Seminar Notes: On Nicol's sequence of reducible polynomials

Problem: Does this ever end?

$$
1+x^{3}+x^{15}+x^{16}+x^{32}+x^{33}+x^{34}+x^{35}+\cdots
$$

Goal: Justify the answer (whatever it is).
Definitions and Notation: Given $f(x) \in \mathbb{C}[x]$ with $f \not \equiv 0, \tilde{f}(x)=x^{\operatorname{deg} f} f(1 / x)$ is the reciprocal of $f(x)$. If $f= \pm \tilde{f}$, then f is called reciprocal.

Comment: If f is reciprocal and α is a root of f, then $1 / \alpha$ is a root of f.
Two-Step Approach: 1. Handle reciprocal factors (there are none).
2. Handle non-reciprocal factors (there is no more than one).

Step 1: Take $g(x)=1+x^{3}+x^{15}+x^{16}+x^{32}+x^{33}+x^{34}+x^{35}$.

- If f is an irreducible reciprocal factor of $F(x)=x^{n}+g(x)$, then it divides $\widetilde{F}(x)$.
- So it divides $g(x) \tilde{g}(x)-x^{\operatorname{deg} g}$.
- So it is either $x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1$ or

$$
x^{64}+x^{61}-x^{60}+x^{54}-\cdots-x^{43}+2 x^{42}+x^{41}-\cdots+x^{10}-x^{4}+x^{3}+1
$$

- In the first case, check $0 \leq n \leq 6$. Done.
- In the second case, f has a root $\alpha=0.58124854-0.96349774 i$ with $1.25<|\alpha|<1.126$. Observe that $|g(\alpha)|<g(1.126)<231<1.125^{47}<|\alpha|^{47}$. So $F(\alpha) \neq 0$ for all $n \geq 1$.

Step 2: Assume $F(x)=x^{n}+g(x)$ is reducible. Let $a(x)$ be an irreducible non-reciprocal factor. If $\tilde{a}(x)$ divides F, write $F(x)=u(x) v(x)$ where $\tilde{a}(x) \nmid u(x)$ and $a(x) \nmid v(x)$. If $\tilde{a}(x)$ does not divide F, consider an irreducible non-reciprocal $b(x)$ such that $a(x) b(x)$ divides F. If $\tilde{b}(x)$ divides F, write $F(x)=u(x) v(x)$ where $\tilde{b}(x) \nmid u(x)$ and $b(x) \nmid v(x)$. If $\tilde{a}(x)$ and $\tilde{b}(x)$ do not divide F, write $F(x)=u(x) v(x)$ where $a(x) \mid u(x)$ and $b(x) \mid v(x)$. In all cases, we may take both u and v to have a positive leading coefficient.

- Can F have a reciprocal factor? Maybe, but u and v are non-reciprocal.
- Lemma. The polynomial $w(x)=u(x) \tilde{v}(x)$ has the following properties:
(i) $w \neq \pm F$ and $w \neq \pm \widetilde{F}$.
(ii) $w \widetilde{w}=F \widetilde{F}$.
(iii) $w(1)= \pm F(1)$.
(iv) $\|w\|=\|F\|$.
(v) w is a 0,1 -polynomial with the same number of non-zero terms as F.

Proof of (v). If $F(x)=\sum_{j=1}^{r} a_{j} x^{d_{j}}$ and $w(x)=\sum_{j=1}^{s} b_{j} x^{e_{j}}$, then

$$
\left(\sum_{j=1}^{s} b_{j}\right)^{2} \leq\left(\sum_{j=1}^{s} b_{j}^{2}\right)^{2}=\left(\sum_{j=1}^{s} a_{j}^{2}\right)^{2}=\left(\sum_{j=1}^{s} a_{j}\right)^{2}=\left(\sum_{j=1}^{s} b_{j}\right)^{2} .
$$

- If $n \geq 83$, then $F \widetilde{F}=1+x^{3}+x^{15}+x^{16}+x^{32}+x^{33}+x^{34}+x^{35}+x^{m}+\cdots$ where $m \geq 48$.
- What can w and \widetilde{w} be given (v), (ii), and $n \geq 83$?

$$
\begin{aligned}
& w(x)=1+x^{3}+\cdots+x^{n} \\
& w(x)=1+x^{3}+x^{15}+\cdots+x^{n} \\
& w(x)=1+x^{3}+x^{15}+x^{16}+\cdots+x^{n}
\end{aligned}
$$

$$
\begin{aligned}
& \widetilde{w}(x)=1+\cdots+x^{n-3}+x^{n} \\
& \widetilde{w}(x)=1+\cdots+x^{n-15}+x^{n-3}+x^{n} \\
& \widetilde{w}(x)=1+\cdots+x^{n-16}+x^{n-15}+x^{n-3}+x^{n}
\end{aligned}
$$

- Given (i), "the non-reciprocal part is irreducible".

Comment: In general, consider a 0 , 1-polynomial $g(x)$ with the property that $g(x)$ is irreducible over the set of 0 , 1-polynomials (that is, $g(x)$ is not the product of two 0 , 1-polynomials of degree $>0)$. Then the non-reciprocal part of $F(x)=x^{n}+g(x)$ is irreducible if $n>3 \operatorname{deg} g$.

