Seminar Notes 02/07/05

Subject Matter: On rational values of $\phi(n!) / m!$ and $\sigma(n!) / m$!

Joint Work With: Dan Baczkowski

Florian Luca's Result: Let f denote one of the arithmetic functions ϕ, σ and τ, and let r be a fixed rational number. Then there are finitely many pairs of positive integers n and m for which $f(n!) / m!=r$.

Theorem 1: Let f denote one of the arithmetic functions ϕ and σ, and let k be a fixed positive integer. Then there are finitely many positive integers a, b, n, and m such that

$$
b \cdot f(n!)=a \cdot m!, \quad \operatorname{gcd}(a, b)=1 \quad \text { and } \quad \omega(a b) \leq k
$$

Theorem 2: Let $t>0$. Then there are finitely many positive integers a, b, n, and m such that

$$
b \cdot \phi(n!)=a \cdot m!, \quad \operatorname{gcd}(a, b)=1 \quad \text { and } \quad \omega(a b) \leq \log ^{t}(n m)
$$

Lemma 1: Let n be a positive integer, and let q be a prime. Then

$$
\nu_{q}(n!)=\frac{n-s_{q}(n)}{q-1}
$$

where $s_{q}(n)$ is the sum of the base q digits of n.

Corollary 1: Let n be a positive integer, and let q be a prime. Then

$$
\nu_{q}(n!)=\frac{n}{q-1}+O\left(\frac{\log n}{\log q}\right)
$$

where the implied constant is absolute.

Lemma 2: Let n and m be integers. If n is sufficiently large and

$$
\begin{equation*}
m \geq n+\frac{n}{\log n}+O\left(\frac{n}{\log ^{2} n}\right) \tag{*}
\end{equation*}
$$

then the interval $(n, m]$ contains $\gg m / \log ^{2} m$ prime numbers.
Lemma 3: Fix $M>0$. Then there is an absolute constant $c_{1}>0$ and a constant $c_{2}=c_{2}(M)>0$ such that

$$
\pi(x ; b, a)=\frac{\pi(x)}{\phi(b)}+E, \quad \text { where } \quad|E| \leq c_{2} x \exp \left(-c_{1} \sqrt{\log x}\right)
$$

for $x \geq 2$ and every choice of relatively prime integers a and b with $1 \leq b \leq(\log x)^{M}$.

Proof of Theorem 2:

- It suffices to show n is bounded, so assume n is large and (a, b, n, m) is as in Theorem 2.
- Establish (*). To do this, take $M=t+2$ and $q \leq \log ^{M} n$ with $q \nmid a b$. Use Corollary 1 and Lemma 3 to obtain

$$
\nu_{q}(b \cdot \phi(n!)) \geq \nu_{q}(\phi(n!)) \geq \frac{n}{q-1}+\frac{n}{(q-1) \log n}+O\left(\frac{n}{q \log ^{2} n}\right)
$$

Combine this with an application of Corollary 1 to estimate $\nu_{q}(a \cdot m!)$.

- Apply Lemma 2.

