Seminar Notes: Irreducibility and greatest common divisor algorithms for sparse polynomials (11/29/06)

Joint work with Andrzej Schinzel

Theorem A. There are constants $c_{1}=c_{1}(r, H)$ and $c_{2}=c_{2}(r)$ such that an algorithm exists for determining whether a given nonreciprocal polynomial $f(x) \in \mathbb{Z}[x]$ as above is irreducible and that runs in time $O\left(c_{1} \cdot(\log n)^{c_{2}}\right)$.

Definition 1. For a polynomial $F\left(x_{1}, \ldots, x_{r}, x_{1}^{-1}, \ldots, x_{r}^{-1}\right)$, in the variables x_{1}, \ldots, x_{r} and their reciprocals $x_{1}^{-1}, \ldots, x_{r}^{-1}$, define

$$
J F=x_{1}^{u_{1}} \cdots x_{r}^{u_{r}} F\left(x_{1}, \ldots, x_{r}, x_{1}^{-1}, \ldots, x_{r}^{-1}\right),
$$

where each u_{j} is an integer chosen as small as possible so that $J F$ is a polynomial in x_{1}, \ldots, x_{r}. Then $F\left(x_{1}, \ldots, x_{r}\right) \in \mathbb{Q}\left[x_{1}, \ldots, x_{r}\right]$ is reciprocal if

$$
J F\left(x_{1}^{-1}, \ldots, x_{r}^{-1}\right)= \pm F\left(x_{1}, \ldots, x_{r}\right) .
$$

Some Numbered Equations:

$$
\begin{gather*}
\left(\begin{array}{c}
d_{1} \\
\vdots \\
d_{r}
\end{array}\right)=M\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{t}
\end{array}\right) \tag{1}\\
y_{1}^{u_{1}} \cdots y_{t}^{u_{t}} F\left(y_{1}^{m_{11}} \cdots y_{t}^{m_{1 t}}, \ldots, y_{1}^{m_{r 1}} \cdots y_{t}^{m_{r t}}\right)=F_{1}\left(y_{1}, \ldots, y_{t}\right) \cdots F_{s}\left(y_{1}, \ldots, y_{t}\right) \tag{2}\\
f(x)=\prod_{i=1}^{s} x^{w_{i}} F_{i}\left(x^{v_{1}}, \ldots, x^{v_{t}}\right)=\prod_{i=1}^{s} J F_{i}\left(x^{v_{1}}, \ldots, x^{v_{t}}\right) \tag{3}
\end{gather*}
$$

Easy but Important Point: (1) and (2) imply (3)
Theorem 1 (Schinzel, 1969). Fix

$$
F=F\left(x_{1}, \ldots, x_{r}\right)=a_{r} x_{r}+\cdots+a_{1} x_{1}+a_{0},
$$

where the a_{j} are nonzero integers. There exists a finite computable set of matrices S with integer entries, depending only on F, with the following property: Suppose the vector $\vec{d}=\left\langle d_{1}, d_{2}, \ldots, d_{r}\right\rangle$ is in \mathbb{Z}^{r} with $d_{r}>d_{r-1}>\cdots>d_{1}>0$ and such that $f(x)=F\left(x^{d_{1}}, x^{d_{2}}, \ldots, x^{d_{r}}\right)$ has no nonconstant reciprocal factor. Then there is an $r \times t$ matrix $M=\left(m_{i j}\right) \in S$ of rank $t \leq r$ and a vector $\vec{v}=\left\langle v_{1}, v_{2}, \ldots, v_{t}\right\rangle$ in \mathbb{Z}^{t} such that (1) holds and the factorization given by (2) in $\mathbb{Z}\left[y_{1}, \ldots, y_{t}\right]$ of a polynomial in t variables $y_{1}, y_{2}, \ldots, y_{t}$ as a product of s irreducible polynomials over \mathbb{Q} implies the factorization of $f(x)$ given by (3) as a product of polynomials in $\mathbb{Z}[x]$ each of which is either irreducible over \mathbb{Q} or a constant.

Main Points: - (1) happens for some M from a finite set not depending on $d_{1}, d_{2}, \ldots, d_{r}$ - (1) and (2) with irreducibles imply (3) with irreducibles

Theorem B. There is an algorithm which takes as input two polynomials $f(x)$ and $g(x)$ in $\mathbb{Z}[x]$, each of degree $\leq n$ and height $\leq H$ and having $\leq r+1$ nonzero terms, with at least one of $f(x)$ and $g(x)$ free of cyclotomic factors, and outputs the value of $\operatorname{gcd}_{\mathbb{Z}}(f(x), g(x))$ and runs in time $O\left(c_{5} \log n\right)$ for some constant $c_{5}=c_{5}(r, H)$.

Theorem 2 (Bombieri \& Zannier, 2000). Let

$$
F\left(x_{1}, \ldots, x_{k}\right), G\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{Q}\left[x_{1}, \ldots, x_{k}\right]
$$

be coprime polynomials. There exists an effectively computable number $B(F, G)$ with the following property. If $\vec{u}=\left\langle u_{1}, \ldots, u_{k}\right\rangle \in \mathbb{Z}^{k}, \xi \neq 0$ is algebraic and

$$
F\left(\xi^{u_{1}}, \ldots, \xi^{u_{k}}\right)=G\left(\xi^{u_{1}}, \ldots, \xi^{u_{k}}\right)=0
$$

then either ξ is a root of unity or there exists a nonzero vector $\vec{v} \in \mathbb{Z}^{k}$ having components bounded in absolute value by $B(F, G)$ and orthogonal to \vec{u}.

