Seminar Notes (09/16/05): The factorization of $x^{2}+x$ revisited, Part I (joint work with M. A. Bennett and O. Trifonov)

Notation:

$$
\begin{gathered}
x_{0}=\left(D \mathcal{M}_{2}^{c}\right)^{\frac{M+1}{1-\lambda}}, \quad \mathcal{D}=\frac{\log D}{c \log \mathcal{M}_{2}}+1, \quad c>d \geq 1(c, d \in \mathbb{Z}), \quad t \in(0,1) \\
M=\max \left\{\frac{\log \left(\kappa_{1}\right)}{d \mathcal{D} \log \Omega_{3}}, \frac{\log \left(\mathcal{M}_{2}^{c} \kappa_{2}^{-1}\right)}{\epsilon d \mathcal{D} t \log \left(\mathcal{M}_{2}^{s} \Omega_{4}\right)}, \frac{\lambda \log \left(\kappa_{2} D\right)}{\epsilon d \mathcal{D}(1-t) \log \left(\mathcal{M}_{2}^{s} \Omega_{4}\right)}, \frac{m_{0}}{\mathcal{D}}\right\} .
\end{gathered}
$$

Notation for Later: $\Omega_{3}=\Omega_{3}(s), \Omega_{4}=\Omega_{4}(s), \kappa_{1}, \kappa_{2}$

Theorem 1. Let p and q be distinct primes. Suppose that there exist positive integers a, b, k_{0}, l_{0} and D_{0} such that

$$
a p^{k_{0}}-b q^{l_{0}}=D_{0}
$$

and write

$$
z_{0}=D_{0} /\left(a p^{k_{0}}\right), \mathcal{M}_{1}=\min \left\{p^{k_{0}}, q^{l_{0}}\right\} \quad \text { and } \mathcal{M}_{2}=\max \left\{p^{k_{0}}, q^{l_{0}}\right\}
$$

Assume further that there exists a rational number s satisfying $1<s<1 / z_{0}, \Omega_{3}>1$ and $\Omega_{4}>1$. Set $\lambda=\log \left(\Omega_{4}\right) / \log \left(\mathcal{M}_{2}^{s} \Omega_{4}\right)$. Let D be a positive integer, and fix $\epsilon>0$. Define x_{0} as above. If $x \geq x_{0}$ is an integer and

$$
x^{2}+D x=p^{k} q^{l} y
$$

with k, l, and y nonnegative integers, then $y \geq x^{\lambda-\epsilon}$.

Corollary 1. Let p, q and $\lambda=\lambda(p, q)$ be as in the table below.

p	q	$\lambda(p, q)$	p	q	$\lambda(p, q)$
2	3	0.27	3	11	0.32
2	5	0.25	5	11	0.19
3	5	0.21	2	13	0.05
2	7	0.25	3	13	0.22
3	7	0.03	5	13	0.16
5	7	0.22	7	13	0.09
2	11	0.05	11	13	0.03

Let D be an integer satisfying $1 \leq D \leq 100$. Then, if we write

$$
x^{2}+D x=p^{k} q^{l} y
$$

for k, l and y nonnegative integers, we have $y \geq x^{\lambda}$, unless $x \leq 1000$ or (p, q, x, D) is in the set

$$
\begin{gathered}
\{(2,3,32768,37),(2,3,65536,74),(2,3,1458,78),(2,5,3072,53) \\
(2,7,1024,5),(2,7,2048,10),(5,7,2401,99),(3,11,14580,61) \\
(3,11,1771470,91),(3,11,6561,94),(5,11,1250,81),(3,13,2187,10)
\end{gathered}
$$

$$
(3,13,4374,20),(3,13,6561,30)\}
$$

Definition (or Lemma): For positive integers A, B and C, define

$$
P_{A, B, C}(z)=\sum_{r=0}^{C}\binom{A+B+C+1}{r}\binom{A+C-r}{A}(-z)^{r}
$$

$$
Q_{A, B, C}(z)=(-1)^{C} \sum_{r=0}^{A}\binom{A+C-r}{C}\binom{B+r}{r} z^{r}
$$

and

$$
E_{A, B, C}(z)=\sum_{r=0}^{B}\binom{A+r}{r}\binom{A+B+C+1}{A+C+r+1}(-z)^{r}
$$

Lemma 1. The polynomials above satisfy

$$
P_{A, B, C}(z)-(1-z)^{B+C+1} Q_{A, B, C}(z)=z^{A+C+1} E_{A, B, C}(z)
$$

Lemma 2. There is a non-zero integer $D=D(A, B)$ for which

$$
P_{A, B, A}(z) Q_{A+1, B-1, A+1}(z)-Q_{A, B, A}(z) P_{A+1, B-1, A+1}(z)=D z^{2 A+1}
$$

Proof of Theorem 1 (Part I):

- Note it suffices to consider $\operatorname{gcd}(y, p q)=1$.
- Define $D_{1}=\operatorname{gcd}(x, x+D)=p^{\alpha} q^{\beta} y_{0}$ with $\operatorname{gcd}\left(p q, y_{0}\right)=1$. Observe that x / D_{1} and $(x+D) / D_{1}$ are relatively prime with product $p^{k-2 \alpha} q^{l-2 \beta} y / y_{0}^{2}$. If either x / D_{1} or $(x+D) / D_{1}$ is coprime to $p q$, then $y / y_{0}^{2} \geq x / D_{1}$ so that $y \geq x / D$. In this case, $\lambda<1$ and $x \geq D^{1 /(1-\lambda)}$ imply $y \geq x^{\lambda}$. Therefore, we can suppose p divides $(x+D) / D_{1}$ and q divides x / D_{1} (or something like that).
- Set $D_{2}=D / D_{1}$. Then $D_{2}=p^{k-2 \alpha} y_{1}-q^{l-2 \beta} y_{2}$, where $y=y_{0}^{2} y_{1} y_{2}$. We will show y_{1} or y_{2} is $\geq x^{\lambda-\epsilon}$.
- Write $s=c / d$ with $\operatorname{gcd}(c, d)=1$. Take $m_{1}, m_{2}, 0 \leq \alpha_{1}<k_{0} c$ and $0 \leq \beta_{1}<l_{0} c$ integers satisfying $k-2 \alpha=k_{0} c m_{1}+\alpha_{1}$ and $l-2 \beta=l_{0} c m_{2}+\beta_{1}$. Set $y_{1}^{\prime}=p^{\alpha_{1}} y_{1}$ and $y_{2}^{\prime}=q^{\beta_{1}} y_{2}$. Then $D_{2}=p^{k_{0} c m_{1}} y_{1}^{\prime}-q^{l_{0} c m_{2}} y_{2}^{\prime}$.
- Take $m=\min \left\{m_{1}, m_{2}\right\}$. Then

$$
\begin{equation*}
D_{2}=p^{k_{0} c m} y_{1}^{\prime \prime}-q^{l_{0} c m} y_{2}^{\prime \prime} \tag{1}
\end{equation*}
$$

where either $y_{1}^{\prime \prime}=y_{1}^{\prime}$ or $y_{2}^{\prime \prime}=y_{2}^{\prime}$ and $y \geq \min \left\{p^{-\alpha_{1}} y_{1}^{\prime \prime}, q^{-\beta_{1}} y_{2}^{\prime \prime}\right\}$.

- Take $n=d m-\delta$ where $\delta \in\{0,1\}$. Let $A=C=n$ and $B=c m-n-1$. Let $P_{n}(z), Q_{n}(z)$, and $E_{n}(z)$ denote the polynomials in the definition above, and set $\mathcal{G}=\mathcal{G}(c, d, n)$ to be the gcd of the coefficients of $Q_{n}(z)$. Lemma 1 implies then that $P_{n}(z) / \mathcal{G}, Q_{n}(z) / \mathcal{G}$, and $E_{n}(z) / \mathcal{G}$ have integer coefficients.
- Use $z=z_{0}$ in Lemma 1 to deduce

$$
\begin{equation*}
\left(a p^{k_{0}}\right)^{c m} P-\left(b q^{\ell_{0}}\right)^{c m} Q=E \tag{2}
\end{equation*}
$$

where P, Q and E are integers defined by

$$
P=\left(a p^{k_{0}}\right)^{n} P_{n}\left(z_{0}\right) / \mathcal{G}, \quad Q=\left(a p^{k_{0}}\right)^{n} Q_{n}\left(z_{0}\right) / \mathcal{G}, \quad \text { and } \quad E=\left(a p^{k_{0}}\right)^{c m-n-1} D_{0}^{2 n+1} E_{n}\left(z_{0}\right) / \mathcal{G}
$$

- Multiplying (1) by $b^{c m} Q$ and (2) by $y_{2}^{\prime \prime}$, we deduce that

$$
p^{k_{0} c m}\left|b^{c m} Q y_{1}^{\prime \prime}-a^{c m} P y_{2}^{\prime \prime}\right| \leq b^{c m} D|Q|+|E| y_{2}^{\prime \prime}
$$

- Lemma 2 implies that the expression $b^{c m} Q y_{1}^{\prime \prime}-a^{c m} P y_{2}^{\prime \prime}$ is nonzero for at least one of $n=d m$ and $n=d m-1$. Fix δ accordingly. Then $p^{k_{0} c m} \leq b^{c m} D|Q|+|E| y_{2}^{\prime \prime}$. The idea is to show that $|Q|$ and $|E|$ are not too large and deduce a lower bound on $y_{2}^{\prime \prime}$.
- If $y<x^{\lambda}$, then $\min \left\{p^{-\alpha_{1}} y_{1}^{\prime \prime}, q^{-\beta_{1}} y_{2}^{\prime \prime}\right\}<x^{\lambda}$ so that either

$$
x=D_{1} q^{l_{0} c m} y_{2}^{\prime \prime}=D_{1} q^{l_{0} c m} q^{\beta_{1}} q^{-\beta_{1}} y_{2}^{\prime \prime}<D q^{l_{0} c m} q^{l_{0} c} x^{\lambda} \quad \Longrightarrow \quad q^{l_{0} c m}>x^{1-\lambda} /\left(D q^{l_{0} c}\right)
$$

or, similarly from $x+D=D_{1} p^{k_{0} c m} y_{1}^{\prime \prime}$, we have $p^{k_{0} c m}>x^{1-\lambda} /\left(D p^{k_{0} c}\right)$. Therefore,

$$
m>\min \left\{\frac{(1-\lambda) \log x-\log \left(D q^{l_{0} c}\right)}{\log \left(q^{l_{0} c}\right)}, \frac{(1-\lambda) \log x-\log \left(D p^{k_{0} c}\right)}{\log \left(p^{k_{0} c}\right)}\right\}
$$

The condition $x \geq x_{0}$ implies

$$
(1-\lambda) \log x \geq(M+1) \log \left(D \mathcal{M}_{2}^{c}\right) \geq M \log \left(D \mathcal{M}_{2}^{c}\right)+\max \left\{\log \left(D p^{k_{0} c}\right), \log \left(D q^{l_{0} c}\right)\right\} .
$$

Hence, $m>M \log \left(D \mathcal{M}_{2}^{c}\right) / \max \left\{\log \left(q^{l_{0} c}\right), \log \left(p^{k_{0} c}\right)\right\}=M \log \left(D \mathcal{M}_{2}^{c}\right) / \log \left(\mathcal{M}_{2}^{c}\right)=M \mathcal{D}$. It follows that

$$
d m>\max \left\{\frac{\log \left(\kappa_{1}\right)}{\log \Omega_{3}}, \frac{\log \left(\mathcal{M}_{2}^{c} \kappa_{2}^{-1}\right)}{\epsilon t \log \left(\mathcal{M}_{2}^{s} \Omega_{4}\right)}, \frac{\lambda \log \left(\kappa_{2} D\right)}{\epsilon(1-t) \log \left(\mathcal{M}_{2}^{s} \Omega_{4}\right)}, d m_{0}\right\}
$$

