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One can determine then for which eachw(x) is a divisor.
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For generalf(x) andg(x), there may be some.
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Theorem (K. Ford, S. Konyagin, F.): Let f(x) and
g(x) in Z[x] with

f(0) 6= 0, g(0) 6= 0, and gcd(f(x), g(x)) = 1.

Let r1 and r2 denote the number of non-zero terms in
f(x) andg(x), respectively. If

n ≥ max

{
2 × 52T−1, 2 max

{
deg f, deg g

}(
5T−1 +

1

4

)}
where

T = 2 ‖f‖2 + 2 ‖g‖2 + 2r1 + 2r2 − 7,

then the non-reciprocal part off(x)xn + g(x) is irre-
ducible or identically±1 except for obvious situations.
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Good News:Obvious situations don’t occur!!

Not-So-Good News:Non-reciprocal part is irreducible if

n > 2607703208923339843767.
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Theorem (M. Matthews Jr. & F.): Let f(x) andg(x)

be0, 1-polynomials with

f(0) = g(0) = 1 and gcd(f(x), g(x)) = 1.

If
n > deg g + 2 max{deg f, deg g},

then the non-reciprocal part off(x)xn + g(x) is irre-
ducible or identically1.

Where does this result come from?
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b(x)ã(x) = g(x)f̃(x)

a(x)b̃(x)x2N+deg a−deg b = f(x)g̃(x)x2N+deg f−deg g
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(
a(x)xN+ b(x)

)(
b̃(x)xN+deg a−deg b + ã(x)

)
=

(
f(x)xN+ g(x)

)(
g̃(x)xN+deg f−deg g + f̃(x)

)
b(x)ã(x) = g(x)f̃(x)

a(x)b̃(x)x2N+deg a−deg b = f(x)g̃(x)x2N+deg f−deg g

a(x)ã(x)xN + b(x)b̃(x)xN+deg a−deg b

= f(x)f̃(x)xN + g(x)g̃(x)xN+deg f−deg g

X



(
a(x)xN+ b(x)

)(
b̃(x)xN+deg a−deg b + ã(x)

)
=

(
f(x)xN+ g(x)

)(
g̃(x)xN+deg f−deg g + f̃(x)

)



(
a(x)xN+ b(x)

)(
b̃(x)xN+deg a−deg b + ã(x)

)
=

(
f(x)xN+ g(x)

)(
g̃(x)xN+deg f−deg g + f̃(x)

)
W (x)=a(x)xN+b(x) F (x)=f(x)xN+g(x)



W (x)=a(x)xN+b(x) F (x)=f(x)xN+g(x)



W (x)=a(x)xN+b(x) F (x)=f(x)xN+g(x)

•W (x) 6= F (x) andW (x) 6= F̃ (x)



W (x)=a(x)xN+b(x) F (x)=f(x)xN+g(x)

•W (x) 6= F (x) andW (x) 6= F̃ (x)

•W (x)W̃ (x) = F (x)F̃ (x)



W (x)=a(x)xN+b(x) F (x)=f(x)xN+g(x)

•W (x) 6= F (x) andW (x) 6= F̃ (x)

•W (x)W̃ (x) = F (x)F̃ (x)

•W (x) is a0, 1-polynomial with the same number
of non-zero terms asF (x)



Lemma: Let F (x) be a0, 1-polynomial withF (0) =

1. Then the non-reciprocal part ofF (x) is reducible if
and only if there existsW (x) satisfying:

•W (x) 6= F (x) andW (x) 6= F̃ (x)

•W (x)W̃ (x) = F (x)F̃ (x)

•W (x) is a 0, 1-polynomial with the same number of
non-zero terms asF (x)



Lemma: Let F (x) be a0, 1-polynomial withF (0) =

1. Then the non-reciprocal part ofF (x) is reducible if
and only if there existsW (x) satisfying:

•W (x) 6= F (x) andW (x) 6= F̃ (x)

•W (x)W̃ (x) = F (x)F̃ (x)

•W (x) is a 0, 1-polynomial with the same number of
non-zero terms asF (x)

Conclusion: The non-reciprocal part of

F (x)=f(x)xN+g(x)

is reducible forN sufficiently large.



Theorem (K. Ford, S. Konyagin, F.): Let f(x) and
g(x) in Z[x] with

f(0) 6= 0, g(0) 6= 0, and gcd(f(x), g(x)) = 1.

Let r1 and r2 denote the number of non-zero terms in
f(x) andg(x), respectively. If

n ≥ max

{
2 × 52T−1, 2 max

{
deg f, deg g

}(
5T−1 +

1

4

)}
where

T = 2 ‖f‖2 + 2 ‖g‖2 + 2r1 + 2r2 − 7,

then the non-reciprocal part off(x)xn + g(x) is irre-
ducible or identically±1 except for obvious situations.
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