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Theorem (K. Ford, S. Konyagin, F.): Let f(x) and
g(x) in Z|x] with
f(0) # 0, g(0) # 0, and ged(f(x),g(x)) = 1.

Let 1 and ro denote the number of non-zero terms
f(x) andg(x), respectively. If

1
n > max {2 x 5271 2 max { deg f,deg g} (5T_1 + Z)}

where

T =2|fI*+2lgll* + 2r1 + 22 — 7,

then the non-reciprocal part ¢f(x)x"™ + g(x) is irre-
ducible or identicallyt+=1 except for obvious situations.
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Theorem (M. Matthews Jr. & F.): Let f(x) andg(x)
be0, 1-polynomials with
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Where does this result come from?
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e W(x) is a0, 1-polynomial with the same number
of non-zero terms aB'(x)



Lemma: Let F'(x) be a0, 1-polynomial with F'(0) =

1. Then the non-reciprocal part & (x) is reducible if

and only if there exist3V (x) satisfying:

o W(x) # F(z) andW (z) # F(x)

e W(x) is a0, 1-polynomial with the same number o
non-zero terms aB'(x)



Lemma: Let F'(x) be a0, 1-polynomial with F'(0) =
1. Then the non-reciprocal part & (x) is reducible if
and only if there exist3V (x) satisfying:

W (z) # F(x) andW (z) # F(x)
o W(x)W (z) = F(z)F(x)

e W(x) is a0, 1-polynomial with the same number o
non-zero terms aB'(x)

Conclusion: The non-reciprocal part of
F(x) = f(z)z"+g(x)
IS reducible forlV sufficiently large.



Theorem (K. Ford, S. Konyagin, F.): Let f(x) and
g(x) in Z|x] with
f(0) # 0, g(0) # 0, and ged(f(x),g(x)) = 1.

Let 1 and ro denote the number of non-zero terms
f(x) andg(x), respectively. If

1
n > max {2 x 5271 2 max { deg f,deg g} (5T_1 + Z)}

where

T =2|fI*+2lgll* + 2r1 + 22 — 7,

then the non-reciprocal part ¢f(x)x"™ + g(x) is irre-
ducible or identicallyt+=1 except for obvious situations.
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