
of

N = 230402457 − 1.

How fast can we do this computation?

How fast can we expect to do it?

What is the length of the input?

To clarify, typing

takes 12 keystrokes.

2^30402457-1

§ Introduction

Suppose we want to check the primality
of

N = 230402457 − 1.

How fast can we do this computation?

How fast can we expect to do it?

What is the length of the input?

To clarify, typing

takes 12 keystrokes.

2^30402457-1

The number N contains 30402457 bits.

If the number of binary operations for a
computation is bounded by a polynomial
in the length of the input, then we say
it can be done in polynomial time.

A computation can be done in polyno-
mial time if the number of binary op-
erations needed for the computation is
bounded by a polynomial in the length
of the input.

The number N contains 30402457 bits.

If the number of binary operations for a
computation is bounded by a polynomial
in the length of the input, then we say
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Determining if N is prime in 304024572

steps would be good.

§ Introduction

Suppose we want to check the primality
of

N = 230402457 − 1.

How fast can we do this computation?

How fast can we expect to do it?

What is the length of the input?

To clarify, typing

takes 12 keystrokes.

2^30402457-1

§ Introduction

Suppose we want to check the primality
of

N = 230402457 − 1.

How fast can we do this computation?

How fast can we expect to do it?

What is the length of the input?

To clarify, typing

takes 12 keystrokes.

2^30402457-1

§ Introduction

Suppose we want to check the primality
of

N = 230402457 − 1.

How fast can we do this computation?

How fast can we expect to do it?

What is the length of the input?

To clarify, typing

takes 12 keystrokes.

2^30402457-1

§ Introduction

Suppose we want to check the primality
of

N = 230402457 − 1.

How fast can we do this computation?

How fast can we expect to do it?

What is the length of the input?

To clarify, typing

takes 12 keystrokes.

2^30402457-1

§ Introduction

Suppose we want to check the primality
of

N = 230402457 − 1.

How fast can we do this computation?

How fast can we expect to do it?

What is the length of the input?

To clarify, typing

takes 12 keystrokes.

2^30402457-1

§ Introduction

Suppose we want to check the primality
of

N = 230402457 − 1.

How fast can we do this computation?

How fast can we expect to do it?

What is the length of the input?

To clarify, typing

takes 12 keystrokes.

2^30402457-1

§ Introduction

Suppose we want to check the primality
of

N = 230402457 − 1.

How fast can we do this computation?

How fast can we expect to do it?

What is the length of the input?

To clarify, typing

takes 12 keystrokes.

2^30402457-1

§ Introduction

Suppose we want to check the primality
of

N = 230402457 − 1.

How fast can we do this computation?

How fast can we expect to do it?

What is the length of the input?

To clarify, typing

takes 12 keystrokes.

2^30402457-1

But this is a talk about polynomials

f(x) ∈ Z[x].

Suppose f has ≤ r non-zero terms, height
≤ H and degree n.

Lenstra, Lenstra and Lovasz
showed that one can factor f
in time that is polynomial in
n and log H.

But we might expect that an algorithm
exists that runs in time that is polyno-
mial in log n, r and log H except that
the factors might well take time that is
polynomial in n and log H to output.
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Traditionally, f(x) has n +1 coefficients
and each coefficient can have “length”
on the order of log H so that the total
length of the input is of order n log H.
Actually, I should say n

(
log H + log n

)
.
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Example: Factor

x101 + x77 − x76 − x13 + x12 − 1.

The answer is

(x − 1)
(
x100 + x99 + x98 + x97

+ x96 + x95 + x94 + x93 + x92

+ x91 + x90 + x89 + x88 + x87

+ x86 + x85 + x84 + x83 + x82

+ x81 + x80 + x79 + x78 + x77
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+ x71 + x70 + x69 + x68 + x67
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(x − 1)
(
x100 + x99 + x98 + x97

+ x16 + x15 + x14 + x13 + x11

+ x10 + x9 + x8 + x7 + x6 + x5

+ x4 + x3 + x2 + x + 1
)
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Here, it is more reasonable to expect an
algorithm to run in time that is polyno-
mial in log n, r and log H.

But we won’t do that.
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Thereom (A. Schinzel and M.F.): There
exist

c1 = c1(H, r) and c2 = c2(H, r)

and an algorithm that decides if a given
nonreciprocal f(x) ∈ Z[x] of degree n,
which has height ≤ H and ≤ r non-
zero terms, is irreducible and that runs
in time

O(c1(log n)c2).f(x) != ± xdeg ff(1/x)

f(x) is reciprocal means that

if f(α) = 0, then α != 0 and f(1/α) = 0
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an m ∈ Z+ with Φm(x) a factor.

• If f has no cyclotomic factor but has
a reciprocal factor, then the algorithm
will give an explicit reciprocal factor.

• Otherwise, if f is a reducible, then
the algorithm outputs a g such that
gcd(f, g) is a non-trivial factor of f .
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less than polynomial in deg f .
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The algorithm does these in the order
listed.

Corollary: If f(x) ∈ Z[x] is nonrecipro-
cal and reducible, then f(x) has a non-
trivial factor in Z[x] which contains ≤
c(r, H) terms.

Example: For almost any aj ∈ Z with
|aj| ≤ 1000 and any positive integers
e1, . . . , e100, if the polynomial

a0 + a1x
e1 + a2x

e2 + · · · + a100x
e100

is reducible over Q, then it has a non-
trivial factor with ≤ c terms.

Theorem (A. Schinzel and M.F., 2004):
There is an algorithm which determines
if a given f(x) ∈ Z[x] of degree n > 1,
which has height H and r > 1 non-zero
terms, has a cyclotomic factor and that
runs in time big-oh of

exp

(
(2+o(1))

√

log r

)
log(H+1)

as r tends to infinity.
log r

)
log(H+1)

as r tends to infinity.
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exp

(
(2+o(1))

√
N (log N + log log n)
√log N

)
log(H+1)

c1(H, r)(log n)c2(r)

Lemma: Let f(x) ∈ Z[x] have r non-
zero terms. If f(x) is divisible by a
cyclotomic polynomial, then there is a
positive integer m such that Φm(x)|f(x)
and every prime factor of m is ≤ r.
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The division algorithm for polynomials
takes time that is polynomial in the de-
grees of the input polynomials.

x100 − x18 + 1 = (x3 + x + 1)q(x) + r(x)

q(x) has 96 terms

r(x) = 101010478x2−19122919x−60075671

So how does one check if Φm(x)|f(x) ?

If m is small, this is easy (reduce the
exponents of f(x) mod m and do the
division).
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Φ9(x)

x100 − x88 + 1 = (x9 − 1)q2(x) + r2(x)

r(x) ≡ r2(x) (mod x6 + x3 + 1)

r2(x) ≡ x100 − x88 + 1 (mod x9 − 1)

r2(x) ≡ −x7 +x+1 (mod x6 +x3 +1)

Remark: If the polynomial is reducible,
then it is possible to determine a non-
trivial factor in the same time but ...

• If f has a cyclotomic factor, then the
algorithm will detect this and output
an m ∈ Z+ with Φm(x) a factor.

• If f has no cyclotomic factor but has
a reciprocal factor, then the algorithm
will give an explicit reciprocal factor.

• Otherwise, if f is a reducible, then
the algorithm outputs a g such that
gcd(f, g) is a non-trivial factor of f .

x100 −x88+1 = (x6+x3+1)q(x)+r(x)

Φ9(x)

x100 − x88 + 1 = (x9 − 1)q2(x) + r2(x)
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x100 −x88+1 = (x6+x3+1)q(x)+r(x)
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x100 − x88 + 1 = (x9 − 1)q2(x) + r2(x)

r(x) ≡ r2(x) (mod x6 + x3 + 1)

r2(x) ≡ x100 − x88 + 1 (mod x9 − 1)

x100 −x88+1 = (x6+x3+1)q(x)+r(x)

Φ9(x)

x100 − x88 + 1 = (x9 − 1)q2(x) + r2(x)

r(x) ≡ r2(x) (mod x6 + x3 + 1)

r2(x) ≡ x100 − x88 + 1 (mod x9 − 1)
r(x) ≡ −x7 + x + 1 (mod x6 + x3 + 1)

r(x) ≡ x4 + 2x + 1 (mod x6 + x3 + 1)

r(x) ≡ −x7 + x + 1 (mod x6 + x3 + 1)

r(x) ≡ x4 + 2x + 1 (mod x6 + x3 + 1)

Remark: If the polynomial is reducible,
then it is possible to determine a non-
trivial factor in the same time but ...

• If f has a cyclotomic factor, then the
algorithm will detect this and output
an m ∈ Z+ with Φm(x) a factor.

• If f has no cyclotomic factor but has
a reciprocal factor, then the algorithm
will give an explicit reciprocal factor.

• Otherwise, if f is a reducible, then
the algorithm outputs a g such that
gcd(f, g) is a non-trivial factor of f .

To check whether a fixed Φm(x) divides
f(x), check instead whether

(xm − 1) | f(x) ·
∏

d|m
d"=m

(xd − 1).

Remark: If the polynomial is reducible,
then it is possible to determine a non-
trivial factor in the same time but ...

• If f has a cyclotomic factor, then the
algorithm will detect this and output
an m ∈ Z+ with Φm(x) a factor.

• If f has no cyclotomic factor but has
a reciprocal factor, then the algorithm
will give an explicit reciprocal factor.

• Otherwise, if f is a reducible, then
the algorithm outputs a g such that
gcd(f, g) is a non-trivial factor of f .

We’ll come back to this.

f has no reciprocal factor

f(x) =
r∑

j=0

ajx
dj

f is reducible if and only if the non-
reciprocal part of f is reducible

• Otherwise, the algorithm outputs the
complete factorization of f(x) into
irreducible polynomials over Q.

f has no reciprocal factor

(other than constants)

f has no reciprocal factors

(other than constants)

• Otherwise, the algorithm outputs the
complete factorization of f(x) into
irreducible polynomials over Q.

f has no reciprocal factor

f(x) =
r∑

j=0

ajx
dj

f is reducible if and only if the non-
reciprocal part of f is reducible

f has no reciprocal factors

(other than constants)

F = F (x1, x2, . . . , xr)

= arxr + · · · + a1x1 + a0,

f has no reciprocal factors

(other than constants)

F = F (x1, x2, . . . , xr)

= arxr + · · · + a1x1 + a0,

f(x) = F
(
xd1, xd2, . . . , xdr

)




d1
...

dr



 =
(
mij

)
r×t




v1
...
vt







d1
...

dr



 =
(
mij

)
r×t




v1
...
vt





(1) di = mi1v1+ ···+mitvt, 1 ≤ i ≤ r
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



(1) di = mi1v1+ ···+mitvt, 1 ≤ i ≤ r

f has no reciprocal factors

(other than constants)

F = F (x1, x2, . . . , xr)

= arxr + · · · + a1x1 + a0,

f(x) = F
(
xd1, xd2, . . . , xdr

)

f(x) =
r∑

j=0

ajx
dj, F (x1, . . . , xr) = a0 +

r∑

j=1

ajxj
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dr



 =
(
mij
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...
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



(1) di = mi1v1+ ···+mitvt, 1 ≤ i ≤ r

f has no reciprocal factors

(other than constants)

F = F (x1, x2, . . . , xr)

= arxr + · · · + a1x1 + a0,

f(x) = F
(
xd1, xd2, . . . , xdr

)

f(x) =
r∑

j=0

ajx
dj, F (x1, . . . , xr) = a0 +
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ajxj

(mij) will come from a finite set
depending only on F

vj ∈ Z show exist for some (mij)

(mij) will come from a finite set
depending only on F

vj ∈ Z show exist for some (mij)

(mij) will come from a finite set
depending only on F

vj ∈ Z show exist for some (mij)






d1
...

dr



 =
(
mij

)
r×t




v1
...
vt





(1) di = mi1v1+ ···+mitvt, 1 ≤ i ≤ r

F (ym11
1 ···ym1t

t ,..., ymr1
1 ···ymrt

t )
F (ym11

1 ···ym1t
t ,..., ymr1

1 ···ymrt
t )

yj = xvj, 1 ≤ j ≤ t

F (ym11
1 ···ym1t

t ,..., ymr1
1 ···ymrt

t )

yj = xvj, 1 ≤ j ≤ t

F
(
xd1, xd2, . . . , xdr

)
= f(x)

F (ym11
1 ···ym1t

t ,..., ymr1
1 ···ymrt

t )

yj = xvj, 1 ≤ j ≤ t

F
(
xd1, xd2, . . . , xdr

)
= f(x)

Thought: A factorization in Z[y1, . . . , yt]
implies a factorization of f(x) in Z[x].

f has no reciprocal factors

(other than constants)

F = F (x1, x2, . . . , xr)

= arxr + · · · + a1x1 + a0,

f(x) = F
(
xd1, xd2, . . . , xdr

)

f(x) =
r∑

j=0

ajx
dj, F (x1, . . . , xr) = a0 +

r∑

j=1

ajxj
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
d1
...

dr



 =
(
mij

)
r×t




v1
...
vt





(1) di = mi1v1+ ···+mitvt, 1 ≤ i ≤ r

F (ym11
1 ···ym1t

t ,..., ymr1
1 ···ymrt

t )
F (ym11

1 ···ym1t
t ,..., ymr1

1 ···ymrt
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yj = xvj, 1 ≤ j ≤ t

F (ym11
1 ···ym1t

t ,..., ymr1
1 ···ymrt

t )

yj = xvj, 1 ≤ j ≤ t

F
(
xd1, xd2, . . . , xdr

)
= f(x)

F (ym11
1 ···ym1t

t ,..., ymr1
1 ···ymrt

t )

yj = xvj, 1 ≤ j ≤ t

F
(
xd1, xd2, . . . , xdr

)
= f(x)

Counter-Thought: We want mij and vj
in Z, but not necessarily positive.
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(other than constants)

F = F (x1, x2, . . . , xr)

= arxr + · · · + a1x1 + a0,

f(x) = F
(
xd1, xd2, . . . , xdr

)

f(x) =
r∑

j=0

ajx
dj, F (x1, . . . , xr) = a0 +

r∑

j=1

ajxj
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Do what you have to do to make

this in Z[y1, y2, . . . , yt].
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dr



 =
(
mij

)
r×t




v1
...
vt





(1) di = mi1v1+ ···+mitvt, 1 ≤ i ≤ r
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1 ···ymrt
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= F1(y1, . . . , yt) · · · Fs(y1, . . . , yt)

J F (ym11
1 ···ym1t

t ,..., ymr1
1 ···ymrt

t )

Do what you have to do to make

this in Z[y1, y2, . . . , yt].

Recall: Factor and substitute yj = xvj.
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(other than constants)

F = F (x1, x2, . . . , xr)

= arxr + · · · + a1x1 + a0,

f(x) = F
(
xd1, xd2, . . . , xdr

)

f(x) =
r∑

j=0

ajx
dj, F (x1, . . . , xr) = a0 +

r∑

j=1

ajxj
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...

dr


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(
mij

)
r×t
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v1
...
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



(1) di = mi1v1+ ···+mitvt, 1 ≤ i ≤ r

J F (ym11
1 ···ym1t

t ,..., ymr1
1 ···ymrt

t )

Do what you have to do to make

this in Z[y1, y2, . . . , yt].

Recall: Factor and substitute yj = xvj.
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t F (ym11
1 ···ym1t

t ,..., ymr1
1 ···ymrt
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= F1(y1, . . . , yt) · · · Fs(y1, . . . , yt)

J F (ym11
1 ···ym1t

t ,..., ymr1
1 ···ymrt

t )

Do what you have to do to make

this in Z[y1, y2, . . . , yt].

Recall: Factor and substitute yj = xvj.

(2)

(3) f(x) =
s∏

i=1

xwiFi(x
v1, . . . , xvt)

f has no reciprocal factors

(other than constants)

F = F (x1, x2, . . . , xr)

= arxr + · · · + a1x1 + a0,

f(x) = F
(
xd1, xd2, . . . , xdr

)

f(x) =
r∑

j=0

ajx
dj, F (x1, . . . , xr) = a0 +

r∑

j=1

ajxj




d1
...

dr



 =
(
mij

)
r×t




v1
...
vt





(1) di = mi1v1+ ···+mitvt, 1 ≤ i ≤ r

yu1
1 ···yut

t F (ym11
1 ···ym1t

t ,..., ymr1
1 ···ymrt

t )

= F1(y1, . . . , yt) · · · Fs(y1, . . . , yt)

J F (ym11
1 ···ym1t

t ,..., ymr1
1 ···ymrt

t )

Do what you have to do to make

this in Z[y1, y2, . . . , yt].

Recall: Factor and substitute yj = xvj.

(2)

(3) f(x) =
s∏

i=1

xwiFi(x
v1, . . . , xvt)(3) f(x) =

s∏

i=1

xwiFi(x
v1, . . . , xvt)

Conclusion: (1) and (2) imply (3)

f has no reciprocal factors

(other than constants)

F = F (x1, x2, . . . , xr)

= arxr + · · · + a1x1 + a0,

f(x) = F
(
xd1, xd2, . . . , xdr

)

f(x) =
r∑

j=0

ajx
dj, F (x1, . . . , xr) = a0 +

r∑

j=1

ajxj

Theorem (A. Schinzel, 1969): Fix

F = arxr + · · · + a1x1 + a0,

with aj nonzero integers. There exists
a finite computable set of matrices S
with integer entries, depending only on
F , with the following property:

Suppose the vector
−→
d = 〈d1, d2, . . . , dr〉 ∈ Zr,

with dr > · · · > d1 > 0, is such that

f(x) = F (xd1, xd2, . . . , xdr)

has no non-constant reciprocal factor.

Then ∃ r×t matrix M = (mij) ∈ S of
rank t ≤ r and a vector

−→v = 〈v1, v2, . . . , vt〉 ∈ Zt

such that 


d1
...

dr



 = M




v1
...
vt





holds and the factorization given by

yu1
1 ···yut

t F (ym11
1 ···ym1t

t ,..., ymr1
1 ···ymrt

t )

= F1(y1, . . . , yt) · · · Fs(y1, . . . , yt)

in Z[y1, . . . , yt] into irreducibles implies

f(x) =
s∏

i=1

xwiFi(x
v1, . . . , xvt)

as a product of polynomials in Z[x] each
of which is either irreducible over Q or
a constant.

This all works for “some” (mij) ∈ S.
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d1
...

dr



 =
(
mij

)
r×t




v1
...
vt





(1) di = mi1v1+ ···+mitvt, 1 ≤ i ≤ r

yu1
1 ···yut

t F (ym11
1 ···ym1t

t ,..., ymr1
1 ···ymrt

t )

= F1(y1, . . . , yt) · · · Fs(y1, . . . , yt)

J F (ym11
1 ···ym1t

t ,..., ymr1
1 ···ymrt

t )

Do what you have to do to make

this in Z[y1, y2, . . . , yt].

Recall: Factor and substitute yj = xvj.

(2)

(3) f(x) =
s∏

i=1

xwiFi(x
v1, . . . , xvt)

F (ym11
1 ···ym1t

t ,..., ymr1
1 ···ymrt

t )

yj = xvj, 1 ≤ j ≤ t

F
(
xd1, xd2, . . . , xdr

)
= f(x)

Counter-Thought: We want mij and vj
in Z, but not necessarily positive.

This all works for “some” (mij) ∈ S.

The set of matrices depends on

F = arxr + · · · + a1x1 + a0,

not on d1, d2, . . . , dr.

This Part of Algorithm:

• Compute set of matrices S.

The set of matrices depend on

F = arxr + · · · + a1x1 + a0,

not on d1, d2, . . . , dr.

This Part of Algorithm:

• Compute set of matrices S.

The set of matrices depend on

F = arxr + · · · + a1x1 + a0,

not on d1, d2, . . . , dr.

This Part of Algorithm:

• Compute set of matrices S.

The set of matrices depend on

F = arxr + · · · + a1x1 + a0,

not on d1, d2, . . . , dr.

This Part of Algorithm:

• Compute set of matrices S.

The set of matrices depend on

F = arxr + · · · + a1x1 + a0,

not on d1, d2, . . . , dr.

This Part of Algorithm:

• Compute set of matrices S.

The set of matrices depend on

F = arxr + · · · + a1x1 + a0,

not on d1, d2, . . . , dr.

• Determine all solutions to (1).




d1
...

dr



 =
(
mij

)
r×t




v1
...
vt





(1) di = mi1v1+ ···+mitvt, 1 ≤ i ≤ r

Easy Lemma: There’s an algorithm that
determines for a given integral matrix
(mij) ∈ S whether (1) holds for some
vj ∈ Z. If it does, the solution is unique
and the algorithm outputs the solution.
The algorithm runs in time Or,H(log n).

This Part of Algorithm:

• Compute set of matrices S.

The set of matrices depend on

F = arxr + · · · + a1x1 + a0,

not on d1, d2, . . . , dr.

This Part of Algorithm:

• Compute set of matrices S.

The set of matrices depend on

F = arxr + · · · + a1x1 + a0,

not on d1, d2, . . . , dr.

This Part of Algorithm:

• Compute set of matrices S.

The set of matrices depend on

F = arxr + · · · + a1x1 + a0,

not on d1, d2, . . . , dr.

• Determine all solutions to (1).
This Part of Algorithm:

• For each solution, completely factor
J F (ym11

1 ···ym1t
t ,..., ymr1

1 ···ymrt
t ).

yu1
1 ···yut

t F (ym11
1 ···ym1t

t ,..., ymr1
1 ···ymrt

t )

= F1(y1, . . . , yt) · · · Fs(y1, . . . , yt)

J F (ym11
1 ···ym1t

t ,..., ymr1
1 ···ymrt

t )

Do what you have to do to make

this in Z[y1, y2, . . . , yt].

Recall: Factor and substitute yj = xvj.

(2)

This Part of Algorithm:

• For each solution, completely factor
J F (ym11

1 ···ym1t
t ,..., ymr1

1 ···ymrt
t ).

• Substitute yj = xvj to obtain (3)’s.

This Part of Algorithm:

• Compute set of matrices S.

The set of matrices depend on

F = arxr + · · · + a1x1 + a0,

not on d1, d2, . . . , dr.

This Part of Algorithm:

• Compute set of matrices S.

The set of matrices depend on

F = arxr + · · · + a1x1 + a0,

not on d1, d2, . . . , dr.

This Part of Algorithm:

• Compute set of matrices S.

The set of matrices depend on

F = arxr + · · · + a1x1 + a0,

not on d1, d2, . . . , dr.

• Determine all solutions to (1).
This Part of Algorithm:

• For each solution, completely factor
J F (ym11

1 ···ym1t
t ,..., ymr1

1 ···ymrt
t ).

(3) f(x) =
s∏

i=1

xwiFi(x
v1, . . . , xvt)

Each xwiFi(x
v1, . . . , xvt) is a constant or

irreducible for some solution to (1).

This Part of Algorithm:

• For each solution, completely factor
J F (ym11

1 ···ym1t
t ,..., ymr1

1 ···ymrt
t ).

• Substitute yj = xvj to obtain (3)’s.

This Part of Algorithm:

• Compute set of matrices S.

The set of matrices depend on

F = arxr + · · · + a1x1 + a0,

not on d1, d2, . . . , dr.

This Part of Algorithm:

• Compute set of matrices S.

The set of matrices depend on

F = arxr + · · · + a1x1 + a0,

not on d1, d2, . . . , dr.

This Part of Algorithm:

• Compute set of matrices S.

The set of matrices depend on

F = arxr + · · · + a1x1 + a0,

not on d1, d2, . . . , dr.

• Determine all solutions to (1).
This Part of Algorithm:

• For each solution, completely factor
J F (ym11

1 ···ym1t
t ,..., ymr1

1 ···ymrt
t ).

(3) f(x) =
s∏

i=1

xwiFi(x
v1, . . . , xvt)

Each xwiFi(x
v1, . . . , xvt) is a constant or

irreducible for some solution to (1).

• Choose (3) with the largest number
of non-constant xwiFi(x

v1, . . . , xvt).

Remark: If the polynomial is reducible,
then it is possible to determine a non-
trivial factor in the same time but ...

• If f has a cyclotomic factor, then the
algorithm will detect this and output
an m ∈ Z+ with Φm(x) a factor.

• If f has no cyclotomic factor but has
a reciprocal factor, then the algorithm
will give an explicit reciprocal factor.

• Otherwise, if f is a reducible, then
the algorithm outputs a g such that
gcd(f, g) is a non-trivial factor of f .We’ve checked:

f does not have a cyclotomic factor.

We want to know:

Does f have a reciprocal factor?

In other words, we want to:

Compute the gcd(f, f̃).
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an m ∈ Z+ with Φm(x) a factor.

• If f has no cyclotomic factor but has
a reciprocal factor, then the algorithm
will give an explicit reciprocal factor.

• Otherwise, if f is a reducible, then
the algorithm outputs a g such that
gcd(f, g) is a non-trivial factor of f .
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f does not have a cyclotomic factor.

We want to know:

Does f have a reciprocal factor?

In other words, we want to:

Compute the gcd(f, f̃).

We’ve checked:

f does not have a cyclotomic factor.

We want to know:

Does f have a reciprocal factor?

In other words, we want to:

Compute the gcd(f, f̃).

Suppose w(x) is a reciprocal factor.

w(α) = 0 =⇒ α "= 0 and w(1/α) = 0

We’ve checked:

f does not have a cyclotomic factor.

We want to know:

Does f have a reciprocal factor?

In other words, we want to:

Compute the gcd(f, f̃).

Suppose w(x) is a reciprocal factor.

w(α) = 0 =⇒ α "= 0 and w(1/α) = 0

=⇒ f(α) = 0 and g(α) = 0,

where g(x) = xdeg ff(1/x)

=⇒ f(α) = 0 and g(α) = 0,

where g(x) = xdeg ff(1/x)

=⇒ f(α) = 0 and g(α) = 0,

where g(x) = xdeg ff(1/x)

"= f(x)

=⇒ f(α) = 0 and g(α) = 0,

where g(x) = xdeg ff(1/x)

"= f(x)

We want to compute gcd(f, g).



In general, if f and g are sparse polyno-
mials around degree n in Z[x], how does
one compute gcd(f, g).

Some items to keep in mind:

→ The Euclidean algorithm will run in
time that is polynomial in n, not log n.

→ Plaisted (1977) has shown that this
problem is at least as hard as any prob-
lem in NP.

In general, if f and g are sparse polyno-
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• If f has a cyclotomic factor, then the
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an m ∈ Z+ with Φm(x) a factor.
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• Otherwise, if f is a reducible, then
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In general, if f and g are sparse polyno-
mials around degree n in Z[x], how does
one compute gcd(f, g)?

Then one needs to deal with computing
gcd(f, g), which we address later.

Next, we illustrate how to obtain g.

This all works for “some” (mij) ∈ S.

The set of matrices depends on

F = arxr + · · · + a1x1 + a0,

not on d1, d2, . . . , dr.

We are interested in the case that both
f and g do not have a cyclotomic factor.

Remark: If the polynomial is reducible,
then it is possible to determine a non-
trivial factor in the same time but ...

• If f has a cyclotomic factor, then the
algorithm will detect this and output
an m ∈ Z+ with Φm(x) a factor.

• If f has no cyclotomic factor but has
a reciprocal factor, then the algorithm
will give an explicit reciprocal factor.

• Otherwise, if f is a reducible, then
the algorithm outputs a g such that
gcd(f, g) is a non-trivial factor of f .

In general, if f and g are sparse polyno-
mials around degree n in Z[x], how does
one compute gcd(f, g).

Some items to keep in mind:

→ The Euclidean algorithm will run in
time that is polynomial in n, not log n.

→ Plaisted (1977) has shown that this
problem is at least as hard as any prob-
lem in NP.

Plaisted’s takes f and g to be divisors of
xN − 1 where N is a product of small
primes.

We are interested in the case that f and
g = f̃ do not have cyclotomic factors.

So at least all is not hopeless.

Theorem (A. Schinzel and M.F.): There
is an algorithm which takes as input
two polynomials f(x) and g(x) in Z[x],
each of degree ≤ n and height ≤ H
and having ≤ r+1 nonzero terms, with
at least one of f(x) and g(x) free of
any cyclotomic factors, and outputs the
value of gcdZ(f(x), g(x)) and runs in
time Or,H

(
log n

)
.

Corollary: If f(x), g(x) ∈ Z[x] with
f(x) or g(x) not divisible by a cyclo-
tomic polynomial, then gcdZ(f(x), g(x))
has Or,H(1) terms.

Example: For almost any aj, bj ∈ Z with
|aj| ≤ 1000 and |bj| ≤ 1000 and positive
integers e1, . . . , e100 and f1, . . . , f100, the
greatest common divisor of

f(x) =
100∑

j=0

ajx
ej and g(x) =

100∑

j=0

bjx
fj

has ≤ c terms.

Note that if a and b are relatively prime
positive integers, then

gcd
(
xab − 1, (xa − 1)(xb − 1)

)

=
(xa − 1)(xb − 1)

x − 1
,

which can have arbitrarily many terms.
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f(x) or g(x) not divisible by a cyclo-
tomic polynomial, then gcdZ(f(x), g(x))
has Or,H(1) terms.

Theorem (A. Schinzel and M.F.): There
is an algorithm which takes as input
two polynomials f(x) and g(x) in Z[x],
each of degree ≤ n and height ≤ H
and having ≤ r+1 nonzero terms, with
at least one of f(x) and g(x) free of
any cyclotomic factors, and outputs the
value of gcdZ(f(x), g(x)) and runs in
time Or,H

(
log n

)
.

f(x)=
k∑

j=1

ajx
dj → F1(x)=

k∑

j=1

ajxj

g(x)=
k∑

j=1

bjx
dj → F2(x)=

k∑

j=1

bjxj

f(x)=
k∑

j=1

ajx
dj → F1(x)=

k∑

j=1

ajxj

Lemma (Bombieri and Zannier): Let

F1, F2 ∈ Q[x1, . . . , xk]

be coprime polynomials. There exists
a number c1(F1, F2) with the following
property. If −→u = 〈u1, . . . , uk〉 ∈ Zk,
ξ &= 0 is algebraic and

F1(ξ
u1, . . . , ξuk) = F2(ξ

u1, . . . , ξuk) = 0,

then either ξ is a root of unity or there
exists a non-zero vector −→v ∈ Zk having
length at most c1 and orthogonal to −→u .
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be coprime polynomials. There exists
a number c1(F1, F2) with the following
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length at most c1 and orthogonal to −→u .
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g(x)=
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−→u = 〈d1, . . . , dk〉
d1 dk

f(ξ) = g(ξ) = 0 c1(f, g)

Idea: The lattice of vectors orthogonal
to −→v is (k−1)-dimensional so that there
exists a vector 〈e1, . . . , ek−1〉 and a ma-
trix M in Zk−1 satisfying





d1
d2
...

dk



 = M ·





e1
e2
...

ek−1



 .

So

di =
k−1∑

j=1

mijej,

with the mij ∈ Z bounded.

xdj =
k−1∏

j=1

(
xej

)mij
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y
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j
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F
(k)
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F
(k)
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• Some variables may be missing.

• The induction step may end before
it ends.

So what?


