Seminar Notes: On Nicol's sequence of reducible polynomials

Problem: Does this ever end?

$$1 + x^3 + x^{15} + x^{16} + x^{32} + x^{33} + x^{34} + x^{35} + \cdots$$

Goal: Justify the answer (whatever it is).

Definitions and Notation: Given $f(x) \in \mathbb{C}[x]$ with $f \neq 0$, $\tilde{f}(x) = x^{\deg f} f(1/x)$ is the *reciprocal* of f(x). If $f = \pm \tilde{f}$, then f is called *reciprocal*.

Comment: If f is reciprocal and α is a root of f, then $1/\alpha$ is a root of f.

Two-Step Approach: 1. Handle reciprocal factors (there are none).2. Handle non-reciprocal factors (there is no more than one).

Step 1: Take $g(x) = 1 + x^3 + x^{15} + x^{16} + x^{32} + x^{33} + x^{34} + x^{35}$.

- If f is an irreducible reciprocal factor of $F(x) = x^n + g(x)$, then it divides $\widetilde{F}(x)$.
- So it divides $g(x)\tilde{g}(x) x^{\deg g}$.
- So it is either $x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$ or

$$x^{64} + x^{61} - x^{60} + x^{54} - \dots - x^{43} + 2x^{42} + x^{41} - \dots + x^{10} - x^4 + x^3 + 1.$$

- In the first case, check $0 \le n \le 6$. Done.
- In the second case, f has a root $\alpha = 0.58124854 0.96349774i$ with $1.25 < |\alpha| < 1.126$. Observe that $|g(\alpha)| < g(1.126) < 231 < 1.125^{47} < |\alpha|^{47}$. So $F(\alpha) \neq 0$ for all $n \ge 1$.

Step 2: Assume $F(x) = x^n + g(x)$ is reducible. Let a(x) be an irreducible non-reciprocal factor. If $\tilde{a}(x)$ divides F, write F(x) = u(x)v(x) where $\tilde{a}(x) \nmid u(x)$ and $a(x) \nmid v(x)$. If $\tilde{a}(x)$ does not divide F, consider an irreducible non-reciprocal b(x) such that a(x)b(x) divides F. If $\tilde{b}(x)$ divides F, write F(x) = u(x)v(x) where $\tilde{b}(x) \nmid u(x)$ and $b(x) \nmid v(x)$. If $\tilde{a}(x)$ and $\tilde{b}(x)$ do not divide F, write F(x) = u(x)v(x) where a(x)|u(x) and b(x)|v(x). In all cases, we may take both u and v to have a positive leading coefficient.

- Can F have a reciprocal factor? Maybe, but u and v are non-reciprocal.
- Lemma. The polynomial w(x) = u(x) ṽ(x) has the following properties:
 (i) w ≠ ±F and w ≠ ±F̃.
 (ii) ww̃ = FF̃.
 (iii) w(1) = ±F(1).
 (iv) ||w|| = ||F||.
 (v) w is a 0, 1-polynomial with the same number of non-zero terms as F.

Proof of (v). If
$$F(x) = \sum_{j=1}^{r} a_j x^{d_j}$$
 and $w(x) = \sum_{j=1}^{s} b_j x^{e_j}$, then
 $\left(\sum_{j=1}^{s} b_j\right)^2 \le \left(\sum_{j=1}^{s} b_j^2\right)^2 = \left(\sum_{j=1}^{s} a_j^2\right)^2 = \left(\sum_{j=1}^{s} a_j\right)^2 = \left(\sum_{j=1}^{s} b_j\right)^2.$

- If $n \ge 83$, then $F\widetilde{F} = 1 + x^3 + x^{15} + x^{16} + x^{32} + x^{33} + x^{34} + x^{35} + x^m + \cdots$ where $m \ge 48$.
- What can w and \widetilde{w} be given (v), (ii), and $n \ge 83?$

$$\begin{split} w(x) &= 1 + x^3 + \dots + x^n & \widetilde{w}(x) = 1 + \dots + x^{n-3} + x^n \\ w(x) &= 1 + x^3 + x^{15} + \dots + x^n & \widetilde{w}(x) = 1 + \dots + x^{n-15} + x^{n-3} + x^n \\ w(x) &= 1 + x^3 + x^{15} + x^{16} + \dots + x^n & \widetilde{w}(x) = 1 + \dots + x^{n-16} + x^{n-15} + x^{n-3} + x^n \\ \vdots & \vdots & \vdots \end{split}$$

• Given (i), "the non-reciprocal part is irreducible".

Comment: In general, consider a 0, 1-polynomial g(x) with the property that g(x) is irreducible over the set of 0, 1-polynomials (that is, g(x) is not the product of two 0, 1-polynomials of degree > 0). Then the non-reciprocal part of $F(x) = x^n + g(x)$ is irreducible if $n > 3 \deg g$.