Seminar Notes (09/23/05): The factorization of $x^{2}+x$ revisited, Part II (joint work with M. A. Bennett and O. Trifonov)

Notation: $\quad x_{0}=\left(D \mathcal{M}_{2}^{c}\right)^{\frac{M+1}{1-\lambda}}, \quad \mathcal{D}=\frac{\log D}{c \log \mathcal{M}_{2}}+1, \quad c>d \geq 1(c, d \in \mathbb{Z}), \quad t \in(0,1)$
$M=\max \left\{\frac{\log \left(\kappa_{1}\right)}{d \mathcal{D} \log \Omega_{3}}, \frac{\log \left(\mathcal{M}_{2}^{c} \kappa_{2}^{-1}\right)}{\epsilon d \mathcal{D} t \log \left(\mathcal{M}_{2}^{s} \Omega_{4}\right)}, \frac{\lambda \log \left(\kappa_{2} D\right)}{\epsilon d \mathcal{D}(1-t) \log \left(\mathcal{M}_{2}^{s} \Omega_{4}\right)}, \frac{m_{0}}{\mathcal{D}}\right\}$
$\Omega_{3}=\frac{p^{k_{0}(s-1)} L_{1}(s)}{a b^{s} Q\left(s, z_{0}\right)}, \quad \Omega_{4}=\frac{\mathcal{M}_{1}^{s} L_{1}(s)}{\left(a p^{k_{0}}\right)^{s-1} D_{0}^{2} E\left(s, z_{0}\right)}, \quad \kappa_{1}=\max _{\delta \in\{0,1\}} \frac{2 D C_{1, \delta}}{\left(a p^{k_{0}}\right)^{\delta}}, \quad \kappa_{2}=\min _{\delta \in\{0,1\}} \frac{\left(a p^{k_{0}}\right)^{1-\delta}}{2 D_{0}^{1-2 \delta} C_{2, \delta}}$

The undefined notation: The expressions $Q(s, z), E(s, z), C_{1, \delta}, C_{2, \delta}$ come from Lemma 3 below (bounds on $\left|Q_{n}(z)\right|$ and $\left|E_{n}(z)\right|$, themselves defined in the proof). Also, $L_{1}(s)$ comes from a bound on $\mathcal{G}(c, d, n)$; specifically, $\mathcal{G}(c, d, n) \geq L_{1}(s)^{d m}$ for $m>m_{0}$.

Theorem 1. Let p and q be distinct primes. Suppose that there exist positive integers a, b, k_{0}, l_{0} and D_{0} such that

$$
a p^{k_{0}}-b q^{l_{0}}=D_{0}
$$

and write

$$
z_{0}=D_{0} /\left(a p^{k_{0}}\right), \mathcal{M}_{1}=\min \left\{p^{k_{0}}, q^{l_{0}}\right\} \quad \text { and } \mathcal{M}_{2}=\max \left\{p^{k_{0}}, q^{l_{0}}\right\}
$$

Assume further that there exists a rational number satisfying $1<s<1 / z_{0}, \Omega_{3}>1$ and $\Omega_{4}>1$. Set $\lambda=\log \left(\Omega_{4}\right) / \log \left(\mathcal{M}_{2}^{s} \Omega_{4}\right)$. Let D be a positive integer, and fix $\epsilon>0$. Define x_{0} as above. If $x \geq x_{0}$ is an integer and

$$
x^{2}+D x=p^{k} q^{l} y
$$

with k, l, and y nonnegative integers, then $y \geq x^{\lambda-\epsilon}$.

Definition (or Lemma): For positive integers A, B and C, define

$$
P_{A, B, C}(z)=\sum_{r=0}^{C}\binom{A+B+C+1}{r}\binom{A+C-r}{A}(-z)^{r}, \quad Q_{A, B, C}(z)=(-1)^{C} \sum_{r=0}^{A}\binom{A+C-r}{C}\binom{B+r}{r} z^{r}
$$

and

$$
E_{A, B, C}(z)=\sum_{r=0}^{B}\binom{A+r}{r}\binom{A+B+C+1}{A+C+r+1}(-z)^{r}
$$

Lemma 1. The polynomials above satisfy

$$
P_{A, B, C}(z)-(1-z)^{B+C+1} Q_{A, B, C}(z)=z^{A+C+1} E_{A, B, C}(z)
$$

Lemma 2. There is a non-zero integer $D=D(A, B)$ for which

$$
P_{A, B, A}(z) Q_{A+1, B-1, A+1}(z)-Q_{A, B, A}(z) P_{A+1, B-1, A+1}(z)=D z^{2 A+1}
$$

Lemma 3. If $n=d m-\delta$ for $\delta \in\{0,1\}$, then

$$
\left|Q_{n}(z)\right|<C_{1, \delta}(Q(s, z))^{d m} \quad \text { and } \quad\left|E_{n}(z)\right|<C_{2, \delta}(E(s, z))^{d m}
$$

Proof of Theorem 1 (Part II):

- Recall that with $(x+D) / D_{1}=p^{k_{0} c m} y_{1}^{\prime \prime}$ and $x / D_{1}=q^{l_{0} c m} y_{2}^{\prime \prime}$, we reduced the problem to considering

$$
\begin{equation*}
D_{2}=p^{k_{0} c m} y_{1}^{\prime \prime}-q^{l_{0} c m} y_{2}^{\prime \prime} \tag{1}
\end{equation*}
$$

where $D_{2}=D / D_{1}, D_{1}=\operatorname{gcd}(x, x+D), y \geq \min \left\{p^{-\alpha_{1}} y_{1}^{\prime \prime}, q^{-\beta_{1}} y_{2}^{\prime \prime}\right\}, 0 \leq \alpha_{1}<k_{0} c$ and $0 \leq \beta_{1}<l_{0} c$.

- Take $n=d m-\delta$ where $\delta \in\{0,1\}$. Let $A=C=n$ and $B=c m-n-1$. Let $P_{n}(z), Q_{n}(z)$, and $E_{n}(z)$ denote the polynomials in the definition above, and set $\mathcal{G}=\mathcal{G}(c, d, n)$ to be the gcd of the coefficients of $Q_{n}(z)$. Lemma 1 implies then that $P_{n}(z) / \mathcal{G}, Q_{n}(z) / \mathcal{G}$, and $E_{n}(z) / \mathcal{G}$ have integer coefficients.
- Use $z=z_{0}$ in Lemma 1 to deduce

$$
\begin{equation*}
\left(a p^{k_{0}}\right)^{c m} P-\left(b q^{\ell_{0}}\right)^{c m} Q=E \tag{2}
\end{equation*}
$$

where P, Q and E are integers defined by

$$
P=\left(a p^{k_{0}}\right)^{n} P_{n}\left(z_{0}\right) / \mathcal{G}, \quad Q=\left(a p^{k_{0}}\right)^{n} Q_{n}\left(z_{0}\right) / \mathcal{G}, \quad \text { and } \quad E=\left(a p^{k_{0}}\right)^{c m-n-1} D_{0}^{2 n+1} E_{n}\left(z_{0}\right) / \mathcal{G}
$$

- Multiplying (1) by $b^{c m} Q$ and (2) by $y_{2}^{\prime \prime}$, we deduce that

$$
p^{k_{0} c m}\left|b^{c m} Q y_{1}^{\prime \prime}-a^{c m} P y_{2}^{\prime \prime}\right| \leq b^{c m} D|Q|+|E| y_{2}^{\prime \prime}
$$

- Lemma 2 implies that the expression $b^{c m} Q y_{1}^{\prime \prime}-a^{c m} P y_{2}^{\prime \prime}$ is nonzero for at least one of $n=d m$ and $n=d m-1$. Fix δ accordingly. Then $p^{k_{0} c m} \leq b^{c m} D|Q|+|E| y_{2}^{\prime \prime}$. The idea is to show that $|Q|$ and $|E|$ are not too large and deduce a lower bound on $y_{2}^{\prime \prime}$.
- We show later (at the end of these notes) that if $y<x^{\lambda}$, then

$$
\begin{equation*}
d m>\max \left\{\frac{\log \left(\kappa_{1}\right)}{\log \Omega_{3}}, \frac{\log \left(\mathcal{M}_{2}^{c} \kappa_{2}^{-1}\right)}{\epsilon t \log \left(\mathcal{M}_{2}^{s} \Omega_{4}\right)}, \frac{\lambda \log \left(\kappa_{2} D\right)}{\epsilon(1-t) \log \left(\mathcal{M}_{2}^{s} \Omega_{4}\right)}, d m_{0}\right\} \tag{3}
\end{equation*}
$$

- Using the definition of Q and the lower bound on \mathcal{G}, we have

$$
|Q|<\frac{\left(a p^{k_{0}}\right)^{d m-\delta} C_{1, \delta} Q\left(s, z_{0}\right)^{d m}}{L_{1}(s)^{d m}} \leq \frac{\kappa_{1}}{2 D}\left(\frac{a p^{k_{0}} Q\left(s, z_{0}\right)}{L_{1}(s)}\right)^{d m}
$$

- From (3), $\kappa_{1}<\Omega_{3}^{d m}$. The definition of Ω_{3} and $p^{k_{0} c m} \leq b^{c m} D|Q|+|E| y_{2}^{\prime \prime}$ imply $y_{2}^{\prime \prime}>p^{k_{0} c m} /(2|E|)$.
- Note that $|E|<\left(\left(a p^{k_{0}}\right)^{(c-d) m+\delta-1} D_{0}^{2 d m+1-2 \delta} C_{2, \delta} E\left(s, z_{0}\right)^{d m}\right) / L_{1}(s)^{d m}$ implies

$$
y_{2}^{\prime \prime}>\kappa_{2}\left(\frac{p^{k_{0}} L_{1}(s)}{a^{s-1} D_{0}^{2} E\left(s, z_{0}\right)}\right)^{d m}=\kappa_{2} \Omega_{4}^{d m}\left(\frac{p^{k_{0}}}{\mathcal{M}_{1}}\right)^{c m} \geq \kappa_{2} \Omega_{4}^{d m}
$$

- From (1), $y_{1}^{\prime \prime} \geq\left(q^{l_{0}} / p^{k_{0}}\right)^{c m} y_{2}^{\prime \prime}>\kappa_{2} \Omega_{4}^{d m}\left(q^{l_{0}} / \mathcal{M}_{1}\right)^{c m} \geq \kappa_{2} \Omega_{4}^{d m}$.
- Since $y \geq \min \left\{p^{-\alpha_{1}} y_{1}^{\prime \prime}, q^{-\beta_{1}} y_{2}^{\prime \prime}\right\} \geq \mathcal{M}_{2}^{-c} \min \left\{y_{1}^{\prime \prime}, y_{2}^{\prime \prime}\right\}$, we deduce $\log y \geq-\log \left(\mathcal{M}_{2}^{c}\right)+\min \left\{\log y_{1}^{\prime \prime}, \log y_{2}^{\prime \prime}\right\}$.
- From $x=D_{1} q^{l_{0} c m} y_{2}^{\prime \prime} \leq D_{1} p^{k_{0} c m} y_{1}^{\prime \prime}$ and $D_{1} \leq D$, we have $\log x \leq \log D+d m \log \left(\mathcal{M}_{2}^{s}\right)+\min \left\{\log y_{1}^{\prime \prime}, \log y_{2}^{\prime \prime}\right\}$.
- If u and v are positive numbers, then the function $(w-u) /(w+v)$ is increasing. It follows that

$$
\frac{\log y}{\log x} \geq \frac{-\log \left(\mathcal{M}_{2}^{c}\right)+\min \left\{\log y_{1}^{\prime \prime}, \log y_{2}^{\prime \prime}\right\}}{\log D+d m \log \left(\mathcal{M}_{2}^{s}\right)+\min \left\{\log y_{1}^{\prime \prime}, \log y_{2}^{\prime \prime}\right\}}>\frac{-\log \left(\mathcal{M}_{2}^{c}\right)+\log \left(\kappa_{2} \Omega_{4}^{d m}\right)}{\log D+d m \log \left(\mathcal{M}_{2}^{s}\right)+\log \left(\kappa_{2} \Omega_{4}^{d m}\right)}
$$

- Hence, $y \geq x^{\theta}$ where $\theta=\frac{\log \left(\Omega_{4}\right)-\log \left(\mathcal{M}_{2}^{c} \kappa_{2}^{-1}\right) /(d m)}{\log \left(\mathcal{M}_{2}^{s} \Omega_{4}\right)+\log \left(\kappa_{2} D\right) /(d m)}$.
- With a little effort, one checks that $\theta>\lambda-\epsilon$ follows from (3). Indeed, this is how M was chosen.
- If $y<x^{\lambda}$, then $\min \left\{p^{-\alpha_{1}} y_{1}^{\prime \prime}, q^{-\beta_{1}} y_{2}^{\prime \prime}\right\}<x^{\lambda}$ so that either

$$
x=D_{1} q^{l_{0} c m} y_{2}^{\prime \prime}=D_{1} q^{l_{0} c m} q^{\beta_{1}} q^{-\beta_{1}} y_{2}^{\prime \prime}<D q^{l_{0} c m} q^{l_{0} c} x^{\lambda} \quad \Longrightarrow \quad q^{l_{0} c m}>x^{1-\lambda} /\left(D q^{l_{0} c}\right)
$$

or, similarly from $x+D=D_{1} p^{k_{0} c m} y_{1}^{\prime \prime}$, we have $p^{k_{0} c m}>x^{1-\lambda} /\left(D p^{k_{0} c}\right)$. Therefore,

$$
m>\min \left\{\frac{(1-\lambda) \log x-\log \left(D q^{l_{0} c}\right)}{\log \left(q^{l_{0} c}\right)}, \frac{(1-\lambda) \log x-\log \left(D p^{k_{0} c}\right)}{\log \left(p^{k_{0} c}\right)}\right\} .
$$

The condition $x \geq x_{0}$ implies

$$
(1-\lambda) \log x \geq(M+1) \log \left(D \mathcal{M}_{2}^{c}\right) \geq M \log \left(D \mathcal{M}_{2}^{c}\right)+\max \left\{\log \left(D p^{k_{0} c}\right), \log \left(D q^{l_{0} c}\right)\right\} .
$$

Hence, $m>M \log \left(D \mathcal{M}_{2}^{c}\right) / \max \left\{\log \left(q^{l_{0} c}\right), \log \left(p^{k_{0} c}\right)\right\}=M \log \left(D \mathcal{M}_{2}^{c}\right) / \log \left(\mathcal{M}_{2}^{c}\right)=M \mathcal{D}$. It follows that

$$
\begin{equation*}
d m>\max \left\{\frac{\log \left(\kappa_{1}\right)}{\log \Omega_{3}}, \frac{\log \left(\mathcal{M}_{2}^{c} \kappa_{2}^{-1}\right)}{\epsilon t \log \left(\mathcal{M}_{2}^{s} \Omega_{4}\right)}, \frac{\lambda \log \left(\kappa_{2} D\right)}{\epsilon(1-t) \log \left(\mathcal{M}_{2}^{s} \Omega_{4}\right)}, d m_{0}\right\} \tag{4}
\end{equation*}
$$

