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General Areas of Applications:

• irrationality measures
• diophantine equations
• Waring’s problem
• the factorization of n(n + 1)

• Galois groups of classical polynomials
• the Ramanujan-Nagell equation
• k-free numbers in short intervals
• k-free values of polynomials and binary forms
• the abc-conjecture
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Answer: Rational functions that give good approxi-
mations to (1−z)k near the origin.

Important Equation:

(1 − z)k =
P (z)

Q(z)
− zmR(z)

degree < k (usually)
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What are the Pad é approximations of (1− z)k?

Answer: Rational functions that give good approxi-
mations to (1−z)k near the origin.

Important Equation:

Pr− (1 − z)kQr = z2r+1Er

deg Pr = deg Qr = r < k, deg Er = k − r − 1



Some Properties of the Polynomials:

(i) Pr(z), (−z)kQr(z), and z2r+1Er(z) satisfy

z(z−1)y′′ +
(
2r(1−z)−(k−1)z

)
y′ + r(k+r)y = 0.

(ii) Qr(z) =
r∑

j=0

(
2r − j

r

)(
k − r + j − 1

j

)
zj

(iii) Qr(z) =
(k+r)!

(k−r−1)! r! r!

∫ 1

0

(1−t)rtk−r−1(1−t+zt)r dt

(iv) Pr(z)Qr+1(z) − Qr(z)Pr+1(z) = cz2r+1
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Pr − (1 − z)kQr = z2r+1Er

WARNING : In the applications you are
about to see, the true identies used have
been changed. They have been changed
to conform to the identity above. The
identity above gives a result of the type
wanted. Typically, a closer analysis of
these polynomials or even a variant of the
polynomials is used to obtain the currently
best known results in the applications.
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b
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Comment: Liouville’s result is effective; Roth’s is not.
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Irrationality measures:

Theorem( Bennett ): For a & b integers with b > 0,∣∣∣ 3√
2 −

a

b

∣∣∣ >
1

4 · b2.47
.

Comment: Similar explicit estimates have also been
made for certain other cube roots.
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Rearrange and Normalize to Integers

3√
2 br − ar = smallr∣∣∣ 3√
2 −
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br

∣∣∣ = smallr

Wait!! I thought we wanted that LARGE!!
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Diophantine equations:

Theorem: Let n be a non-zero integer. If x and y are
integers satisfying x3−2y3 = n, then |y| < 16n2.



Diophantine equations:

Theorem (Bennett):If a, b, and n are integers with
ab 6= 0 and n ≥ 3, then the equation

|axn + byn| = 1

has at most 1 solution in positive integers x and y.
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Waring’s Problem: Let k be an integer ≥ 2. Then
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Known: (i) g(k) = 2k +

[(3

2

)k
]

− 2

(ii) No one knows how to prove (i).

(iii) (i) holds if
∥∥∥(3

2

)k∥∥∥ > 0.75k

Theorem(Dubitskas): If k > 4, then∥∥∥(3

2

)k∥∥∥ > 0.5767k.
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Effective Approach: (Linear Forms of Logarithms)

θ =
c

log log n

Problem: Can we narrow the gap between
these ineffective and effective results?
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Want: Let p1, p2, . . . , pr be primes. There is an
N = N(θ, p1, . . . , pr) such that if n ≥ N and

n(n + 1) = p
e1
1 p

e2
2 · · · per

r m

for some integer m, then m > nθ.

Theorem (Bennett, F., Trifonov): If n ≥ 9 and

n(n + 1) = 2k3`m,

then
m ≥ n1/4.



Conjecture: For n > 512,

n(n + 1) = 2u3vm =⇒ m >
√

n.



Conjecture: For n > 512,

n(n + 1) = 2u3vm =⇒ m >
√

n.

Comment: The conjecture has been verified for

512 < n ≤



Conjecture: For n > 512,

n(n + 1) = 2u3vm =⇒ m >
√

n.

Comment: The conjecture has been verified for

512 < n ≤ 101000.
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Main Idea: Find “small” integers P , Q, and E such
that

3kP − 2`Q = E

and

Qm1 − Pm2 6= 0.

Then

3k (Qm1 − Pm2) = ±Q − Em2.

Obtain an upper bound on 3k. Since 3km1 ≥ n, it
follows that m1 and m = m1m2 are not small.
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The “small” integers P , Q, and E are obtained through
the use of Padé approximations for (1 − z)k.

More precisely, one takes z = 1/9 in the equation

Pr(z) − (1 − z)kQr(z) = z2r+1Er(z).
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What’s Needed for the Method to Work:

One largely needs to be dealing with two primes (like
2 and 3) with a difference of powers of these primes
being small (like 32 − 23 = 1).
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• D. Hilbert (1892) used his now classical Hilbert’s
Irreducibility Theorem to show that for each integer
n ≥ 1, there is polynomial f(x) ∈ Z[x] such that
the Galois group associated with f(x) is the sym-
metric group Sn. He also showed the analogous
result in the case of the alternating group An.

• Hilbert’s work and work of E. Noether (1918) began
what is now called Inverse Galois Theory.

• Van der Waerden showed that for “almost all” poly-
nomials f(x) ∈ Z[x], the Galois group associated
with f(x) is the symmetric group Sn.
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Galois groups of classical polynomials:

• Schur showed L
(0)
n (x) has Galois group Sn.

• Schur showed L
(1)
n (x) has Galois group An (the

alternating group) if n is odd.

• Schur showed
n∑

j=0

xj

j!
has Galois group An if 4|n.

• Schur did not find an explicit sequence of polyno-
mials having Galois group An with n ≡ 2 (mod 4).
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Theorem (joint work with R. Williams): For almost
all positive integers n the polynomial L

(n)
n (x) is irre-

ducible.

Comment: The method had an ineffective compo-
nent to it. We could show that if n is sufficiently large

and L
(n)
n (x) is reducible, then L

(n)
n (x) has a linear

factor. But we didn’t know what sufficiently large was.

Work in Progress with Trifonov: There is an ef-
fetive bound N such that if n ≥ N and n ≡ 2

(mod 4), then L
(n)
n (x) has Galois group An.
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Classical Ramanujan-Nagell Theorem: If x and n

are positive integers satisfying

x2 + 7 = 2n,

then
x ∈ {1, 3, 5, 11, 181}.



The Ramanujan-Nagell equation:

Some Background: Beukers used a method “simi-
lar” to the approach for finding irrationality measures
to show that

√
2 cannot be approximated too well by

rationals a/b with b a power of 2. This implies bounds
for solutions to the Diophantine equation x2 + D =

2n with D fixed. He showed that if D 6= 7, then the
equation has ≤ 4 solutions. Related work by Apéry,
Beukers, and Bennett establishes that for odd primes
p not dividing D, the equation x2 + D = pn has at
most 3 solutions. All of these are in some sense best
possible (though more can and has been said).
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Problem: If x2 + 7 = 2nm and x is not in the set
above, then can we say that m must be large?

Connection with n(n + 1) problem:

x2 + 7 = 2nm

(
x+

√
−7

2

)
↑

linear

(
x−

√
−7

2

)
↑

linear

=

(
1+

√
−7

2

)
↑

prime

n−2(
1−

√
−7

2

)
↑

prime

n−2

m



Theorem (Bennett, F., Trifonov): If x, n and m are pos-
itive integers satisfying

x2 + 7 = 2nm and x 6∈ {1, 3, 5, 11, 181},

then
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Theorem (Bennett, F., Trifonov): If x, n and m are pos-
itive integers satisfying

x2 + 7 = 2nm and x 6∈ {1, 3, 5, 11, 181},

then
m ≥ x1/2.

Comment: In the case of x2 + 7 = 2nm, the differ-
ence of the primes (1 +

√
−7)/2 and (1 −

√
−7)/2

each raised to the 13th power has absolute value
≈ 2.65 and the powers themselves have absolute
value ≈ 90.51.
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primes in different size ranges. Deal with small primes
and large primes separately.
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Problem: Find θ = θ(k) as small as possible such
that, for x sufficiently large, the interval (x, x + xθ]

contains a k-free number.

Small Primes: p ≤ z where z = xθ√
log x

The number of integers n ∈ (x, x + xθ] divisible by
such a pk is bounded by (2/3)xθ.



Large Primes: p ∈ (N, 2N ], N ≥ z = xθ√
log x



Large Primes: p ∈ (N, 2N ], N ≥ z = xθ√
log x

x < pkm ≤ x + xθ



Large Primes: p ∈ (N, 2N ], N ≥ z = xθ√
log x

x < pkm ≤ x + xθ =⇒
x

pk
< m ≤

x

pk
+

xθ

pk



Large Primes: p ∈ (N, 2N ], N ≥ z = xθ√
log x

x < pkm ≤ x + xθ =⇒
x

pk
< m ≤

x

pk
+

xθ

pk

=⇒
∥∥∥ x

pk

∥∥∥ <
xθ

Nk



Large Primes: p ∈ (N, 2N ], N ≥ z = xθ√
log x

x < pkm ≤ x + xθ =⇒
x

pk
< m ≤

x

pk
+

xθ

pk

=⇒
∥∥∥ x

pk

∥∥∥ <
xθ

Nk

where ‖t‖ = min{|t − `| : ` ∈ Z}



Large Primes: p ∈ (N, 2N ], N ≥ z = xθ√
log x

x < pkm ≤ x + xθ =⇒
x

pk
< m ≤

x

pk
+

xθ

pk

=⇒
∥∥∥ x

pk

∥∥∥ <
xθ

Nk

where ‖t‖ = min{|t − `| : ` ∈ Z}

Idea: Show there are few primes p∈ (N, 2N ] with
x/pk that close to an integer.



Large Primes: p ∈ (N, 2N ], N ≥ z = xθ√
log x

x < pkm ≤ x + xθ =⇒
x

pk
< m ≤

x

pk
+

xθ

pk

=⇒
∥∥∥ x

pk

∥∥∥ <
xθ

Nk

where ‖t‖ = min{|t − `| : ` ∈ Z}

Idea: Show there are few integers p∈ (N, 2N ] with
x/pk that close to an integer.



Large Primes: p ∈ (N, 2N ], N ≥ z = xθ√
log x

x < pkm ≤ x + xθ =⇒
x

pk
< m ≤

x

pk
+

xθ

pk

=⇒
∥∥∥ x

pk

∥∥∥ <
xθ

Nk

where ‖t‖ = min{|t − `| : ` ∈ Z}

Idea: Show there are few integers u∈ (N, 2N ] with
x/uk that close to an integer.



∥∥∥ x

uk

∥∥∥ <
xθ

Nk
, u ∈ (N, 2N ], N ≥ xθ

√
log x



∥∥∥ x

uk

∥∥∥ <
xθ

Nk
, u ∈ (N, 2N ], N ≥ xθ

√
log x

Differences:



∥∥∥ x

uk

∥∥∥ <
xθ

Nk
, u ∈ (N, 2N ], N ≥ xθ

√
log x

Differences:∥∥∥ x

uk

∥∥∥ <
xθ

Nk
,

∥∥∥ x

(u + a)k

∥∥∥ <
xθ

Nk



∥∥∥ x

uk

∥∥∥ <
xθ

Nk
, u ∈ (N, 2N ], N ≥ xθ

√
log x

Differences:∥∥∥ x

uk

∥∥∥ <
xθ

Nk
,

∥∥∥ x

(u + a)k

∥∥∥ <
xθ

Nk

x

uk
−

x

(u + a)k



∥∥∥ x

uk

∥∥∥ <
xθ

Nk
, u ∈ (N, 2N ], N ≥ xθ

√
log x

Differences:∥∥∥ x

uk

∥∥∥ <
xθ

Nk
,

∥∥∥ x

(u + a)k

∥∥∥ <
xθ

Nk

x

uk
−

x

(u + a)k
�

ax

uk+1



∥∥∥ x

uk

∥∥∥ <
xθ

Nk
, u ∈ (N, 2N ], N ≥ xθ

√
log x

Differences:∥∥∥ x

uk

∥∥∥ <
xθ

Nk
,

∥∥∥ x

(u + a)k

∥∥∥ <
xθ

Nk

x

uk
−

x

(u + a)k
�

ax

uk+1
�

ax

Nk+1



∥∥∥ x

uk

∥∥∥ <
xθ

Nk
, u ∈ (N, 2N ], N ≥ xθ

√
log x

Differences:∥∥∥ x

uk

∥∥∥ <
xθ

Nk
,

∥∥∥ x

(u + a)k

∥∥∥ <
xθ

Nk

x

uk
−

x

(u + a)k
�

ax

uk+1
�

ax

Nk+1



∥∥∥ x

uk

∥∥∥ <
xθ

Nk
, u ∈ (N, 2N ], N ≥ xθ

√
log x

Differences:∥∥∥ x

uk

∥∥∥ <
xθ

Nk
,

∥∥∥ x

(u + a)k

∥∥∥ <
xθ

Nk

x

uk
−

x

(u + a)k
�

ax

uk+1
�

ax

Nk+1

consider N = x1/k



∥∥∥ x

uk

∥∥∥ <
xθ

Nk
, u ∈ (N, 2N ], N ≥ xθ

√
log x

Differences:∥∥∥ x

uk

∥∥∥ <
xθ

Nk
,

∥∥∥ x

(u + a)k

∥∥∥ <
xθ

Nk

x

uk
−

x

(u + a)k
�

ax

uk+1
�

a

x1/k

consider N = x1/k



∥∥∥ x

uk

∥∥∥ <
xθ

Nk
, u ∈ (N, 2N ], N ≥ xθ

√
log x

Differences:∥∥∥ x

uk

∥∥∥ <
xθ

Nk
,

∥∥∥ x

(u + a)k

∥∥∥ <
xθ

Nk

x

uk
−

x

(u + a)k
�

ax

uk+1
�

a

x1/k

consider N = x1/k, a < x1/(2k)



∥∥∥ x

uk

∥∥∥ <
xθ

Nk
, u ∈ (N, 2N ], N ≥ xθ

√
log x

Differences:∥∥∥ x

uk

∥∥∥ <
xθ

Nk
,

∥∥∥ x

(u + a)k

∥∥∥ <
xθ

Nk

x

uk
−

x

(u + a)k
�

ax

uk+1
�

a

x1/k

consider N = x1/k, a < x1/(2k), θ ≈ 1/k



∥∥∥ x

uk

∥∥∥ <
xθ

Nk
, u ∈ (N, 2N ], N ≥ xθ

√
log x

Differences:∥∥∥ x

uk

∥∥∥ <
xθ

Nk
,

∥∥∥ x

(u + a)k

∥∥∥ <
xθ

Nk

x

uk
−

x

(u + a)k
�

ax

uk+1
�

a

x1/k

consider N = x1/k, a < x1/(2k), θ ≈ 1/k

LHS small compared to RHS



∥∥∥ x

uk

∥∥∥ <
xθ

Nk
, u ∈ (N, 2N ], N ≥ xθ

√
log x

“Modified” Differences:



∥∥∥ x

uk

∥∥∥ <
xθ

Nk
, u ∈ (N, 2N ], N ≥ xθ

√
log x

“Modified” Differences:∥∥∥ x

uk

∥∥∥ <
xθ

Nk
,

∥∥∥ x

(u + a)k

∥∥∥ <
xθ

Nk



∥∥∥ x

uk

∥∥∥ <
xθ

Nk
, u ∈ (N, 2N ], N ≥ xθ

√
log x

“Modified” Differences:∥∥∥ x

uk

∥∥∥ <
xθ

Nk
,

∥∥∥ x

(u + a)k

∥∥∥ <
xθ

Nk

x

uk
P −

x

(u + a)k
Q small



∥∥∥ x

uk

∥∥∥ <
xθ

Nk
, u ∈ (N, 2N ], N ≥ xθ

√
log x

“Modified” Differences:∥∥∥ x

uk

∥∥∥ <
xθ

Nk
,

∥∥∥ x

(u + a)k

∥∥∥ <
xθ

Nk

x

uk
P −

x

(u + a)k
Q small (but not too small)



∥∥∥ x

uk

∥∥∥ <
xθ

Nk
, u ∈ (N, 2N ], N ≥ xθ

√
log x

“Modified” Differences:∥∥∥ x

uk

∥∥∥ <
xθ

Nk
,

∥∥∥ x

(u + a)k

∥∥∥ <
xθ

Nk

x

uk
P −

x

(u + a)k
Q small (but not too small)

(u + a)kP − ukQ small (but not too small)



∥∥∥ x

uk

∥∥∥ <
xθ

Nk
, u ∈ (N, 2N ], N ≥ xθ

√
log x

“Modified” Differences:∥∥∥ x

uk

∥∥∥ <
xθ

Nk
,

∥∥∥ x

(u + a)k

∥∥∥ <
xθ

Nk

x

uk
P −

x

(u + a)k
Q small (but not too small)

(u + a)kP − ukQ small (but not too small)

consider Pr(z) − (1 − z)kQr(z) with z =
a

u + a



∥∥∥ x

uk

∥∥∥ <
xθ

Nk
, u ∈ (N, 2N ], N ≥ xθ

√
log x

“Modified” Differences:

Theorem (Halberstam & Roth):



∥∥∥ x

uk

∥∥∥ <
xθ

Nk
, u ∈ (N, 2N ], N ≥ xθ

√
log x

“Modified” Differences:

Theorem (Halberstam & Roth & Nair):



∥∥∥ x

uk

∥∥∥ <
xθ

Nk
, u ∈ (N, 2N ], N ≥ xθ

√
log x

“Modified” Differences:

Theorem (Halberstam & Roth & Nair): For x large,
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Theorem (F. & Trifonov): For x sufficiently large, there
is a squarefree number in (x, x + cx1/5 log x].

Theorem (Trifonov): For x sufficiently large, there is
a k-free number in (x, x + cx1/(2k+1) log x].
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The method for obtaining results about gaps between
k-free numbers generalizes to k-free values of poly-
nomials. Suppose f(x) ∈ Z[x] is irreducible and
deg f = n. In what follows, we suppose further that
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Theorem: Let k ≥ n + 1. For x sufficiently large,
there is an integer m such that f(m) is k-free with

x < m ≤ x + cx
n

2k−n+r,

where r =
√

2n − 1
2.



Basic Idea: One works in a number field where f(x)

has a linear factor. As in the case f(x) = x, one
wants to show certain u (in the ring of algebraic inte-
gers in the field) are not close by considering

(u + a)kP − ukQ

arising from Padé approximations. One uses that this
expression is an integer and, hence, either 0 or ≥ 1.
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Basic Idea: One works in a number field where f(x)

has a linear factor. As in the case f(x) = x, one
wants to show certain u (in the ring of algebraic inte-
gers in the field) are not close by considering

(u + a)kP − ukQ

arising from Padé approximations. One uses that this
expression is an integer and, hence, either 0 or ≥ 1.

Difficulty: An “integer” in this context can be small
without being 0.

Solution: If it’s small, work with a conjugate instead.



Comment: In the case that k ≤ n, one can try the
same methods. The gap size becomes “bad” in the
sense that one obtains m ∈ (x, x + h] where f(m)

is k-free but h increases as k decreases. There is a
point where h exceeds x itself and the method fails
(the size of f(m) is no longer of order xn). Nair
took the limit of what can be done with k ≤ n and
obtained
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Theorem (Nair): If f(x) is irreducible of degree n and
k ≥

(
2
√

2 − 1
)
n/2, then there are infinitely many

integers m for which f(m) is k-free.

Theorem: If f(x, y) is an irreducible binary form of

degree n and k ≥
(
2
√

2 − 1
)
n/4, then there are

infinitely many integer pairs (a, b) for which f(a, b)

is k-free.



The abc-conjecture:



The abc-conjecture:

Notation: Q(n) =
∏
p|n

p



The abc-conjecture:

Notation: Q(n) =
∏
p|n

p

The abc-Conjecture: For a and b in Z+, define

La,b =
log(a + b)

log Q
(
ab(a + b)

)
and

L = {La,b : a ≥ 1, b ≥ 1, gcd(a, b) = 1}.
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La,b =
log(a + b)

log Q
(
ab(a + b)

)
L = {La,b : a ≥ 1, b ≥ 1, gcd(a, b) = 1}

Theorem: The set of limit points of L includes the
interval [1/3, 36/37].

(work of Browkin, Greaves, F., Nitaj, Schinzel)
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Approach: Makes use of a preliminary result about
squarefree values of binary forms. In particular, for

f(x, y) = xy(x + y)(x − y)(x2 + y2)(2x2 + y2)(x2 + 2y2)

× (x4 − x2y2 + y4)(3x4 + 3x2y2 + y4)(x4 + 3x2y2 + 3y4)

the number f(x, y)/6 takes on the right proportion
of squarefree values for

X < x ≤ 2X, Y < y ≤ 2Y, X = Y α,

where α ∈ (1, 3).
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× (x4 − x2y2 + y4)(3x4 + 3x2y2 + y4)(x4 + 3x2y2 + 3y4)
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log(a + b)

log Q
(
ab(a + b)

) ≈
20α log Y

(21α + 1) log Y



a = (x2 + y2)7(x2 − y2)(x4 − x2y2 + y4)

b = y14(2x2 + y2)(3x4 + 3x2y2 + y4)

X = Y α, 1 < α < 3

a + b = x14(x2 + 2y2)(x4 + 3x2y2 + 3y4)

f(x, y) = xy(x + y)(x − y)(x2 + y2)(2x2 + y2)(x2 + 2y2)

× (x4 − x2y2 + y4)(3x4 + 3x2y2 + y4)(x4 + 3x2y2 + 3y4)

La,b =
log(a + b)

log Q
(
ab(a + b)

) ≈
20α

21α + 1



La,b =
log(a + b)

log Q
(
ab(a + b)

) ≈
20α

21α + 1



La,b =
log(a + b)

log Q
(
ab(a + b)

) ≈
20α

21α + 1

1 < α < 3 =⇒



La,b =
log(a + b)

log Q
(
ab(a + b)

) ≈
20α

21α + 1

1 < α < 3 =⇒ ?? < La,b < ??



La,b =
log(a + b)

log Q
(
ab(a + b)

) ≈
20α

21α + 1

1 < α < 3 =⇒
10

11
< La,b <

15

16



La,b =
log(a + b)

log Q
(
ab(a + b)

) ≈
20α

21α + 1

1 < α < 3 =⇒
10

11
< La,b <

15

16

Comment: This shows [10/11, 15/16] is contained
in the set of limit points of La,b. A similar argument
is given for other subintervals of [1/3, 36/37] (not all
involving Padé approximations).
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