joint work with Andrzej Schinzel

$\square \longrightarrow$

§ Introduction

Suppose we want to check the primality of

$$
N=2^{30402457}-1
$$

How fast can we do this computation? How fast can we expect to do it?

If the number of binary operations for a computation is bounded by a polynomial in the length of the input, then we say it can be done in polynomial time.

§ Introduction

Suppose we want to check the primality of

$$
N=2^{30402457}-1
$$

How fast can we do this computation? How fast can we expect to do it? What is the length of the input?
The number N contains 30402457 bits.
Determining if N is prime in 30402457^{2} steps would be good.

§ Introduction

Suppose we want to check the primality of

$$
N=2^{30402457}-1
$$

How fast can we do this computation? How fast can we expect to do it? What is the length of the input?
To clarify, typing

$$
2 \wedge 30402457-1
$$

takes 12 keystrokes.

But this is a talk about polynomials $f(x) \in \mathbb{Z}[x]$.
Suppose f has degree n, height $\leq H$ and $\leq r$ terms.

But this is a talk about polynomials

$$
f(x) \in \mathbb{Z}[x] .
$$

Suppose f has degree n, height $\leq H$ and $\leq r$ non-zero terms

Traditionally, $f(x)$ has $n+1$ coefficients and each coefficient can have "length" on the order of $\log H$ so that the total length of the input is of order $n \log H$. Actually, I should say $n(\log H+\log n)$.

But this is a talk about polynomials $f(x) \in \mathbb{Z}[x]$.
Suppose f has degree n, height $\leq H$ and $\leq r$ non-zero terms.

Lenstra, Lenstra and Lovasz showed that one can factor f in time that is polynomial in n and $\log H$.

But this is a talk about polynomials

$$
f(x) \in \mathbb{Z}[x] .
$$

Suppose f has degree n, height $\leq \boldsymbol{H}$ and $\leq r$ non-zero terms.

We might expect an algorithm exists that runs in time that is polynomial in $\log n$, r and $\log H$ except that the factors might well take time that is polynomial in n and $\log H$ to output.

But this is a talk about irreducibility testing of polynomials

$$
f(x) \in \mathbb{Z}[x] .
$$

Here, it is more reasonable to expect an algorithm to run in time that is polynomial in $\log n, r$ and $\log H$.

But we won't do that. runs in time that is polynomial in $\log n$ r and $\log H$ except that the factors might well take time that is polynomial in n and $\log H$ to output.

Thereom (A. Schinzel and M.F.): There exist
$c_{1}=c_{1}(H, r) \quad$ and $\quad c_{2}=c_{2}(H, r)$ and an algorithm that decides if a given nonreciprocal $f(x) \in \mathbb{Z}[x]$ of degree n, which has height $\leq H$ and $\leq r$ nonzero terms, is irreducible and that runs in time
$O\left(c_{1}(\log n)^{c_{2}}\right)$.
$f(x)$ is reciprocal means that

$$
f(x)= \pm x^{\operatorname{deg} f} f(1 / x)
$$

Thereom (A. Schinzel and M.F.): There exist
$c_{1}=c_{1}(H, r) \quad$ and $\quad c_{2}=c_{2}(H, r)$ and an algorithm that decides if a given nonreciprocal $f(x) \in \mathbb{Z}[x]$ of degree n, whith has height $\leq H$ and $\leq r$ nonzero
in tir is irreducible and that runs
$O\left(c_{1}(\log n)^{c_{2}}\right)$.
$f(x) \neq \pm x^{\operatorname{deg} f} f(1 / x$

Thereom (A. Schinzel and M.F.): There exist
$c_{1}=c_{1}(H, r) \quad$ and $\quad c_{2}=c_{2}(H, r)$ and an algorithm that decides if a given nonreciprocal $f(x) \in \mathbb{Z}[x]$ of degree n, which has height $\leq H$ and $\leq r$ nonzero terms, is irreducible and that runs in time

$O\left(c_{1}(\log n)^{c_{2}}\right)$.

Remark: If the polynomial is reducible, then it is possible to determine a nontrivial factor in the same time but ...

- If f has a cyclotomic factor, then the algorithm will detect this and output an $m \in \mathbb{Z}^{+}$with $\Phi_{m}(x)$ a factor.
- If f has no cyclotomic factor but has a reciprocal factor, then the algorithm will give an explicit reciprocal factor.
- Otherwise, the algorithm outputs the complete factorization of $f(x)$ into irreducible polynomials over \mathbb{Q}.
Comment: It is not even obvious that such output can be given in time that is less than polynomial in $\operatorname{deg} f$.
- If f has a cyclotomic factor, then the algorithm will detect this and output an $m \in \mathbb{Z}^{+}$with $\Phi_{m}(x)$ a factor.

Lemma: Let $f(x) \in \mathbb{Z}[x]$ have r nonzero terms. If $f(x)$ is divisible by a cyclotomic polynomial, then there is a positive integer m such that $\Phi_{m}(x) \mid f(x)$ and every prime factor of m is $\leq r$.

- If f has a cyclotomic factor, then the algorithm will detect this and output an $m \in \mathbb{Z}^{+}$with $\Phi_{m}(x)$ a factor.
$x^{100}-x^{88}+1=\left(x^{6}+x^{3}+1\right) q(x)+r(x)$
$x^{100}-x^{88}+1=\left(x^{9}-1\right) q_{2}(x)+r_{2}(x)$
$r(x) \equiv r_{2}(x) \quad\left(\bmod x^{6}+x^{3}+1\right)$
$r_{2}(x) \equiv x^{100}-x^{88}+1 \quad\left(\bmod x^{9}-1\right)$
$r_{2}(x) \equiv-x^{7}+x+1 \quad\left(\bmod x^{6}+x^{3}+1\right)$

If f has a cyclotomic factor, then the algorithm will detect this and output an $m \in \mathbb{Z}^{+}$with $\Phi_{m}(x)$ a factor.

- If f has no cyclotomic factor but has a reciprocal factor, then the algorithm will give an explicit reciprocal factor.
- Otherwise, the algorithm outputs the complete factorization of $f(x)$ into irreducible polynomials over \mathbb{Q}.

The algorithm does these in the order listed.

Corollary: If $f(x) \in \mathbb{Z}[x]$ is nonreciprocal and reducible, then $f(x)$ has a nontrivial factor in $\mathbb{Z}[x]$ which contains \leq $c(r, H)$ terms.

Example: For almost any $a_{j} \in \mathbb{Z}$ with $\left|a_{j}\right| \leq 1000$ and any positive integers e_{1}, \ldots, e_{100}, if the polynomial
$a_{0}+a_{1} x^{e_{1}}+a_{2} x^{e_{2}}+\cdots+a_{100} x^{e_{100}}$
is reducible over \mathbb{Q}, then it has a nontrivial factor with $\leq c$ terms.

- If f has a cyclotomic factor, then the algorithm will detect this and output an $m \in \mathbb{Z}^{+}$with $\Phi_{m}(x)$ a factor.
Theorem (A. Schinzel and M.-... There is an algorithm which determines if a given $f(x) \in \mathbb{Z}[x]$ of degree $n>1$, which has height H and $r>1$ non-zero terms, has a cyclotomic factor and that runs in time big-oh of

$$
c_{1}(H, r)(\log n)^{c_{2}(r)}
$$

as r tends to infinity.

- If f has a cyclotomic factor, then the algorithm will detect this and output an $m \in \mathbb{Z}^{+}$with $\Phi_{m}(x)$ a factor.

The division algorithm for polynomials takes time that is polynomial in the degrees of the input polynomials.
$x^{100}-x^{18}+1=\left(x^{3}+x+1\right) q(x)+r(x)$

$$
q(x) \text { has } 96 \text { terms }
$$

$r(x)=101010478 x^{2}-19122919 x-60075671$

- If f has a cyclotomic factor, then the algorithm will detect this and output an $m \in \mathbb{Z}^{+}$with $\Phi_{m}(x)$ a factor.
$x^{100}-x^{88}+1=\left(x^{6}+x^{3}+1\right) q(x)+r(x)$
$x^{100}-x^{88}+1=\left(x^{9}-1\right) q_{2}(x)+r_{2}(x)$
$r(x) \equiv r_{2}(x) \quad\left(\bmod x^{6}+x^{3}+1\right)$
$r(x) \equiv-x^{7}+x+1 \quad\left(\bmod x^{6}+x^{3}+1\right)$
$r(x) \equiv x^{4}+2 x+1 \quad\left(\bmod x^{6}+x^{3}+1\right)$
- If f has a cyclotomic factor, then the algorithm will detect this and output an $m \in \mathbb{Z}^{+}$with $\Phi_{m}(x)$ a factor.

The division algorithm for polynomials takes time that is polynomial in the degrees of the input polynomials.
So how does one check if $\Phi_{m}(x) \mid f(x)$?
If m is small, this is easy (reduce the exponents of $f(x) \bmod m$ and do the division).

- If f has a cyclotomic factor, then the algorithm will detect this and output an $m \in \mathbb{Z}^{+}$with $\Phi_{m}(x)$ a factor.
$x^{100}-x^{88}+1=\left(x^{6}+x^{3}+1\right) q(x)+r(x)$
$x^{100}-x^{88}+1=\left(x^{9}-1\right) q_{2}(x)+r_{2}(x)$

$$
r(x) \equiv r_{2}(x) \quad\left(\bmod x^{6}+x^{3}+1\right)
$$

$r_{2}(x) \equiv x^{100}-x^{88}+1 \quad\left(\bmod x^{9}-1\right)$

$$
x^{100} \equiv x \quad\left(\bmod x^{9}-1\right)
$$

- If f has no cyclotomic factor but has a reciprocal factor, then the algorithm will give an explicit reciprocal factor.

We'll come back to this.
$f(x)$, check instead whether

$$
\left(x^{m}-1\right) \mid f(x) \cdot \prod_{\substack{d \mid m \\ d \neq m}}\left(x^{d}-1\right)
$$

- If f has a cyclotomic factor, then the algorithm will detect this and output an $m \in \mathbb{Z}^{+}$with $\Phi_{m}(x)$ a factor.

To check whether a fixed $\Phi_{m}(x)$ divides

- Otherwise, the algorithm outputs the complete factorization of $f(x)$ into irreducible polynomials over \mathbb{Q}.

$$
f(x)=\sum_{j=0}^{r} a_{j} x^{d_{j}}
$$

f has no reciprocal factors
(other than constants)

$f(x)=\sum_{j=0}^{r} a_{j} x^{d_{j}}, \quad F\left(x_{1}, \ldots, x_{r}\right)=a_{0}+\sum_{j=1}^{r} a_{j} x_{j}$

(1) $\quad\left(\begin{array}{c}d_{1} \\ \vdots \\ d_{r}\end{array}\right)=\left(m_{i j}\right)_{r \times t}\left(\begin{array}{c}v_{1} \\ \vdots \\ v_{t}\end{array}\right)$
$d_{i}=m_{i 1} v_{1}+\cdots+m_{i t} v_{t}, 1 \leq i \leq r$

$$
f(x)=\sum_{j=0}^{r} a_{j} x^{d_{j}}, \quad F\left(x_{1}, \ldots, x_{r}\right)=a_{0}+\sum_{j=1}^{r} a_{j} x_{j}
$$

(1) $\quad d_{i}=m_{i 1} v_{1}+\cdots+m_{i t} v_{t}, \quad 1 \leq i \leq r$
($m_{i j}$) will come from a finite set depending only on F
$v_{j} \in \mathbb{Z}$ show exist for some $\left(m_{i j}\right)$
$f(x)=\sum_{j=0}^{r} a_{j} x^{d_{j}}, \quad F\left(x_{1}, \ldots, x_{r}\right)=a_{0}+\sum_{j=1}^{r} a_{j} x_{j}$
(1) $\quad d_{i}=m_{i 1} v_{1}+\cdots+m_{i t} v_{t}, \quad 1 \leq i \leq r$
$F\left(y_{1}^{m_{11}} \cdots y_{t}^{m_{1 t}}, \ldots, y_{1}^{m_{r 1}} \cdots y_{t}^{m_{r t}}\right)$ $y_{j}=x^{v_{j}}, \quad 1 \leq j \leq t$
$F\left(x^{d_{1}}, x^{d_{2}}, \ldots, x^{d_{r}}\right)=f(x)$
Thought: A factorization in $\mathbb{Z}\left[y_{1}, \ldots, y_{t}\right]$ implies a factorization of $f(x)$ in $\mathbb{Z}[x]$.

$f(x)=\sum_{j=0}^{r} a_{j} x^{d_{j}}, \quad F\left(x_{1}, \ldots, x_{r}\right)=a_{0}+\sum_{j=1}^{r} a_{j} x_{j}$

(1) $\quad d_{i}=m_{i 1} v_{1}+\cdots+m_{i t} v_{t}, \quad 1 \leq i \leq r$

$$
\begin{gathered}
F\left(y_{1}^{m_{11}} \cdots y_{t}^{m_{1 t}}, \ldots, y_{1}^{m_{r 1}} \cdots y_{t}^{m_{r t}}\right) \\
y_{j}=x^{v_{j}}, \quad 1 \leq j \leq t \\
F\left(x^{d_{1}}, x^{d_{2}}, \ldots, x^{d_{r}}\right)=f(x)
\end{gathered}
$$

Counter-Thought: We want $m_{i j}$ and v_{j} in \mathbb{Z}, but not necessarily positive.

(1) $\quad d_{i}=m_{i 1} v_{1}+\cdots+m_{i t} v_{t}, \quad 1 \leq i \leq r$
$\mathbb{C}^{J F}\left(y_{1}^{m_{11}} \cdots y_{t}^{m_{1 t}}, \ldots, y_{1}^{m_{r 1}} \cdots y_{t}^{m_{r t}}\right)$
$y_{1}^{u_{1}} \cdots y_{t}^{u_{t}} \boldsymbol{F}\left(y_{1}^{m_{11}} \cdots y_{t}^{m_{1 t}}, \ldots, y_{1}^{m_{r 1}} \cdots y_{t}^{m_{r t}}\right)$

Recall: Factor and substitute $y_{j}=x^{v_{j}}$.
$f(x)=\sum_{j=0}^{r} a_{j} x^{d_{j}}, \quad F\left(x_{1}, \ldots, x_{r}\right)=a_{0}+\sum_{j=1}^{r} a_{j} x_{j}$
(1) $\quad d_{i}=m_{i 1} v_{1}+\cdots+m_{i t} v_{t}, \quad 1 \leq i \leq r$
(2) $y_{1}^{u_{1}} \cdots y_{t}^{u_{t}} F\left(y_{1}^{m_{11}} \cdots y_{t}^{m_{1 t}}, \ldots, y_{1}^{m_{r 1}} \cdots y_{t}^{m_{r t}}\right)$
(3) $\quad f(x)=\prod_{i=1}^{s} x^{w_{i}} F_{i}\left(x^{v_{1}}, \ldots, x^{v_{t}}\right)$

Recall: Factor and substitute $y_{j}=x^{v_{j}}$.

Theorem (A. Schinzel, 1969): Fix

$$
F=a_{r} x_{r}+\cdots+a_{1} x_{1}+a_{0}
$$

with a_{j} nonzero integers. There exists a finite computable set of matrices S with integer entries, depending only on F, with the following property:
Suppose the vector

$$
\vec{d}=\left\langle d_{1}, d_{2}, \ldots, d_{r}\right\rangle \in \mathbb{Z}^{r}
$$

with $d_{r}>\cdots>d_{1}>0$, is such that

$$
f(x)=F\left(x^{d_{1}}, x^{d_{2}}, \ldots, x^{d_{r}}\right)
$$

has no non-constant reciprocal factor.

This Part of Algorithm:

- Compute set of matrices S.

The set of matrices depends on

$$
F=a_{r} x_{r}+\cdots+a_{1} x_{1}+a_{0}
$$

not on $d_{1}, d_{2}, \ldots, d_{r}$.

Then $\exists r \times t$ matrix $M=\left(m_{i j}\right) \in S$ of rank $t \leq r$ and a vector

$$
\vec{v}=\left\langle v_{1}, v_{2}, \ldots, v_{t}\right\rangle \in \mathbb{Z}^{t}
$$

such that

$$
\left(\begin{array}{c}
d_{1} \\
\vdots \\
d_{r}
\end{array}\right)=M\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{t}
\end{array}\right)
$$

holds and the factorization given by
$y_{1}^{u_{1}} \cdots y_{t}^{u_{t}} \boldsymbol{F}\left(y_{1}^{m_{11}} \cdots y_{t}^{m_{1 t}}, \ldots, y_{1}^{m_{r 1}} \cdots y_{t}^{m_{r t}}\right)$

$$
=F_{1}\left(y_{1}, \ldots, y_{t}\right) \cdots F_{s}\left(y_{1}, \ldots, y_{t}\right)
$$

in $\mathbb{Z}\left[y_{1}, \ldots, y_{t}\right]$ into irreducibles implies

$$
f(x)=\prod_{i=1}^{s} x^{w_{i}} \boldsymbol{F}_{i}\left(x^{v_{1}}, \ldots, x^{v_{t}}\right)
$$

as a product of polynomials in $\mathbb{Z}[x]$ each of which is either irreducible over \mathbb{Q} or a constant.

This all works for "some" $\left(m_{i j}\right) \in S$.
(1) $\quad d_{i}=m_{i 1} v_{1}+\cdots+m_{i t} v_{t}, \quad 1 \leq i \leq r$
(2) $y_{1}^{u_{1} \cdots y_{t}^{u_{t}} F\left(y_{1}^{m_{11}} \cdots y_{t}^{m_{1 t}}, \ldots, y_{1}^{m_{r 1}} \cdots y_{t}^{m_{r t}}\right)}$

$$
=F_{1}\left(y_{1}, \ldots, y_{t}\right) \cdots F_{s}\left(y_{1}, \ldots, y_{t}\right)
$$

$$
y_{j}=x^{v_{j}}, \quad 1 \leq j \leq t
$$

(3) $\quad f(x)=\prod_{i=1}^{s} x^{w_{i}} \boldsymbol{F}_{i}\left(x^{v_{1}}, \ldots, x^{v_{t}}\right)$

This Part of Algorithm:

- Compute set of matrices S.
- Determine all solutions to (1).
- For each solution, completely factor $J F\left(y_{1}^{m_{11}} \cdots y_{t}^{m_{1 t}}, \ldots, y_{1}^{m_{r 1}} \cdots y_{t}^{m_{r t}}\right)$.
- Substitute $y_{j}=x^{v_{j}}$ to obtain (3)'s.
(3) $\quad f(x)=\prod_{i=1}^{s} x^{w_{i}} F_{i}\left(x^{v_{1}}, \ldots, x^{v_{t}}\right)$

Each $x^{w_{i}} F_{i}\left(x^{v_{1}}, \ldots, x^{v_{t}}\right)$ is a constant or irreducible for some solution to (1).

This Part of Algorithm:

- Compute set of matrices S.
- Determine all solutions to (1).
- For each solution, completely factor $J \boldsymbol{F}\left(y_{1}^{m_{11}} \cdots y_{t}^{m_{1 t}}, \ldots, y_{1}^{m_{r 1}} \cdots y_{t}^{m_{r t}}\right)$.
- Substitute $y_{j}=x^{v_{j}}$ to obtain (3)'s.
- Choose (3) with the largest number of non-constant $x^{w_{i}} F_{i}\left(x^{v_{1}}, \ldots, x^{v_{t}}\right)$.
(3) $\quad f(x)=\prod_{i=1}^{s} x^{w_{i}} F_{i}\left(x^{v_{1}}, \ldots, x^{v_{t}}\right)$

This Part of Algorithm:

- Compute set of matrices S.
- Determine all solutions to (1).
(1) $\quad d_{i}=m_{i 1} v_{1}+\cdots+m_{i t} v_{t}, 1 \leq i \leq r$

Easy Lemma: There's an algorithm that determines for a given integral matrix $\left(m_{i j}\right) \in S$ whether (1) holds for some $v_{j} \in \mathbb{Z}$. If it does, the solution is unique and the algorithm outputs the solution. The algorithm runs in time $O_{r, H}(\log n)$.

This Part of Algorithm:

- Compute set of matrices S.
- Determine all solutions to (1).
- For each solution, completely factor $J \boldsymbol{F}\left(y_{1}^{m_{11}} \cdots y_{t}^{m_{1 t}}, \ldots, y_{1}^{m_{r 1}} \cdots y_{t}^{m_{r t}}\right)$.
(2) $\begin{gathered}y_{1}^{u_{1}} \cdots y_{t}^{u_{t}} F\left(y_{1}^{m_{11}} \cdots y_{t}^{m_{1 t}}, \ldots, y_{1}^{m_{r 1}} \cdots y_{t}^{m_{r t}}\right) \\ =F_{1}\left(y_{1}, \ldots, y_{t}\right) \cdots F_{s}\left(y_{1}, \cdots, y^{2}\right)\end{gathered}$

$$
=F_{1}\left(y_{1}, \ldots, y_{t}\right) \cdots F_{s}\left(y_{1}, \ldots, y_{t}\right)
$$

- If f has no cyclotomic factor but has a reciprocal factor, then the algorithm will give an explicit reciprocal factor.

Does f have a reciprocal factor?
Suppose $w(x)$ is a reciprocal factor.
$w(\alpha)=0 \Longrightarrow \alpha \neq 0$ and $w(1 / \alpha)=0$

$$
\Longrightarrow f(\alpha)=0 \text { and } g(\alpha)=0
$$

where $g(x)=x^{\operatorname{deg} f} f(1 / x) \neq f(x)$
We want to compute $\operatorname{gcd}(f, g)$.

- If f has no cyclotomic factor but has a reciprocal factor, then the algorithm will give an explicit reciprocal factor.

In general, if f and g are sparse polynomials around degree n in $\mathbb{Z}[x]$, how does one compute $\operatorname{gcd}(f, g)$?

Some items to keep in mind:
\rightarrow The Euclidean algorithm will run in time that is polynomial in n, not $\log n$.

Corollary: If $f(x), g(x) \in \mathbb{Z}[x]$ with $f(x)$ or $g(x)$ not divisible by a cyclo-

 tomic polynomial, then $\operatorname{gcd}_{\mathbb{Z}}(f(x), g(x))$ has $O_{r, H}(1)$ terms.Note that if a and b are relatively prime positive integers, then

$$
\begin{gathered}
\operatorname{gcd}\left(x^{a b}-1,\left(x^{a}-1\right)\left(x^{b}-1\right)\right) \\
=\frac{\left(x^{a}-1\right)\left(x^{b}-1\right)}{x-1},
\end{gathered}
$$

which can have arbitrarily many terms.

Idea: The lattice of vectors orthogonal to \vec{v} is $(k-1)$-dimensional so that there exists a vector $\left\langle e_{1}, \ldots, e_{k-1}\right\rangle$ and a ma-
trix \mathcal{M} in \mathbb{Z}^{k-1} satisfying

$$
\left(\begin{array}{c}
d_{1} \\
d_{2} \\
\vdots \\
d_{k}
\end{array}\right)=\mathcal{M} \cdot\left(\begin{array}{c}
e_{1} \\
e_{2} \\
\vdots \\
e_{k-1}
\end{array}\right) .
$$

So

$$
d_{i}=\sum_{j=1}^{k-1} m_{i j} e_{j}
$$

with the $m_{i j} \in \mathbb{Z}$ bounded.

- If f has no cyclotomic factor but has a reciprocal factor, then the algorithm will give an explicit reciprocal factor.
\rightarrow Plaisted (1977) has shown that this problem is at least as hard as any problem in NP

Plaisted's takes f and g to be divisors of $x^{N}-1$ where N is a product of small primes.
We are interested in the case that both f and g do not have a cyclotomic factor.

Theorem (A. Schinzel and M.F.): There is an algorithm which takes as input two polynomials $f(x)$ and $g(x)$ in $\mathbb{Z}[x]$, each of degree $\leq n$ and height $\leq H$ and having $\leq r+1$ nonzero terms, with at least one of $f(x)$ and $g(x)$ free of any cyclotomic factors, and outputs the value of $\operatorname{gcd}_{\mathbb{Z}}(f(x), g(x))$ and runs in time $O_{r, H}(\log n)$.

Theorem (A. Schinzel and M.F.): There is an algorithm which takes as input two polynomials $f(x)$ and $g(x)$ in $\mathbb{Z}[x]$, each of degree $\leq n$ and height $\leq H$ and having $\leq r+1$ nonzero terms, with at least one of $f(x)$ and $g(x)$ free of any cyclotomic factors, and outputs the value of $\operatorname{gcd}_{\mathbb{Z}}(f(x), g(x))$ and runs in time $O_{r, H}(\log n)$.
$f(x)=\sum_{j=1}^{k} a_{j} x^{d_{j}} \rightarrow F_{1}(x)=\sum_{j=1}^{k} a_{j} x_{j}$

$$
d_{i}=\sum_{j=1}^{k-1} m_{i j} e_{j}
$$

Lemma (Bombieri and Zannier): Let

$$
\boldsymbol{F}_{1}, \boldsymbol{F}_{2} \in \mathbb{Q}\left[x_{1}, \ldots, x_{k}\right]
$$

be coprime polynomials. There exists a number $c_{1}\left(F_{1}, F_{2}\right)$ with the following property. If $\vec{u}=\left\langle u_{1}, \ldots, u_{k}\right\rangle \in \mathbb{Z}^{k}$, $\xi \neq 0$ is algebraic and
$F_{1}\left(\xi^{u_{1}}, \ldots, \xi^{u_{k}}\right)=F_{2}\left(\xi^{u_{1}}, \ldots, \xi^{u_{k}}\right)=0$, then either ξ is a root of unity or there exists a non-zero vector $\vec{v} \in \mathbb{Z}^{k}$ having length at most c_{1} and orthogonal to \vec{u}

$$
f(x)=\sum_{i=1}^{k} a_{i} x^{d_{i}}=\sum_{i=1}^{k} a_{i} \prod_{j=1}^{k-1}\left(x^{e_{j}}\right)^{m_{i j}}
$$

$$
\begin{aligned}
& F_{1}^{(2)}\left(y_{1}, \ldots, y_{k-1}\right)=\sum_{i=1}^{k} a_{i} \prod_{j=1}^{k-1} y_{j}^{m_{i j}} \\
& F_{2}^{(2)}\left(y_{1}, \ldots, y_{k-1}\right)=\sum_{i=1}^{k} b_{i} \prod_{j=1}^{k-1} y_{j}^{m_{i j}}
\end{aligned}
$$

$$
F_{1}^{(2)}\left(y_{1}, \ldots, y_{k-1}\right)=\sum_{i=1}^{k} a_{i} \prod_{j=1}^{k-1} y_{j}^{m_{i j}}
$$

Issues to Deal With:

- Bombieri \& Zannier's work requires

$$
\Rightarrow \quad F_{1}^{(2)}\left(x^{e_{1}}, \ldots, x^{e_{k-1}}\right)=f(x)
$$ relatively prime multivariate poly-

$$
F_{2}^{(2)}\left(x^{e_{1}}, \ldots, x^{e_{k-1}}\right)=g(x)
$$ nomials.

Corollary: If $f(x), g(x) \in \mathbb{Z}[x]$ with $f(x)$ or $g(x)$ not divisible by a cyclotomic polynomial, then $\operatorname{gcd}_{\mathbb{Z}}(f(x), g(x))$ has $O_{r, H}(1)$ terms.

Example: For almost any $a_{j}, b_{j} \in \mathbb{Z}$ with $\left|a_{j}\right| \leq 1000$ and $\left|b_{j}\right| \leq 1000$ and positive integers e_{1}, \ldots, e_{100} and f_{1}, \ldots, f_{100}, the greatest common divisor of
$f(x)=\sum_{j=0}^{100} a_{j} x^{e_{j}}$ and $g(x)=\sum_{j=0}^{100} b_{j} x^{f_{j}}$ has $\leq c$ terms.

$$
f(x)=\sum_{j=1}^{k} a_{j} x^{d_{j}} \rightarrow F_{1}(x)=\sum_{j=1}^{k} a_{j} x_{j}
$$

Lemma (Bombieri and Zannier): Let

$$
F_{1}, F_{2} \in \mathbb{Q}\left[x_{1}, \ldots, x_{k}\right]
$$

be coprime polynomials. There exists a number $c_{1}\left(F_{1}, F_{2}\right)$ with the following property. If $f(\xi)=g(\xi)=0$, then there exists a non-zero vector $\vec{v} \in \mathbb{Z}^{k}$ having length at most c_{1} and orthogonal to \vec{u}.

$$
\vec{u}=\left\langle d_{1}, \ldots, d_{k}\right\rangle
$$

Issues to Deal With:

- Bombieri \& Zannier's work require relatively prime multivariate polynomials.

Divide by $\operatorname{gcd}\left(F_{1}^{(2)}, F_{2}^{(2)}\right)$.
Keep track of the gcd's. They are part of $\operatorname{gcd}(f(x), g(x))$.

Issues to Deal With:

- Bombieri \& Zannier's work requires relatively prime multivariate polynomials.
- Bombieri \& Zannier's work requires polynomials.

$$
\begin{aligned}
& F_{1}^{(2)}\left(y_{1}, \ldots, y_{k-1}\right)=\sum_{i=1}^{k} a_{i} \prod_{j=1}^{k-1} y_{j}^{m_{i j}} \\
& F_{2}^{(2)}\left(y_{1}, \ldots, y_{k-1}\right)=\sum_{i=1}^{k} b_{i} \prod_{j=1}^{k-1} y_{j}^{m_{i j}}
\end{aligned}
$$

Issues to Deal With

- Bombieri \& Zannier's work requires relatively prime multivariate polynomials.
- Bombieri \& Zannier's work requires polynomials.

Use $J F_{1}^{(2)}$ and $J F_{2}^{(2)}$.

Issues to Deal With:

- Bombieri \& Zannier's work requires relatively prime multivariate polynomials.
- Bombieri \& Zannier's work requires polynomials.
- Some variables may be missing.

$$
F_{1}^{(2)}\left(y_{1}, \ldots, y_{k-1}\right)=\sum_{i=1}^{k} a_{i} \prod_{j=1}^{k-1} y_{j}^{m_{i j}}
$$

Issues to Deal With:

- Bombieri \& Zannier's work requires relatively prime multivariate polynomials.
- Bombieri \& Zannier's work requires polynomials.
- Some variables may be missing.
- The induction step may end before it ends.

So what?

