A Distribution Problem for Powerfree Values of Irreducible Polynomials by B. Beasley and M. Filaseta

Theorem 2: Let $k \geq(\sqrt{2}-1 / 2) g$. Given any $\gamma>0$, there exists a $\delta=\delta(\gamma)>0$ such that

$$
\sum_{\substack{s_{n+1} \leq X \\ s_{n+1}-s_{n}<X^{\delta}}}\left(s_{n+1}-s_{n}\right)^{\gamma} \sim B(\gamma, f, k) X,
$$

for some constant $B(\gamma, f, k)$ depending only on $\gamma, f(x)$, and k.
Definition 1: Given $f(x) \in \mathbb{Z}[x]$, let $s_{n}=s_{n}(f)$ be the nth positive integer m such that $f(m)$ is k-free. Let

$$
\begin{gather*}
L(h)=L(h, X)=L(h, X, f)=\left|\left\{n \in \mathbb{Z}^{+}: h<s_{n+1}-s_{n} \leq 2 h, X / 2<s_{n+1} \leq X\right\}\right| . \\
L(2 h) \ll \frac{X}{h^{\gamma+\varepsilon}} \tag{2}
\end{gather*}
$$

Comment: (2) \& Theorem $3 \Longrightarrow$ Theorems $1 \& 2$ (sort-of).
Notation: $D=R\left(f, f^{\prime}\right)$, the resultant of f and f^{\prime}

$$
\begin{aligned}
& z=4 g \\
& \mathcal{A}=\{p: p \mid D \text { or } p \leq z\} \\
& Q=\prod_{p \in \mathcal{A}} p^{k} \\
& H=\frac{h \log h}{8 g Q} \\
& \rho(q)=\rho(f, q)=\left|\left\{a \in \mathbb{Z}_{q}: f(a) \equiv 0(\bmod q)\right\}\right| \\
& T \in \mathcal{T}=\left\{2^{j} H: j=0,1, \ldots, J\right\}
\end{aligned}
$$

Lemma 4: Let

$$
F(n)=F(n, h, f)=\sum_{n<m \leq n+h} \sum_{\substack{p>H \\ p^{k} \mid f(m)}} 1 .
$$

If there are no integers m in $(n, n+h]$ such that $f(m)$ is k-free, then

$$
F(n) \geq \frac{h}{4 Q}
$$

Lemma 5: For r a positive integer, define

$$
M_{r}=M_{r}(h, X, f)=\sum_{X / 2<n \leq X} F^{r}(n) .
$$

Then

$$
L(2 h) \lll r \frac{M_{r}}{h^{r+1}}+1 .
$$

Definition 2: Let $S_{r}(T)$ be the number of $2 r$-tuples $\left(p_{1}, \ldots, p_{r}, m_{1}, \ldots, m_{r}\right)$ with $T<p_{1}<p_{2}<\cdots<p_{r} \leq 2 T$ such that, for each $j \in\{1,2, \ldots, r\}$,

$$
\left|m_{1}-m_{j}\right|<h, \quad \frac{X}{2}<m_{j} \leq X+h \leq 2 X, \quad \text { and } \quad p_{j}^{k} \mid f\left(m_{j}\right) .
$$

Notation: $G(n, T)=G(n, T, f)=\sum_{\substack { n<m \leq n+h \\ \begin{subarray}{c}{p^{k} \mid f(m) \\ T<p \leq 2 T{ n < m \leq n + h \\ \begin{subarray} { c } { p ^ { k } | f (m) \\ T < p \leq 2 T } }\end{subarray}} 1$

Lemma 6: Let r be a positive integer. If $r=1$, then

$$
\sum_{X / 2<n \leq X}\binom{G(n, T)}{r} \leq(2 g)^{r} h S_{r}(T) .
$$

If $r>1$, then

$$
\sum_{\substack{X / 2<n \leq X \\ G(n, T) \geq 2 g r}}\binom{G(n, T)}{r} \leq(2 g)^{r} h S_{r}(T) .
$$

Lemma 7: If $T \geq H$ and $r \in \mathbb{Z}^{+}$, then

$$
S_{r}(T) \ll \frac{h^{r-1} X}{T^{(k-1) r} \log ^{r} T}+\frac{h^{r-1} T^{r}}{\log ^{r} T}
$$

Lemma 8: For \mathcal{T} as previously defined,

$$
\sum_{\substack{T \in \mathcal{T} \\ U<T \leq V}} T^{a} \ll \begin{cases}U^{a} & \text { if } a<0 \\ V^{a} & \text { if } a>0\end{cases}
$$

Lemma 9: Let $k \geq(\sqrt{2}-1 / 2) g$. Let $\varepsilon \in(0,(k-1) / k]$ such that

$$
\varepsilon<1-\frac{8 g(g-1)}{(2 k+g)^{2}-4}
$$

If $X^{1-\varepsilon}<T \ll X^{g / k}$, then there is a $\xi=\xi(\varepsilon)>0$ such that

$$
S_{1}(T) \ll X^{1-\xi}
$$

For Proof of Theorem 2:

$$
\begin{aligned}
& j \geq \max \left\{\gamma+\varepsilon^{\prime}, 2\right\}\left(\varepsilon^{\prime} \text { to be chosen depending on } \varepsilon\right) \\
& h \leq X^{\delta^{\prime}}\left(\delta^{\prime} \text { depends on } \varepsilon^{\prime}, j, k, \text { and } \gamma\right) \\
& F_{i}(n)=\sum_{\theta_{i}} G(n, T) \text { for } i \in\{1,2,3,4,5\} \\
& j_{1}=j_{2}=j_{3}=j \text { and } j_{4}=j_{5}=1
\end{aligned}
$$

Five Cases:
Let θ_{1} represent the case that $T \leq X^{1-\varepsilon}$ and $G(n, T) \leq 2 g j$.
Let θ_{2} represent the case that $T>X^{1-\varepsilon}$ and $G(n, T) \leq 2 g j$.
Let θ_{3} represent the case that $T \leq X^{1 /(k j)}$ and $G(n, T)>2 g j$.
Let θ_{4} represent the case that $X^{1 /(k j)}<T \leq X^{1-\varepsilon}$ and $G(n, T)>2 g j$.
Let θ_{5} represent the case that $T>X^{1-\varepsilon}$ and $G(n, T)>2 g j$.

$$
\begin{equation*}
L(2 h) \ll 1+\sum_{i=1}^{5} \frac{1}{h^{j_{i}+1}} \sum_{X / 2<n \leq X} F_{i}^{j_{i}}(n) \tag{5}
\end{equation*}
$$

