ON THE FACTORIZATION OF $f(x) x^{n}+g(x)$

Michael Filaseta and Manton Matthews, Jr.
University of South Carolina

Problem Posed by Charles Nicol:

Problem Posed by Charles Nicol:

Does
$1+x^{3}+x^{15}+x^{16}+x^{32}+x^{33}+x^{34}+x^{35}+\cdots$ ever end?

Problem Posed by Charles Nicol:

Does
$1+x^{3}+x^{15}+x^{16}+x^{32}+x^{33}+x^{34}+x^{35}+\cdots$ ever end?
\boldsymbol{x}^{3} is the least power of \boldsymbol{x} that can be added to 1 to get a reducible polynomial

Problem Posed by Charles Nicol:

Does
$1+x^{3}+x^{15}+x^{16}+x^{32}+x^{33}+x^{34}+x^{35}+\cdots$ ever end?
x^{3} is the least power of x that can be added to 1 to get a reducible polynomial
x^{15} is the next power of x that can be added to $1+x^{3}$ to get a reducible polynomial

Problem Posed by Charles Nicol:

Does
$1+x^{3}+x^{15}+x^{16}+x^{32}+x^{33}+x^{34}+x^{35}+\cdots$ ever end?

Problem Posed by Charles Nicol:

Does

$$
1+x^{3}+x^{15}+x^{16}+x^{32}+x^{33}+x^{34}+x^{35}+\cdots
$$ ever end?

Answer: \square

Problem Posed by Charles Nicol:

Does
$1+x^{3}+x^{15}+x^{16}+x^{32}+x^{33}+x^{34}+x^{35}+\cdots$ ever end?

Answer: Yes

Problem Posed by Charles Nicol:

Does

$$
1+x^{3}+x^{15}+x^{16}+x^{32}+x^{33}+x^{34}+x^{35}
$$

ever end?

Answer: Yes

$$
1+x^{3}+x^{15}+x^{16}+x^{32}+x^{33}+x^{34}+x^{35}
$$

$$
\begin{gathered}
1+x^{3}+x^{15}+x^{16}+x^{32}+x^{33}+x^{34}+x^{35}+x^{n} \\
\text { is irreducible for every positive integer } n
\end{gathered}
$$

$$
1+x^{3}+x^{15}+x^{16}+x^{32}+x^{33}+x^{34}+x^{35}+x^{n}
$$

is irreducible for every positive integer \boldsymbol{n}

$$
f(x) x^{n}+g(x)
$$

$$
1+x^{3}+x^{15}+x^{16}+x^{32}+x^{33}+x^{34}+x^{35}+x^{n}
$$

$$
\text { is irreducible for every positive integer } n
$$

$$
\begin{gathered}
f(x) \\
\uparrow \\
1
\end{gathered}
$$

$$
1+x^{3}+x^{15}+x^{16}+x^{32}+x^{33}+x^{34}+x^{35}+x^{n}
$$

is irreducible for every positive integer \boldsymbol{n}

$$
\begin{aligned}
& \underset{\uparrow}{f}(x) \\
& 1 \\
& \\
& 1+x^{3}+\cdots+x^{35}
\end{aligned}
$$

$$
F(x)=f(x) x^{n}+g(x)
$$

$$
F(x)=f(x) x^{n}+g(x)
$$

$$
\widetilde{\boldsymbol{F}}(x)=x^{\operatorname{deg} \boldsymbol{F}} \boldsymbol{F}\left(\frac{1}{\boldsymbol{x}}\right)
$$

$$
\begin{gathered}
F(x)=f(x) x^{n}+g(x) \\
\tilde{F}(x)=x^{\operatorname{deg} F} F\left(\frac{1}{x}\right) \quad \leftarrow\left\{\begin{array}{c}
\text { reciprocal } \\
\text { of } F(x)
\end{array}\right.
\end{gathered}
$$

$$
\begin{gathered}
F(x)=f(x) x^{n}+g(x) \\
\widetilde{F}(x)=x^{\operatorname{deg} F} F\left(\frac{1}{x}\right) \quad \leftarrow\left\{\begin{array}{c}
\text { reciprocal } \\
\text { of } F(x)
\end{array}\right. \\
=\tilde{g}(x) x^{n+\operatorname{deg} f-\operatorname{deg} g}+\tilde{f}(x)
\end{gathered}
$$

$$
\begin{gathered}
F(x)=f(x) x^{n}+\boldsymbol{g}(x) \\
\widetilde{F}(x)=\tilde{g}(x) x^{n+\operatorname{deg} f-\operatorname{deg} g}+\tilde{f}(x)
\end{gathered}
$$

$$
\begin{gathered}
\boldsymbol{F}(x)=f(x) x^{n}+\boldsymbol{g}(x) \\
\widetilde{F}(x)=\tilde{g}(x) x^{n+\operatorname{deg} f-\operatorname{deg} g}+\tilde{f}(x) \\
f(x) x^{\operatorname{deg} g} \widetilde{\boldsymbol{F}}(x)-\tilde{g}(x) x^{\operatorname{deg} f} \boldsymbol{F}(x)
\end{gathered}
$$

$$
\begin{aligned}
& F(x)=f(x) x^{n}+g(x) \\
& \widetilde{\boldsymbol{F}}(x)=\tilde{\boldsymbol{g}}(x) x^{n+\operatorname{deg} f-\operatorname{deg} g}+\tilde{f}(x) \\
& f(x) x^{\operatorname{deg} g} \widetilde{\boldsymbol{F}}(x)-\tilde{\boldsymbol{g}}(x) x^{\operatorname{deg} f} \boldsymbol{F}(x) \\
& =f(x) \tilde{f}(x) x^{\operatorname{deg} g}-g(x) \tilde{g}(x) x^{\operatorname{deg} f}
\end{aligned}
$$

$$
\begin{gathered}
F(x)=f(x) x^{n}+g(x) \\
\widetilde{\boldsymbol{F}}(x)=\tilde{g}(x) x^{n+\operatorname{deg} f-\operatorname{deg} g}+\tilde{f}(x)
\end{gathered}
$$

$\boldsymbol{f}(\boldsymbol{x}) \boldsymbol{x}^{\operatorname{deg} g} \widetilde{\boldsymbol{F}}(\boldsymbol{x})-\tilde{\boldsymbol{g}}(\boldsymbol{x}) \boldsymbol{x}^{\operatorname{deg} \boldsymbol{f}} \boldsymbol{F}(\boldsymbol{x})$

$$
=f(x) \tilde{f}(x) x^{\operatorname{deg} g}-g(x) \tilde{g}(x) x^{\operatorname{deg} f}
$$

Note: The polynomial in red does not depend on \boldsymbol{n}.

$$
\begin{gathered}
F(x)=f(x) x^{n}+g(x) \\
\widetilde{F}(x)=\tilde{g}(x) x^{n+\operatorname{deg} f-\operatorname{deg} g}+\tilde{f}(x)
\end{gathered}
$$

$\boldsymbol{f}(\boldsymbol{x}) \boldsymbol{x}^{\operatorname{deg} g} \widetilde{\boldsymbol{F}}(\boldsymbol{x})-\tilde{\boldsymbol{g}}(\boldsymbol{x}) \boldsymbol{x}^{\operatorname{deg} \boldsymbol{f}} \boldsymbol{F}(\boldsymbol{x})$

$$
=f(x) \tilde{f}(x) x^{\operatorname{deg} g}-g(x) \tilde{g}(x) x^{\operatorname{deg} f}
$$

Note: The polynomial in red does not depend on \boldsymbol{n}. By factoring it, we are led to a finite list of irreducible reciprocal polynomials $w(x)$ that can divide $f(x) x^{n}+g(x)$.

$$
\begin{gathered}
F(x)=f(x) x^{n}+g(x) \\
\widetilde{F}(x)=\tilde{g}(x) x^{n+\operatorname{deg} f-\operatorname{deg} g}+\tilde{f}(x)
\end{gathered}
$$

$\boldsymbol{f}(\boldsymbol{x}) \boldsymbol{x}^{\operatorname{deg} g} \widetilde{\boldsymbol{F}}(\boldsymbol{x})-\tilde{\boldsymbol{g}}(\boldsymbol{x}) \boldsymbol{x}^{\operatorname{deg} \boldsymbol{f}} \boldsymbol{F}(\boldsymbol{x})$

$$
=f(x) \tilde{f}(x) x^{\operatorname{deg} g}-g(x) \tilde{g}(x) x^{\operatorname{deg} f}
$$

Note: The polynomial in red does not depend on \boldsymbol{n}. By factoring it, we are led to a finite list of irreducible reciprocal polynomials $w(x)$ that can divide $f(x) x^{n}+g(x)$. One can determine the \boldsymbol{n} for which each $\boldsymbol{w}(\boldsymbol{x})$ is a divisor.

The irreducible reciprocal factors of $f(x) x^{n}+g(x)$ can be completely determined.

The irreducible reciprocal factors of $f(x) x^{n}+g(x)$ can be completely determined.

We can determine the irreducible reciprocal factors of

$$
1+x^{3}+x^{15}+x^{16}+x^{32}+x^{33}+x^{34}+x^{35}+x^{n}
$$

The irreducible reciprocal factors of $f(x) x^{n}+g(x)$ can be completely determined.

We can determine the irreducible reciprocal factors of

$$
1+x^{3}+x^{15}+x^{16}+x^{32}+x^{33}+x^{34}+x^{35}+x^{n}
$$

There are none.

The irreducible reciprocal factors of $f(x) x^{n}+g(x)$ can be completely determined.

We can determine the irreducible reciprocal factors of

$$
1+x^{3}+x^{15}+x^{16}+x^{32}+x^{33}+x^{34}+x^{35}+x^{n}
$$

There are none.
For general $\boldsymbol{f}(\boldsymbol{x})$ and $\boldsymbol{g}(\boldsymbol{x})$, there may be some.

Definition: For $\boldsymbol{F}(\boldsymbol{x}) \in \mathbb{Z}[\boldsymbol{x}]$, the

$$
\text { non-reciprocal part of } \boldsymbol{F}(\boldsymbol{x})
$$

is $\boldsymbol{F}(\boldsymbol{x})$ removed of its irreducible reciprocal factors.

Definition: For $\boldsymbol{F}(\boldsymbol{x}) \in \mathbb{Z}[\boldsymbol{x}]$, the

$$
\text { non-reciprocal part of } \boldsymbol{F}(\boldsymbol{x})
$$

is $\boldsymbol{F}(\boldsymbol{x})$ removed of its irreducible reciprocal factors.

Comment: To determine how $F(x)=f(x) x^{n}+g(x)$ factors, it suffices to determine the factorization of the nonreciprocal part of $\boldsymbol{F}(\boldsymbol{x})$.

Definition: For $\boldsymbol{F}(\boldsymbol{x}) \in \mathbb{Z}[\boldsymbol{x}]$, the

$$
\text { non-reciprocal part of } \boldsymbol{F}(\boldsymbol{x})
$$

is $\boldsymbol{F}(\boldsymbol{x})$ removed of its irreducible reciprocal factors.
Comment: To determine how $F(x)=f(x) x^{n}+g(x)$ factors, it suffices to determine the factorization of the nonreciprocal part of $\boldsymbol{F}(\boldsymbol{x})$.

Basic Result (A. Schinzel): For fixed $\boldsymbol{f}(\boldsymbol{x})$ and $\boldsymbol{g}(\boldsymbol{x})$ in $\mathbb{Z}[x]$, the non-reciprocal part of $F(x)=f(x) x^{n}+\boldsymbol{g}(\boldsymbol{x})$ is irreducible or $\pm \mathbf{1}$ for all sufficiently large n except for obvious situations.

Basic Result (A. Schinzel): For fixed $\boldsymbol{f}(\boldsymbol{x})$ and $\boldsymbol{g}(\boldsymbol{x})$ in $\mathbb{Z}[x]$, the non-reciprocal part of $F(x)=f(x) x^{n}+g(x)$ is irreducible or $\pm \mathbf{1}$ for all sufficiently large \boldsymbol{n} except for obvious situations.

Basic Result (A. Schinzel): For fixed $\boldsymbol{f}(\boldsymbol{x})$ and $\boldsymbol{g}(\boldsymbol{x})$ in $\mathbb{Z}[x]$, the non-reciprocal part of $F(x)=f(x) x^{n}+g(x)$ is irreducible or $\pm \mathbf{1}$ for all sufficiently large \boldsymbol{n} except for obvious situations.

Obvious Situations:

Basic Result (A. Schinzel): For fixed $\boldsymbol{f}(\boldsymbol{x})$ and $\boldsymbol{g}(\boldsymbol{x})$ in $\mathbb{Z}[x]$, the non-reciprocal part of $F(x)=f(x) x^{n}+g(x)$ is irreducible or $\pm \mathbf{1}$ for all sufficiently large \boldsymbol{n} except for obvious situations.

Obvious Situations:

- $g(0)=0$

Basic Result (A. Schinzel): For fixed $\boldsymbol{f}(\boldsymbol{x})$ and $\boldsymbol{g}(\boldsymbol{x})$ in $\mathbb{Z}[x]$, the non-reciprocal part of $F(x)=f(x) x^{n}+g(x)$ is irreducible or $\pm \mathbf{1}$ for all sufficiently large \boldsymbol{n} except for obvious situations.

Obvious Situations:

- $g(0)=0$
- $\boldsymbol{f}(\boldsymbol{x})$ and $\boldsymbol{g}(\boldsymbol{x})$ have a common irreducible factor

Basic Result (A. Schinzel): For fixed $\boldsymbol{f}(\boldsymbol{x})$ and $\boldsymbol{g}(\boldsymbol{x})$ in $\mathbb{Z}[x]$, the non-reciprocal part of $F(x)=f(x) x^{n}+g(x)$ is irreducible or ± 1 for all sufficiently large n except for obvious situations.

Obvious Situations:

- $g(0)=0$
- $\boldsymbol{f}(\boldsymbol{x})$ and $\boldsymbol{g}(\boldsymbol{x})$ have a common irreducible factor
- $f(x)=f_{0}(x)^{p}, g(x)=-g_{0}(x)^{p}$, and $p \mid n$

Basic Result (A. Schinzel): For fixed $\boldsymbol{f}(\boldsymbol{x})$ and $\boldsymbol{g}(\boldsymbol{x})$ in $\mathbb{Z}[x]$, the non-reciprocal part of $F(x)=f(x) x^{n}+g(x)$ is irreducible or ± 1 for all sufficiently large n except for obvious situations.

Obvious Situations:

- $g(0)=0$
- $\boldsymbol{f}(\boldsymbol{x})$ and $\boldsymbol{g}(\boldsymbol{x})$ have a common irreducible factor
- $f(x)=-f_{0}(x)^{p}, g(x)=g_{0}(x)^{p}$, and $p \mid n$

Basic Result (A. Schinzel): For fixed $\boldsymbol{f}(\boldsymbol{x})$ and $\boldsymbol{g}(\boldsymbol{x})$ in $\mathbb{Z}[x]$, the non-reciprocal part of $F(x)=f(x) x^{n}+g(x)$ is irreducible or ± 1 for all sufficiently large n except for obvious situations.

Obvious Situations:

- $g(0)=0$
- $\boldsymbol{f}(\boldsymbol{x})$ and $\boldsymbol{g}(\boldsymbol{x})$ have a common irreducible factor
- $f(x)=f_{0}(x)^{p}, g(x)=-g_{0}(x)^{p}$, and $p \mid n$

Basic Result (A. Schinzel): For fixed $\boldsymbol{f}(\boldsymbol{x})$ and $\boldsymbol{g}(\boldsymbol{x})$ in $\mathbb{Z}[x]$, the non-reciprocal part of $F(x)=f(x) x^{n}+g(x)$ is irreducible or ± 1 for all sufficiently large n except for obvious situations.

Obvious Situations:

- $g(0)=0$
- $\boldsymbol{f}(\boldsymbol{x})$ and $\boldsymbol{g}(\boldsymbol{x})$ have a common irreducible factor
- $f(x)=f_{0}(x)^{p}, g(x)=-g_{0}(x)^{p}$, and $p \mid n$
- $f(x)=4 f_{0}(x)^{4}, g(x)=g_{0}(x)^{4}$, and $4 \mid n$

Basic Result (A. Schinzel): For fixed $\boldsymbol{f}(\boldsymbol{x})$ and $\boldsymbol{g}(\boldsymbol{x})$ in $\mathbb{Z}[x]$, the non-reciprocal part of $F(x)=f(x) x^{n}+g(x)$ is irreducible or $\pm \mathbf{1}$ for all sufficiently large \boldsymbol{n} except for obvious situations.

Obvious Situations:

- $g(0)=0$
- $\boldsymbol{f}(\boldsymbol{x})$ and $\boldsymbol{g}(\boldsymbol{x})$ have a common irreducible factor
- $f(x)=f_{0}(x)^{p}, g(x)=-g_{0}(x)^{p}$, and $p \mid n$
- $f(x)=f_{0}(x)^{4}, g(x)=4 g_{0}(x)^{4}$, and $4 \mid n$

Basic Result (A. Schinzel): For fixed $\boldsymbol{f}(\boldsymbol{x})$ and $\boldsymbol{g}(\boldsymbol{x})$ in $\mathbb{Z}[x]$, the non-reciprocal part of $F(x)=f(x) x^{n}+g(x)$ is irreducible or ± 1 for all sufficiently large n except for obvious situations.

Obvious Situations:

- $g(0)=0$
- $\boldsymbol{f}(\boldsymbol{x})$ and $\boldsymbol{g}(\boldsymbol{x})$ have a common irreducible factor
- $f(x)=f_{0}(x)^{p}, g(x)=-g_{0}(x)^{p}$, and $p \mid n$
- $f(x)=4 f_{0}(x)^{4}, g(x)=g_{0}(x)^{4}$, and $4 \mid n$

Theorem (K. Ford, S. Konyagin, F.): Let $\boldsymbol{f}(\boldsymbol{x})$ and $\boldsymbol{g}(\boldsymbol{x})$ in $\mathbb{Z}[\boldsymbol{x}]$ with
$f(0) \neq 0, g(0) \neq 0$, and $\operatorname{gcd}(f(x), g(x))=1$. Let r_{1} and r_{2} denote the number of non-zero terms in $\boldsymbol{f}(\boldsymbol{x})$ and $\boldsymbol{g}(\boldsymbol{x})$, respectively. If

$$
n \geq \max \left\{2 \times 5^{2 T-1}, 2 \max \{\operatorname{deg} f, \operatorname{deg} g\}\left(5^{T-1}+\frac{1}{4}\right)\right\}
$$

where

$$
T=2\|f\|^{2}+2\|g\|^{2}+2 r_{1}+2 r_{2}-7
$$

then the non-reciprocal part of $f(x) x^{n}+g(x)$ is irreducible or identically ± 1 except for obvious situations.

$$
1+x^{3}+x^{15}+x^{16}+x^{32}+x^{33}+x^{34}+x^{35}+x^{n}
$$

$$
1+x^{3}+x^{15}+x^{16}+x^{32}+x^{33}+x^{34}+x^{35}+x^{n}
$$

Comment: Obvious situations don't occur!!

$$
1+x^{3}+x^{15}+x^{16}+x^{32}+x^{33}+x^{34}+x^{35}+x^{n}
$$

Good News: Obvious situations don't occur!!

$$
1+x^{3}+x^{15}+x^{16}+x^{32}+x^{33}+x^{34}+x^{35}+x^{n}
$$

Good News: Obvious situations don't occur!!
More Good News: Non-reciprocal part is irreducible if

$$
1+x^{3}+x^{15}+x^{16}+x^{32}+x^{33}+x^{34}+x^{35}+x^{n}
$$

Good News: Obvious situations don't occur!!

More Good News: Non-reciprocal part is irreducible if

$$
n>2607703208923339843767
$$

$$
1+x^{3}+x^{15}+x^{16}+x^{32}+x^{33}+x^{34}+x^{35}+x^{n}
$$

Good News: Obvious situations don't occur!!
More Good News? Non-reciprocal part is irreducible if

$$
n>2607703208923339843767
$$

$$
1+x^{3}+x^{15}+x^{16}+x^{32}+x^{33}+x^{34}+x^{35}+x^{n}
$$

Good News: Obvious situations don't occur!!
Not-So-Good News: Non-reciprocal part is irreducible if

$$
n>2607703208923339843767
$$

Theorem (M. Matthews Jr. \& F.): Let $f(x)$ and $g(x)$ be 0,1 -polynomials with

$$
f(0)=g(0)=1 \quad \text { and } \quad \operatorname{gcd}(f(x), g(x))=1 .
$$

Theorem (M. Matthews Jr. \& F.): Let $\boldsymbol{f}(\boldsymbol{x})$ and $\boldsymbol{g}(\boldsymbol{x})$ be 0,1 -polynomials with

$$
f(0)=g(0)=1 \quad \text { and } \quad \operatorname{gcd}(f(x), g(x))=1
$$

If

$$
n>\operatorname{deg} g+2 \max \{\operatorname{deg} f, \operatorname{deg} g\}
$$

then the non-reciprocal part of $f(x) x^{n}+\boldsymbol{g}(\boldsymbol{x})$ is irreducible or identically 1.

Theorem (M. Matthews Jr. \& F.): Let $\boldsymbol{f}(\boldsymbol{x})$ and $\boldsymbol{g}(\boldsymbol{x})$ be 0 , 1-polynomials with

$$
f(0)=g(0)=1 \quad \text { and } \quad \operatorname{gcd}(f(x), g(x))=1
$$

If

$$
n>\operatorname{deg} g+2 \max \{\operatorname{deg} f, \operatorname{deg} g\}
$$

then the non-reciprocal part of $f(x) x^{n}+g(x)$ is irreducible or identically 1.

Notes: Obvious situations of reducibility do not occur.

Theorem (M. Matthews Jr. \& F.): Let $\boldsymbol{f}(\boldsymbol{x})$ and $\boldsymbol{g}(\boldsymbol{x})$ be 0,1-polynomials with

$$
f(0)=g(0)=1 \quad \text { and } \quad \operatorname{gcd}(f(x), g(x))=1
$$

If

$$
n>\operatorname{deg} g+2 \max \{\operatorname{deg} f, \operatorname{deg} g\}
$$

then the non-reciprocal part of $f(x) x^{n}+g(x)$ is irreducible or identically 1.

Notes: Obvious situations of reducibility do not occur. The lower bound on \boldsymbol{n} for the Nicol problem is 105.

Theorem (M. Matthews Jr. \& F.): Let $\boldsymbol{f}(\boldsymbol{x})$ and $\boldsymbol{g}(\boldsymbol{x})$ be 0,1-polynomials with

$$
f(0)=g(0)=1 \quad \text { and } \quad \operatorname{gcd}(f(x), g(x))=1
$$

If

$$
n>\operatorname{deg} g+2 \max \{\operatorname{deg} f, \operatorname{deg} g\}
$$

then the non-reciprocal part of $f(x) x^{n}+g(x)$ is irreducible or identically 1.

Where does this result come from?

Lemma: Let $\boldsymbol{F}(\boldsymbol{x})$ be a 0 , 1-polynomial with $\boldsymbol{F}(0)=$ 1. Then the non-reciprocal part of $\boldsymbol{F}(\boldsymbol{x})$ is reducible if and only if there exists $W(x)$ satisfying:

Lemma: Let $\boldsymbol{F}(\boldsymbol{x})$ be a 0 , 1-polynomial with $\boldsymbol{F}(0)=$ 1. Then the non-reciprocal part of $\boldsymbol{F}(\boldsymbol{x})$ is reducible if and only if there exists $W(x)$ satisfying:

- $W(x) \neq \boldsymbol{F}(x)$ and $W(x) \neq \widetilde{F}(x)$

Lemma: Let $\boldsymbol{F}(\boldsymbol{x})$ be a 0 , 1-polynomial with $\boldsymbol{F}(0)=$ 1. Then the non-reciprocal part of $\boldsymbol{F}(\boldsymbol{x})$ is reducible if and only if there exists $W(x)$ satisfying:

- $W(x) \neq F(x)$ and $W(x) \neq \widetilde{F}(x)$
- $W(x) \widetilde{W}(x)=\boldsymbol{F}(x) \widetilde{F}(x)$

Lemma: Let $\boldsymbol{F}(\boldsymbol{x})$ be a 0 , 1-polynomial with $\boldsymbol{F}(0)=$ 1. Then the non-reciprocal part of $\boldsymbol{F}(\boldsymbol{x})$ is reducible if and only if there exists $\boldsymbol{W}(\boldsymbol{x})$ satisfying:

- $W(x) \neq \boldsymbol{F}(x)$ and $\boldsymbol{W}(\boldsymbol{x}) \neq \widetilde{\boldsymbol{F}}(\boldsymbol{x})$
- W $\boldsymbol{W}(x) \widetilde{W}(x)=\boldsymbol{F}(x) \widetilde{\boldsymbol{F}}(\boldsymbol{x})$
- $W(x)$ is a 0,1 -polynomial with the same number of non-zero terms as $\boldsymbol{F}(\boldsymbol{x})$

Lemma: Let $\boldsymbol{F}(\boldsymbol{x})$ be a 0 , 1-polynomial with $\boldsymbol{F}(0)=$ 1. Then the non-reciprocal part of $\boldsymbol{F}(\boldsymbol{x})$ is reducible if and only if there exists $\boldsymbol{W}(\boldsymbol{x})$ satisfying:

- $W(x) \neq \boldsymbol{F}(x)$ and $\boldsymbol{W}(\boldsymbol{x}) \neq \widetilde{\boldsymbol{F}}(\boldsymbol{x})$
- $W(x) \widetilde{W}(x)=F(x) \widetilde{F}(x)$
- $W(x)$ is a 0,1 -polynomial with the same number of non-zero terms as $\boldsymbol{F}(\boldsymbol{x})$

$$
F(x)=f(x) x^{n}+g(x)
$$

Lemma: Let $\boldsymbol{F}(\boldsymbol{x})$ be a 0 , 1-polynomial with $\boldsymbol{F}(0)=$ 1. Then the non-reciprocal part of $\boldsymbol{F}(\boldsymbol{x})$ is reducible if and only if there exists $\boldsymbol{W}(\boldsymbol{x})$ satisfying:

- $W(x) \neq \boldsymbol{F}(x)$ and $\boldsymbol{W}(\boldsymbol{x}) \neq \widetilde{\boldsymbol{F}}(\boldsymbol{x})$
- $W(x) \widetilde{W}(x)=F(x) \widetilde{F}(x)$
- $W(x)$ is a 0,1 -polynomial with the same number of non-zero terms as $\boldsymbol{F}(\boldsymbol{x})$

$$
F(x)=f(x) x^{n}+g(x)
$$

Lemma: Let $\boldsymbol{F}(\boldsymbol{x})$ be a 0 , 1-polynomial with $\boldsymbol{F}(0)=$ 1. Then the non-reciprocal part of $\boldsymbol{F}(\boldsymbol{x})$ is reducible if and only if there exists $\boldsymbol{W}(\boldsymbol{x})$ satisfying:

- $W(x) \neq \boldsymbol{F}(x)$ and $\boldsymbol{W}(\boldsymbol{x}) \neq \widetilde{\boldsymbol{F}}(\boldsymbol{x})$
- W $\boldsymbol{W}(x) \widetilde{W}(x)=\boldsymbol{F}(x) \widetilde{F}(x)$
- $W(x)$ is a 0,1 -polynomial with the same number of non-zero terms as $\boldsymbol{F}(\boldsymbol{x})$

$$
\begin{aligned}
F(x) & =f(x) x^{n}+g(x) \\
W(x) & =a(x) x^{n}+b(x)
\end{aligned}
$$

Lemma: Let $\boldsymbol{F}(\boldsymbol{x})$ be a 0 , 1-polynomial with $\boldsymbol{F}(0)=$ 1. Then the non-reciprocal part of $\boldsymbol{F}(\boldsymbol{x})$ is reducible if and only if there exists $\boldsymbol{W}(\boldsymbol{x})$ satisfying:

- $W(x) \neq \boldsymbol{F}(x)$ and $\boldsymbol{W}(\boldsymbol{x}) \neq \widetilde{\boldsymbol{F}}(\boldsymbol{x})$
- $W(x) \widetilde{W}(x)=F(x) \widetilde{F}(x)$
- $W(x)$ is a 0,1 -polynomial with the same number of non-zero terms as $\boldsymbol{F}(\boldsymbol{x})$

$$
\begin{aligned}
F(x) & =f(x) x^{n}+g(x) \\
W(x) & =a(x) x^{n}+b(x)
\end{aligned}
$$

Lemma: Let $\boldsymbol{F}(\boldsymbol{x})$ be a 0 , 1-polynomial with $\boldsymbol{F}(0)=$ 1. Then the non-reciprocal part of $\boldsymbol{F}(\boldsymbol{x})$ is reducible if and only if there exists $\boldsymbol{W}(\boldsymbol{x})$ satisfying:

- $W(x) \neq \boldsymbol{F}(\boldsymbol{x})$ and $\boldsymbol{W}(\boldsymbol{x}) \neq \widetilde{\boldsymbol{F}}(\boldsymbol{x})$
- W $\boldsymbol{W}(x) \widetilde{W}(x)=\boldsymbol{F}(x) \widetilde{F}(x)$
- $W(x)$ is a 0,1 -polynomial with the same number of non-zero terms as $\boldsymbol{F}(\boldsymbol{x})$

$$
\begin{aligned}
F(x) & =f(x) x^{n}+g(x) \\
W(x) & =a(x) x^{n}+b(x)
\end{aligned}
$$

$$
\begin{aligned}
F(x) & =f(x) x^{n}+g(x) \\
W(x) & =a(x) x^{n}+b(x)
\end{aligned}
$$

$$
\begin{aligned}
F(x) & =f(x) x^{n}+g(x) \\
W(x) & =a(x) x^{n}+b(x)
\end{aligned}
$$

Case: $\operatorname{deg} f \geq \operatorname{deg} g \quad$ (other case similar)

$$
\begin{aligned}
F(x) & =f(x) x^{n}+g(x) \\
W(x) & =a(x) x^{n}+b(x)
\end{aligned}
$$

Case: $\operatorname{deg} f \geq \operatorname{deg} g \quad$ (other case similar)

$$
\begin{aligned}
& \left(a(x) x^{n}+b(x)\right)\left(\tilde{b}(x) x^{n+\operatorname{deg} a-\operatorname{deg} b}+\tilde{a}(x)\right) \\
& \quad=\left(f(x) x^{n}+g(x)\right)\left(\tilde{g}(x) x^{n+\operatorname{deg} f-\operatorname{deg} g}+\tilde{f}(x)\right)
\end{aligned}
$$

$$
\begin{aligned}
F(x) & =f(x) x^{n}+g(x) \\
W(x) & =a(x) x^{n}+b(x)
\end{aligned}
$$

Case: $\operatorname{deg} f \geq \operatorname{deg} g \quad$ (other case similar)

$$
\begin{aligned}
& \left(a(x) x^{n}+b(x)\right)\left(\tilde{b}(x) x^{n+\operatorname{deg} a-\operatorname{deg} b}+\tilde{a}(x)\right) \\
& \quad=\left(f(x) x^{n}+g(x)\right)\left(\tilde{g}(x) x^{n+\operatorname{deg} f-\operatorname{deg} g}+\tilde{f}(x)\right)
\end{aligned}
$$

$$
\begin{aligned}
F(x) & =f(x) x^{n}+g(x) \\
W(x) & =a(x) x^{n}+b(x)
\end{aligned}
$$

Case: $\operatorname{deg} f \geq \operatorname{deg} g \quad$ (other case similar)

$$
\begin{gathered}
\left(a(x) x^{n}+b(x)\right)\left(\tilde{b}(x) x^{n+\operatorname{deg} a-\operatorname{deg} b}+\tilde{a}(x)\right) \\
=\left(f(x) x^{n}+g(x)\right)\left(\tilde{g}(x) x^{n+\operatorname{deg} f-\operatorname{deg} g}+\tilde{f}(x)\right) \\
b(x) \tilde{a}(x)=g(x) \tilde{f}(x)
\end{gathered}
$$

$$
\begin{aligned}
F(x) & =f(x) x^{n}+g(x) \\
W(x) & =a(x) x^{n}+b(x)
\end{aligned}
$$

Case: $\operatorname{deg} f \geq \operatorname{deg} g \quad$ (other case similar)

$$
\begin{aligned}
& \left(a(x) x^{n}+b(x)\right)\left(\tilde{b}(x) x^{n+\operatorname{deg} a-\operatorname{deg} b}+\tilde{a}(x)\right) \\
& \quad=\left(f(x) x^{n}+g(x)\right)\left(\tilde{g}(x) x^{n+\operatorname{deg} f-\operatorname{deg} g}+\tilde{f}(x)\right)
\end{aligned}
$$

$$
\begin{aligned}
F(x) & =f(x) x^{n}+g(x) \\
W(x) & =a(x) x^{n}+b(x)
\end{aligned}
$$

Case: $\operatorname{deg} f \geq \operatorname{deg} g \quad$ (other case similar)

$$
\begin{aligned}
& \left(a(x) x^{n}+b(x)\right)\left(\tilde{b}(x) x^{n+\operatorname{deg} a-\operatorname{deg} b}+\tilde{a}(x)\right) \\
& \quad=\left(f(x) x^{n}+g(x)\right)\left(\tilde{g}(x) x^{n+\operatorname{deg} f-\operatorname{deg} g}+\tilde{f}(x)\right)
\end{aligned}
$$

$$
\begin{aligned}
F(x) & =f(x) x^{n}+g(x) \\
W(x) & =a(x) x^{n}+b(x)
\end{aligned}
$$

Case: $\operatorname{deg} f \geq \operatorname{deg} g \quad$ (other case similar)

$$
\begin{aligned}
& \left(a(x) x^{n}+b(x)\right)\left(\tilde{b}(x) x^{n+\operatorname{deg} a-\operatorname{deg} b}+\tilde{a}(x)\right) \\
& =\left(f(x) x^{n}+g(x)\right)\left(\tilde{g}(x) x^{n+\operatorname{deg} f-\operatorname{deg} g}+\tilde{f}(x)\right) \\
& \quad a(x) \tilde{b}(x) x^{2 n+\operatorname{deg} a-\operatorname{deg} b}=f(x) \tilde{g}(x) x^{2 n+\operatorname{deg} f-\operatorname{deg} g}
\end{aligned}
$$

$$
\begin{aligned}
F(x) & =f(x) x^{n}+g(x) \\
W(x) & =a(x) x^{n}+b(x)
\end{aligned}
$$

Case: $\operatorname{deg} f \geq \operatorname{deg} g \quad$ (other case similar)

$$
\begin{aligned}
& \left(a(x) x^{n}+b(x)\right)\left(\tilde{b}(x) x^{n+\operatorname{deg} a-\operatorname{deg} b}+\tilde{a}(x)\right) \\
& \quad=\left(f(x) x^{n}+g(x)\right)\left(\tilde{g}(x) x^{n+\operatorname{deg} f-\operatorname{deg} g}+\tilde{f}(x)\right)
\end{aligned}
$$

$$
\begin{aligned}
F(x) & =f(x) x^{n}+g(x) \\
W(x) & =a(x) x^{n}+b(x)
\end{aligned}
$$

Case: $\operatorname{deg} f \geq \operatorname{deg} g \quad$ (other case similar)

$$
\begin{aligned}
& \left(a(x) x^{n}+b(x)\right)\left(\tilde{b}(x) x^{n+\operatorname{deg} a-\operatorname{deg} b}+\tilde{a}(x)\right) \\
& \quad=\left(f(x) x^{n}+g(x)\right)\left(\tilde{g}(x) x^{n+\operatorname{deg} f-\operatorname{deg} g}+\tilde{f}(x)\right) \\
& \begin{array}{l}
a(x) \tilde{a}(x) x^{n}+b(x) \tilde{b}(x) x^{n+\operatorname{deg} a-\operatorname{deg} b} \\
\quad=f(x) \tilde{f}(x) x^{n}+g(x) \tilde{g}(x) x^{n+\operatorname{deg} f-\operatorname{deg} g}
\end{array}
\end{aligned}
$$

$$
\begin{gathered}
\left(a(x) x^{n}+b(x)\right)\left(\tilde{b}(x) x^{n+\operatorname{deg} a-\operatorname{deg} b}+\tilde{a}(x)\right) \\
=\left(f(x) x^{n}+g(x)\right)\left(\tilde{g}(x) x^{n+\operatorname{deg} f-\operatorname{deg} g}+\tilde{f}(x)\right) \\
b(x) \tilde{a}(x)=g(x) \tilde{f}(x) \\
a(x) \tilde{b}(x) x^{2 n+\operatorname{deg} a-\operatorname{deg} b}=f(x) \tilde{g}(x) x^{2 n+\operatorname{deg} f-\operatorname{deg} g} \\
\begin{array}{c}
a(x) \tilde{a}(x) x^{n}+b(x) \tilde{b}(x) x^{n+\operatorname{deg} a-\operatorname{deg} b} \\
=f(x) \tilde{f}(x) x^{n}+g(x) \tilde{g}(x) x^{n+\operatorname{deg} f-\operatorname{deg} g}
\end{array}
\end{gathered}
$$

$$
\begin{gathered}
\left(a(x) x^{N}+b(x)\right)\left(\tilde{b}(x) x^{N+\operatorname{deg} a-\operatorname{deg} b}+\tilde{a}(x)\right) \\
=\left(f(x) x^{N}+g(x)\right)\left(\tilde{g}(x) x^{N+\operatorname{deg} f-\operatorname{deg} g}+\tilde{f}(x)\right) \\
b(x) \tilde{a}(x)=g(x) \tilde{f}(x) \\
a(x) \tilde{b}(x) x^{2 n+\operatorname{deg} a-\operatorname{deg} b}=f(x) \tilde{g}(x) x^{2 n+\operatorname{deg} f-\operatorname{deg} g} \\
a(x) \tilde{a}(x) x^{n}+b(x) \tilde{b}(x) x^{n+\operatorname{deg} a-\operatorname{deg} b} \\
=f(x) \tilde{f}(x) x^{n}+g(x) \tilde{g}(x) x^{n+\operatorname{deg} f-\operatorname{deg} g}
\end{gathered}
$$

$$
\begin{aligned}
& \left(a(x) x^{N}+b(x)\right)\left(\tilde{b}(x) x^{N+\operatorname{deg} a-\operatorname{deg} b}+\tilde{a}(x)\right) \\
& \stackrel{?}{=}\left(f(x) x^{N}+g(x)\right)\left(\tilde{g}(x) x^{N+\operatorname{deg} f-\operatorname{deg} g}+\tilde{f}(x)\right) \\
& b(x) \tilde{a}(x)=g(x) \tilde{f}(x) \\
& a(x) \tilde{b}(x) x^{2 n+\operatorname{deg} a-\operatorname{deg} b}=f(x) \tilde{g}(x) x^{2 n+\operatorname{deg} f-\operatorname{deg} g} \\
& a(x) \tilde{a}(x) x^{n}+b(x) \tilde{b}(x) x^{n+\operatorname{deg} a-\operatorname{deg} b} \\
& =f(x) \tilde{f}(x) x^{n}+g(x) \tilde{g}(x) x^{n+\operatorname{deg} f-\operatorname{deg} g}
\end{aligned}
$$

$$
\begin{aligned}
& \left(a(x) x^{N}+b(x)\right)\left(\tilde{b}(x) x^{N+\operatorname{deg} a-\operatorname{deg} b}+\tilde{a}(x)\right) \\
& \stackrel{?}{=}\left(f(x) x^{N}+g(x)\right)\left(\tilde{g}(x) x^{N+\operatorname{deg} f-\operatorname{deg} g}+\tilde{f}(x)\right) \\
& b(x) \tilde{a}(x)=g(x) \tilde{f}(x) \\
& a(x) \tilde{b}(x) x^{2 N+\operatorname{deg} a-\operatorname{deg} b}=f(x) \tilde{g}(x) x^{2 N+\operatorname{deg} f-\operatorname{deg} g} \\
& a(x) \tilde{a}(x) x^{n}+b(x) \tilde{b}(x) x^{n+\operatorname{deg} a-\operatorname{deg} b} \\
& =f(x) \tilde{f}(x) x^{n}+g(x) \tilde{g}(x) x^{n+\operatorname{deg} f-\operatorname{deg} g}
\end{aligned}
$$

$$
\begin{aligned}
& \left(a(x) x^{N}+b(x)\right)\left(\tilde{b}(x) x^{N+\operatorname{deg} a-\operatorname{deg} b}+\tilde{a}(x)\right) \\
& \stackrel{?}{=}\left(f(x) x^{N}+g(x)\right)\left(\tilde{g}(x) x^{N+\operatorname{deg} f-\operatorname{deg} g}+\tilde{f}(x)\right) \\
& b(x) \tilde{a}(x)=g(x) \tilde{f}(x) \\
& a(x) \tilde{b}(x) x^{2 N+\operatorname{deg} a-\operatorname{deg} b}=f(x) \tilde{g}(x) x^{2 N+\operatorname{deg} f-\operatorname{deg} g} \\
& a(x) \tilde{a}(x) x^{N}+b(x) \tilde{b}(x) x^{N+\operatorname{deg} a-\operatorname{deg} b} \\
& =f(x) \tilde{f}(x) x^{N}+g(x) \tilde{g}(x) x^{N+\operatorname{deg} f-\operatorname{deg} g}
\end{aligned}
$$

$$
\begin{aligned}
& \left(a(x) x^{N}+b(x)\right)\left(\tilde{b}(x) x^{N+\operatorname{deg} a-\operatorname{deg} b}+\tilde{a}(x)\right) \\
& \begin{array}{l}
\checkmark \\
=\left(f(x) x^{N}+g(x)\right)\left(\tilde{g}(x) x^{N+\operatorname{deg} f-\operatorname{deg} g}+\tilde{f}(x)\right) \\
b(x) \tilde{a}(x)=g(x) \tilde{f}(x) \\
a(x) \tilde{b}(x) x^{2 N+\operatorname{deg} a-\operatorname{deg} b}=f(x) \tilde{g}(x) x^{2 N+\operatorname{deg} f-\operatorname{deg} g} \\
a(x) \tilde{a}(x) x^{N}+b(x) \tilde{b}(x) x^{N+\operatorname{deg} a-\operatorname{deg} b} \\
=f(x) \tilde{f}(x) x^{N}+g(x) \tilde{g}(x) x^{N+\operatorname{deg} f-\operatorname{deg} g}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \left(a(x) x^{N}+b(x)\right)\left(\tilde{b}(x) x^{N+\operatorname{deg} a-\operatorname{deg} b}+\tilde{a}(x)\right) \\
& =\left(f(x) x^{N}+g(x)\right)\left(\tilde{g}(x) x^{N+\operatorname{deg} f-\operatorname{deg} g}+\tilde{f}(x)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left(a(x) x^{N}+b(x)\right)\left(\tilde{b}(x) x^{N+\operatorname{deg} a-\operatorname{deg} b}+\tilde{a}(x)\right) \\
& =\left(f(x) x^{N}+g(x)\right)\left(\tilde{g}(x) x^{N+\operatorname{deg} f-\operatorname{deg} g}+\tilde{f}(x)\right) \\
& W(x)=a(x) x^{N_{+}+b(x)} \quad F(x)=f(x) x^{N_{+}}+g(x)
\end{aligned}
$$

$W(x)=a(x) x^{N_{+}} b(x) \quad F(x)=f(x) x^{N_{+}} g(x)$
$W(x)=a(x) x^{N_{+}} b(x) \quad F(x)=f(x) x^{N_{+}} g(x)$

- $W(x) \neq \boldsymbol{F}(x)$ and $W(x) \neq \widetilde{\boldsymbol{F}}(\boldsymbol{x})$
$W(x)=a(x) x^{N_{+}} b(x) \quad F(x)=f(x) x^{N_{+}} g(x)$
- $W(x) \neq \boldsymbol{F}(x)$ and $W(x) \neq \widetilde{\boldsymbol{F}}(\boldsymbol{x})$
- $W(x) \widetilde{W}(x)=\boldsymbol{F}(x) \widetilde{F}(x)$
$W(x)=a(x) x^{N_{+}} b(x) \quad F(x)=f(x) x^{N_{+}} g(x)$
- $W(x) \neq \boldsymbol{F}(x)$ and $W(x) \neq \widetilde{F}(x)$
- $W(x) \widetilde{W}(x)=\boldsymbol{F}(x) \widetilde{\boldsymbol{F}}(x)$
- $W(x)$ is a 0,1 -polynomial with the same number of non-zero terms as $\boldsymbol{F}(\boldsymbol{x})$

Lemma: Let $\boldsymbol{F}(\boldsymbol{x})$ be a 0 , 1-polynomial with $\boldsymbol{F}(0)=$ 1. Then the non-reciprocal part of $\boldsymbol{F}(\boldsymbol{x})$ is reducible if and only if there exists $\boldsymbol{W}(\boldsymbol{x})$ satisfying:

- $W(x) \neq \boldsymbol{F}(x)$ and $\boldsymbol{W}(\boldsymbol{x}) \neq \widetilde{\boldsymbol{F}}(\boldsymbol{x})$
- W $\boldsymbol{W}(x) \widetilde{W}(x)=\boldsymbol{F}(x) \widetilde{\boldsymbol{F}}(\boldsymbol{x})$
- $W(x)$ is a 0,1 -polynomial with the same number of non-zero terms as $\boldsymbol{F}(\boldsymbol{x})$

Lemma: Let $\boldsymbol{F}(\boldsymbol{x})$ be a 0 , 1-polynomial with $\boldsymbol{F}(0)=$ 1. Then the non-reciprocal part of $\boldsymbol{F}(\boldsymbol{x})$ is reducible if and only if there exists $\boldsymbol{W}(\boldsymbol{x})$ satisfying:

- W$(\boldsymbol{x}) \neq \boldsymbol{F}(\boldsymbol{x})$ and $\boldsymbol{W}(\boldsymbol{x}) \neq \widetilde{\boldsymbol{F}}(\boldsymbol{x})$
- $W(x) \widetilde{W}(x)=F(x) \widetilde{F}(x)$
- $W(x)$ is a 0,1 -polynomial with the same number of non-zero terms as $\boldsymbol{F}(\boldsymbol{x})$

Conclusion: The non-reciprocal part of

$$
F(x)=f(x) x^{N_{+}}+g(x)
$$

is reducible for N sufficiently large.

Theorem (K. Ford, S. Konyagin, F.): Let $\boldsymbol{f}(\boldsymbol{x})$ and $\boldsymbol{g}(\boldsymbol{x})$ in $\mathbb{Z}[\boldsymbol{x}]$ with
$f(0) \neq 0, g(0) \neq 0$, and $\operatorname{gcd}(f(x), g(x))=1$. Let r_{1} and r_{2} denote the number of non-zero terms in $\boldsymbol{f}(\boldsymbol{x})$ and $\boldsymbol{g}(\boldsymbol{x})$, respectively. If

$$
n \geq \max \left\{2 \times 5^{2 T-1}, 2 \max \{\operatorname{deg} f, \operatorname{deg} g\}\left(5^{T-1}+\frac{1}{4}\right)\right\}
$$

where

$$
T=2\|f\|^{2}+2\|g\|^{2}+2 r_{1}+2 r_{2}-7
$$

then the non-reciprocal part of $f(x) x^{n}+g(x)$ is irreducible or identically ± 1 except for obvious situations.

CONTRADICTION

CONTRADICTION

CONTRADICTION

CONTRADICTION

