
Seminar Notes (09/16/05): The factorization of x2 + x revisited, Part I
(joint work with M. A. Bennett and O. Trifonov)
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Notation for Later: Ω3 = Ω3(s), Ω4 = Ω4(s), κ1, κ2

Theorem 1. Let p and q be distinct primes. Suppose that there exist positive integers a, b, k0, l0 and D0

such that
apk0 − bql0 = D0,

and write
z0 = D0/(apk0), M1 = min{pk0 , ql0} and M2 = max{pk0 , ql0}.

Assume further that there exists a rational number s satisfying 1 < s < 1/z0, Ω3 > 1 and Ω4 > 1. Set
λ = log(Ω4)/ log(Ms

2 Ω4). Let D be a positive integer, and fix ε > 0. Define x0 as above. If x ≥ x0 is an
integer and

x2 + Dx = pkqly

with k, l, and y nonnegative integers, then y ≥ xλ−ε.

Corollary 1. Let p, q and λ = λ(p, q) be as in the table below.

p q λ(p, q) p q λ(p, q)
2 3 0.27 3 11 0.32
2 5 0.25 5 11 0.19
3 5 0.21 2 13 0.05
2 7 0.25 3 13 0.22
3 7 0.03 5 13 0.16
5 7 0.22 7 13 0.09
2 11 0.05 11 13 0.03

Let D be an integer satisfying 1 ≤ D ≤ 100. Then, if we write

x2 + Dx = pkqly,

for k, l and y nonnegative integers, we have y ≥ xλ, unless x ≤ 1000 or (p, q, x,D) is in the set

{(2, 3, 32768, 37), (2, 3, 65536, 74), (2, 3, 1458, 78), (2, 5, 3072, 53),
(2, 7, 1024, 5), (2, 7, 2048, 10), (5, 7, 2401, 99), (3, 11, 14580, 61),

(3, 11, 1771470, 91), (3, 11, 6561, 94), (5, 11, 1250, 81), (3, 13, 2187, 10),
(3, 13, 4374, 20), (3, 13, 6561, 30)}.

Definition (or Lemma): For positive integers A, B and C, define
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and
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Lemma 1. The polynomials above satisfy

PA,B,C(z) − (1 − z)B+C+1QA,B,C(z) = zA+C+1EA,B,C(z).

Lemma 2. There is a non-zero integer D = D(A,B) for which

PA,B,A(z)QA+1,B−1,A+1(z) − QA,B,A(z)PA+1,B−1,A+1(z) = Dz2A+1.

Proof of Theorem 1 (Part I):

• Note it suffices to consider gcd(y, pq) = 1.

• Define D1 = gcd(x, x + D) = pαqβy0 with gcd(pq, y0) = 1. Observe that x/D1 and (x + D)/D1

are relatively prime with product pk−2αql−2βy/y2
0 . If either x/D1 or (x + D)/D1 is coprime to pq, then

y/y2
0 ≥ x/D1 so that y ≥ x/D. In this case, λ < 1 and x ≥ D1/(1−λ) imply y ≥ xλ. Therefore, we can

suppose p divides (x + D)/D1 and q divides x/D1 (or something like that).

• Set D2 = D/D1. Then D2 = pk−2αy1 − ql−2βy2, where y = y2
0y1y2. We will show y1 or y2 is ≥ xλ−ε.

• Write s = c/d with gcd(c, d) = 1. Take m1, m2, 0 ≤ α1 < k0c and 0 ≤ β1 < l0c integers satisfying
k−2α = k0cm1+α1 and l−2β = l0cm2+β1. Set y′

1 = pα1y1 and y′
2 = qβ1y2. Then D2 = pk0cm1y′

1−ql0cm2y′
2.

• Take m = min{m1,m2}. Then
D2 = pk0cmy′′

1 − ql0cmy′′
2 (1)

where either y′′
1 = y′

1 or y′′
2 = y′

2 and y ≥ min{p−α1y′′
1 , q−β1y′′

2}.
• Take n = dm − δ where δ ∈ {0, 1}. Let A = C = n and B = cm − n − 1. Let Pn(z), Qn(z), and En(z)

denote the polynomials in the definition above, and set G = G(c, d, n) to be the gcd of the coefficients of
Qn(z). Lemma 1 implies then that Pn(z)/G, Qn(z)/G, and En(z)/G have integer coefficients.

• Use z = z0 in Lemma 1 to deduce(
apk0

)cm
P − (

bq`0
)cm

Q = E (2)

where P , Q and E are integers defined by

P = (apk0)nPn (z0) /G, Q = (apk0)nQn (z0) /G, and E = (apk0)cm−n−1D2n+1
0 En (z0) /G.

• Multiplying (1) by bcmQ and (2) by y′′
2 , we deduce that

pk0cm
∣∣bcmQy′′

1 − acmPy′′
2

∣∣ ≤ bcmD|Q| + |E|y′′
2 .

• Lemma 2 implies that the expression bcmQy′′
1 − acmPy′′

2 is nonzero for at least one of n = dm and
n = dm − 1. Fix δ accordingly. Then pk0cm ≤ bcmD|Q| + |E|y′′

2 . The idea is to show that |Q| and |E| are
not too large and deduce a lower bound on y′′

2 .

• If y < xλ, then min{p−α1y′′
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2} < xλ so that either
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or, similarly from x + D = D1p
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The condition x ≥ x0 implies
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