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f(x) = 1 + 2x − 2x2 + 4x3 + 4x4 + 2x6 + 4x7

− 4x8 + 8x9 + 8x10
− 2x12

− 4x13

+ 4x14
− 8x15

− 8x16 + 4x18 + 8x19

− 8x20 + 16x21 + 16x22 + 4x24

+ 8x25
− 8x26 + 16x27 + 16x28

f(x) has 25 terms

f(x)2 has 23 terms

f(x) has more terms than its square



Notation:

f(x) = 1 + 2x − 2x2 + 4x3 + 4x4 + 2x6 + 4x7

− 4x8 + 8x9 + 8x10
− 2x12

− 4x13

+ 4x14
− 8x15

− 8x16 + 4x18 + 8x19

− 8x20 + 16x21 + 16x22 + 4x24

+ 8x25
− 8x26 + 16x27 + 16x28

Q(25) ≤ 23

Q(n) = min
f∈Z[x]

# of terms =n

{# of terms of f2}



Early Contributors:

P. Erdős, R. Freud, G. Hajós, L. Kalmár,

L. Rédei, A. Rényi, W. Verdenius

Later Contributors:

D. Coppersmith, J. Davenport, A. Schinzel

Some Problems Considered:

• What happens with f2 replaced by fk ?

• What happens if f !∈ Z[x] ?

• Does Q(n)/n → 0 ? Yes.



Problem (Rényi, 1947): Does Q(n) → ∞ ?

Is it possible that there are f with an arbitrary

number of terms and with f2 having ≤ 100 terms?

Schinzel (1987): Yes.

log log n ! Q(n) ! n1−c for some c > 0



f(x) = 1 + 2x − 2x2 + 4x3 + 4x4 + 2x6 + 4x7

− 4x8 + 8x9 + 8x10
− 2x12

− 4x13

+ 4x14
− 8x15

− 8x16 + 4x18 + 8x19

− 8x20 + 16x21 + 16x22 + 4x24

+ 8x25
− 8x26 + 16x27 + 16x28

What is the smallest n for which Q(n) < n?

Unknown.

Where did the above example come from?



w(x) = 1 + 2x − 2x
2 + 4x

3 + 4x
4

h(x) = w(x)2 = 1 + 4x + 28x
4 + 32x

7 + 16x
8

w(x) · w(xk) has 25 terms if k ≥ 5fk(x) =

h(x) · h(xk) has 25 terms if k ≥ 9fk(x)2 =

What if 5 ≤ k ≤ 8?

f6(x)2 and f8(x)2 have 23 terms

f7(x)2 has 21 terms

f5(x)2 has 25 terms



f(x) = 1 + x3 + x15 + x16 + x32 + x33 + x34 + x35{
reducible



f(x) = 1 + x3 + x15 + x16 + x32 + x33 + x34 + x35

reducible
{



f(x) = 1 + x3 + x15



f(x) = 1 + x3 + x15 + x16



f(x) = 1 + x3 + x15 + x16 + x32



f(x) = 1 + x3 + x15 + x16 + x32 + x33 + x34 + x35

f0(x) = 1

fj+1(x) = fj(x) + xk

where k > deg fj is minimal with fj(x) + xk reducible

f(x) = f7(x)

Why is f7(x) interesting?

There is no f8(x).

The sequence of fj(x) ends here.



7776589

7776589 is prime

Theorem (A. Cohn): Let dndn−1 . . . d1d0 be the
decimal representation of a prime. Then

dnx
n + dn−1x

n−1 + · · · + d1x + d0

is irreducible over the integers.

f(x) = 7x6 + 7x5 + 7x4 + 6x3 + 5x2 + 8x + 9

is my office phone number



Theorem (A. Cohn): Let dndn−1 . . . d1d0 be the
decimal representation of a prime. Then

dnx
n + dn−1x

n−1 + · · · + d1x + d0

is irreducible over the integers.

Results by J. Brillhart, A. Odlyzko, F.:

• The theorem is true in any base.

• Can replace primes with kp where p is prime

and k ≤ 9

• The coefficients being digits can be relaxed.

(sort-of).



f(x) = 7x6 + 7x5 + 7x4 + 6x3 + 5x2 + 8x + 9

f(10) = 7776589

Theorem (A. Cohn): Let

f(x) = dnxn + dn−1xn−1 + · · · + d1x + d0

with f(10) prime and 0 ≤ dj ≤ 9 . Then f(x) is

irreducible over the integers.



f(x) = 7x6 + 7x5 + 7x4 + 6x3 + 5x2 + 8x + 9

f(10) = 7776589

Theorem (F.): Let

f(x) = dnxn + dn−1xn−1 + · · · + d1x + d0

with f(10) prime and 0 ≤ dj ≤ 1030 . Then f(x) is

irreducible over the integers.

Comment: If n ≤ 31, then 0 ≤ dj ≤ 1030 can be
replaced by dj ≥ 0.



f(10) is prime and f(x) is reducible

f(x) is (necessarily) divisible by x2
− 20x + 101

f(x) = x32 + 130x2

+ 5603286754010141567161572637720x

+ 61091041047613095559860106059529



Prime Bits:

37 = (100101)2 is prime

so x
5 + x

2 + 1 is irreducible

f(x) =
n∑

k=0

bkxk ∈ Z[x], f(2) prime, 0 ≤ bk ≤

=⇒ f(x) is irreducible

4



Prime Bits:

f(x) = x10 + 7x5 + 10x4 + 10x3 + 10x2 + 3

37 = (100101)2 is prime

so x
5 + x

2 + 1 is irreducible

f(2) = 1531 is prime, (x2 − 3x + 3)|f(x)

Problem: What’s best possible here?

f(x) =
n∑

k=0

bkxk ∈ Z[x], f(2) prime, 0 ≤ bk ≤

=⇒ f(x) is irreducible

?



Cyclotomic polynomials are the irreducible

factors of x
n

− 1.

Theorem (L. Kronecker): If F (x) ∈ Z[x] is monic,
is irreducible, and has all its roots on {z : |z| = 1},
then F (x) is a cyclotomic polynomial.

p(x) = an(x − α1)(x − α2) · · · (x − αn)

where

M(p(x)) = |an|
∏

1≤j≤n
|αj |>1

|αj|,Mahler Measure:

L(x) = 1 + x − x
3

− x
4

− x
5

− x
6

− x
7 + x

9 + x
10



p(x) = an(x − α1)(x − α2) · · · (x − αn)

where

M(p(x)) = |an|
∏

1≤j≤n
|αj |>1

|αj|,Mahler Measure:

Can these Mahler measures be arbitrarily close to 1?

L(x) = 1 + x − x
3

− x
4

− x
5

− x
6

− x
7 + x

9 + x
10

M(L) = 1.1762808182599175 . . .

L(x) is Lehmer’s polynomial (D. H. Lehmer).

Is this the minimum Mahler measure > 1

for polynomials in Z[x]?



f(x) = x59 + x58 + x54 + x51 + x48 + x47 + x46

+ x45 + x41 + x37 + x36 + x35 + x34 + x31

+ x28 + x25 + x24 + x23 + x22 + x18 + x14

+ x13 + x12 + x11 + x8 + x5 + x + 1

f(x) is a 0,1-polynomial

A. Odlyzko and B. Poonen (1993)
investigated the zeroes of 0,1-polynomials



Images from: http://www.cecm.sfu.ca/organics/papers/odlyzko/support/polyform.html

All roots with degrees ≤ 15 Same roots near −1



Images from: http://www.cecm.sfu.ca/organics/papers/odlyzko/support/polyform.html

All roots with degrees ≤ 15 Same roots near i



f(x) = x59 + x58 + x54 + x51 + x48 + x47 + x46

+ x45 + x41 + x37 + x36 + x35 + x34 + x31

+ x28 + x25 + x24 + x23 + x22 + x18 + x14

+ x13 + x12 + x11 + x8 + x5 + x + 1

Based on their computations, Odlyzko and Poonen
conjectured that if a 0,1-polynomial has a root with
multiplicity > 1, then the root is a cyclotomic root
of unity.

M. Mossinghoff resolved the conjecture with the
above counterexample.



f(x) = x59 + x58 + x54 + x51 + x48 + x47 + x46

+ x45 + x41 + x37 + x36 + x35 + x34 + x31

+ x28 + x25 + x24 + x23 + x22 + x18 + x14

+ x13 + x12 + x11 + x8 + x5 + x + 1

If a 0,1-polynomial has a factor w(x)2 that is the
square of a non-cyclotomic irreducible polynomial,
what might be a good possibility for w(x)?

Mossinghoff worked with Lehmer’s polynomial L(x).
More precisely, he took w(x) = L(−x).

In other words, f(x) is divisible by L(−x)2.



f(x) = 3 + x + 4x2 + x3 + 5x4 + 9x5 + 2x6 + 6x7



The above polynomial is the answer to a homework
problem I have given: Find a polynomial in the
sequence 3, 3 + x, 3 + x + 4x

2, 3 + x + 4x
2 + x

3, ...
(formed from the digits of π) that is reducible.

Idea: If the digits of π are random, some partial
sums of

3 − 1 + 4 − 1 + 5 − 9 + 2 − 6 + · · ·

will be 0 so that x+1 is a factor of some polynomials
in the sequence.

f(x) = 3 + x + 4x2 + x3 + 5x4 + 9x5 + 2x6 + 6x7

+ · · · + 7x16117 + 0x16118 + 3x16119



f(x) = 3 + x + 4x2 + x3 + 5x4 + 9x5 + 2x6 + 6x7

+ · · · + 7x16117 + 0x161198 + 3x16119

The above polynomial is the answer to a homework
problem I have given: Find a polynomial in the
sequence 3, 3 + x, 3 + x + 4x

2, 3 + x + 4x
2 + x

3, ...
(formed from the digits of π) that is reducible.

Problem: Is f(x) the reducible polynomial of least
degree in this sequence?



f(x) = 5x9 + 6x8 + 3x6 + 8x5 + 9x3 + 6x2 + 8x + 3

Background:

A covering of the integers is a finite system of con-
gruences

x ≡ aj (mod mj), j = 1, 2, . . . , r,

with aj and mj integral and with mj ≥ 1 distinct,
such that every integer satisfies at least one of the
congruences.



0 1 2 3 4 5 6 7 8 9 10 11

A covering of the integers is a finite system of con-
gruences

x ≡ aj (mod mj), j = 1, 2, . . . , r,

with aj and mj integral and with mj ≥ 1 distinct,
such that every integer satisfies at least one of the
congruences.

x ≡ 0 (mod 2)
x ≡ 2 (mod 3)
x ≡ 1 (mod 4)
x ≡ 1 (mod 6)
x ≡ 3 (mod 12)

x ≡ 0 (mod 2)
x ≡ 0 (mod 3)
x ≡ 1 (mod 4)
x ≡ 3 (mod 8)
x ≡ 7 (mod 12)
x ≡ 23 (mod 24)



Problem: Given c > 0, is there a covering with
minimum modulus ≥ c ?

Problem: Does there exist a covering consisting of
odd moduli > 1 ?

Theorem (W. Sierpinski): A positive proportion of
odd positive integers k satisfy k×2n+1 is composite
for all non-negative integers n.

Smallest Known k: 78557 (J. Selfridge)



Polynomial Problem: Is there a w(x) ∈ Z[x] with
w(1) "= −1 such that w(x)xn + 1 is reducible over
the rationals for all n ≥ 0 ?

The answer is not known.

f(x) = 5x9 + 6x8 + 3x6 + 8x5 + 9x3 + 6x2 + 8x + 3

Schinzel: f(x) has the property that f(x)xn +12 is
reducible for all n ≥ 0.



f(x) = 5x9 + 6x8 + 3x6 + 8x5 + 9x3 + 6x2 + 8x + 3

Schinzel: f(x) has the property that f(x)xn +12 is
reducible for all n ≥ 0.

n ≡ 0 (mod 2) =⇒ f(x)xn + 12 ≡ 0 (mod x + 1)

n ≡ 2 (mod 3) =⇒ f(x)xn + 12 ≡ 0 (mod x2 + x + 1)

n ≡ 1 (mod 4) =⇒ f(x)xn + 12 ≡ 0 (mod x2 + 1)

n ≡ 1 (mod 6) =⇒ f(x)xn + 12 ≡ 0 (mod x2
− x + 1)

n ≡ 3 (mod 12) =⇒ f(x)xn + 12 ≡ 0 (mod x4
− x2 + 1)

covering of the integers



f(x) = 5x9 + 6x8 + 3x6 + 8x5 + 9x3 + 6x2 + 8x + 3

Schinzel: f(x) has the property that f(x)xn +12 is
reducible for all n ≥ 0.

Theorem (Schinzel): If there is an f(x) ∈ Z[x] with
f(1) "= −1 and f(x)xn + 1 reducible for all n ≥ 0,
then there is a covering of the integers consisting
of all odd moduli > 1.



f(x) = 5x9 + 6x8 + 3x6 + 8x5 + 9x3 + 6x2 + 8x + 3

Schinzel: f(x) has the property that f(x)xn +12 is
reducible for all n ≥ 0.

Theorem (F.): There exists an f(x) ∈ Z+[x] with
f(x)xn + 4 reducible for all n ≥ 0.

Comment: The proof is constructive but it would
produce a very messy f(x).



f(x) =
xn

n!
+

xn−1

(n − 1)!
+ · · · +

x2

2!
+ x + 1

e
x = 1 + x +

x
2

2!
+ · · · +

x
n−1

(n − 1)!
+

x
n

n!
+ · · ·

I. Schur: f(x) is irreducible over the rationals.



f(x) =
xn

n!
+

xn−1

(n − 1)!
+ · · · +

x2

2!
+ x + 1

Theorem (Schur): Let n be an integer ≥ 1, and

let a0, a1, . . . , an be arbitrary integers with |a0| =
|an| = 1. Then

an

x
n

n!
+ an−1

x
n−1

(n − 1)!
+ · · · + a2

x
2

2!
+ a1x + a0

is irreducible over the rationals.



f(x) =
xn

n!
+

xn−1

(n − 1)!
+ · · · +

x2

2!
+ x + 1

Theorem (F.): Let n be an integer ≥ 1, and let

a0, a1, . . . , an be arbitrary integers with |a0| = 1
and 0 < |an| < n. Then

an

xn

n!
+ an−1

xn−1

(n − 1)!
+ · · · + a2

x2

2!
+ a1x + a0

is irreducible over the rationals unless

(an, n) ∈ {(±5, 6), (±7, 10)}.



f(x) = x2 + 1 and g(x) = x4 + 1

Dirichlet’s theorem asserts that a linear polynomial
w(x) which is irreducible over the integers (i.e.,
a polynomial w(x) = ax + b with a and b rela-
tively prime integers) is such that w(m) is prime
for infinitely many integers m.

The analogous result for an arbitrary irreducible
polynomial w(x) ∈ Z[x] is believed to be true (if the
gcd(w(m) : m ∈ Z) = 1), but it is unknown if there
even exists an irreducible polynomial of degree > 1
that takes on infinitely many prime values.

The polynomial f(x) above represents the simplest
unknown case. Is it true that for infinitely many
integers m, the number m2 + 1 is prime?



f(x) = x2 + 1 and g(x) = x4 + 1

Theorem (H. Iwaniec): There are infinitely many
integers m such that either f(m) is a prime or f(m)
is the product of two primes.

Theorem (J.-M. Deshouillers & H. Iwaniec): There
are infinitely many integers m such that f(m) has
a prime factor > m6/5.



f(x) = x2 + 1 and g(x) = x4 + 1

Is it even true that for w(x) ∈ Z[x] an arbitrary
irreducible polynomial (with gcd(w(m) : m ∈ Z) =
1), there are infinitely many integers m such that
w(m) is squarefree (i.e., not divisible by the square
of a prime)?

This is unknown for deg w ≥ 4.

The polynomial g(x) above represents the simplest
unknown case here. Is it true that for infinitely
many integers m, the number m

4 +1 is squarefree?



f(x) = x2 + 1 and g(x) = x4 + 1

Theorem (P. Erdős & C. Hooley): There exist
infinitely many integers m such that g(m) is cube-
free (i.e., not divisible by the cube of a prime).

The polynomial g(x) is interesting for yet another
reason. It is the simplest example of an irreducible
polynomial over the rationals that is also reducible
modulo every prime.



Comment: Such polynomials imply that commonly
used polynomial factoring algorithms run slowly, in
non-polynomial time. However, these algorithms
are preferred over polynomial time algorithms in
part because polynomials that have “few” factors
over the integers and “many” factors modulo all
primes are provably rare.

f(x) = x2 + 1 and g(x) = x4 + 1



!e End


