Applications of Padé Approximations of $(1-z)^{k}$ to Number Theory

by Michael Filaseta
University of South Carolina

General Areas of Applications:

General Areas of Applications:

- irrationality measures

General Areas of Applications:

- irrationality measures - diophantine equations

General Areas of Applications:

- irrationality measures
- diophantine equations
- Waring's problem

General Areas of Applications:

- irrationality measures
- diophantine equations
- Waring's problem
- the factorization of $n(n+1)$

General Areas of Applications:

- irrationality measures
- diophantine equations
- Waring's problem
- the factorization of $n(n+1)$
- Galois groups of classical polynomials

General Areas of Applications:

- irrationality measures
- diophantine equations
- Waring's problem
- the factorization of $n(n+1)$
- Galois groups of classical polynomials
- the Ramanujan-Nagell equation

General Areas of Applications:

- irrationality measures
- diophantine equations
- Waring's problem
- the factorization of $n(n+1)$
- Galois groups of classical polynomials
- the Ramanujan-Nagell equation
- k-free numbers in short intervals

General Areas of Applications:

- irrationality measures
- diophantine equations
- Waring's problem
- the factorization of $n(n+1)$
- Galois groups of classical polynomials
- the Ramanujan-Nagell equation
- k-free numbers in short intervals
- k-free values of polynomials and binary forms

General Areas of Applications:

- irrationality measures
- diophantine equations
- Waring's problem
- the factorization of $n(n+1)$
- Galois groups of classical polynomials
- the Ramanujan-Nagell equation
- k-free numbers in short intervals
- k-free values of polynomials and binary forms
- the $a b c$-conjecture

What are the Padé approximations of $(1-z)^{k}$?

${ }^{4}$ Man, did you scare me! For a second there I thought you were my math teacher!"

What are the Padé approximations of $(1-z)^{k}$?
Answer: Rational functions that give good approximations to $(1-z)^{k}$ near the origin.

What are the Padé approximations of $(1-z)^{k}$?
Answer: Rational functions that give good approximations to $(1-z)^{k}$ near the origin.

What are the Padé approximations of e^{z} ?
Answer: Rational functions that give good approximations to e^{z} near the origin.

What are the Padé approximations of $(1-z)^{k}$?
Answer: Rational functions that give good approximations to $(1-z)^{k}$ near the origin.

What are the Padé approximations of $(1-z)^{k}$?
Answer: Rational functions that give good approximations to $(1-z)^{k}$ near the origin.

What are the Padé approximations of $(1-z)^{k}$?
Answer: Rational functions that give good approximations to $(1-z)^{k}$ near the origin.

Important Equation:

What are the Padé approximations of $(1-z)^{k}$?
Answer: Rational functions that give good approximations to $(1-z)^{k}$ near the origin.

Important Equation:

$$
(1-z)^{k} \approx \frac{P(z)}{Q(z)}
$$

What are the Padé approximations of $(1-z)^{k}$?
Answer: Rational functions that give good approximations to $(1-z)^{k}$ near the origin.

Important Equation:

$$
(1-z)^{k}=\frac{P(z)}{Q(z)}-z^{m} R(z)
$$

What are the Padé approximations of $(1-z)^{k}$?
Answer: Rational functions that give good approximations to $(1-z)^{k}$ near the origin.

Important Equation:

$$
(1-z)^{k}=\frac{Q(z)}{Q(z)}-z^{m} R(z)
$$

What are the Padé approximations of $(1-z)^{k}$?
Answer: Rational functions that give good approximations to $(1-z)^{k}$ near the origin.

Important Equation:

$$
P-(1-z)^{k} Q=z^{m} E
$$

What are the Padé approximations of $(1-z)^{k}$?
Answer: Rational functions that give good approximations to $(1-z)^{k}$ near the origin.

Important Equation:

$$
P_{r}-(1-z)^{k} Q_{r}=z^{m} E_{r}
$$

What are the Padé approximations of $(1-z)^{k}$?
Answer: Rational functions that give good approximations to $(1-z)^{k}$ near the origin.

Important Equation:

$$
P_{r}-(1-z)^{k} Q_{r}=z^{2 r+1} E_{r}
$$

What are the Padé approximations of $(1-z)^{k}$?
Answer: Rational functions that give good approximations to $(1-z)^{k}$ near the origin.

Important Equation:

$$
P_{r}-(1-z)^{k} Q_{r}=z^{2 r+1} E_{r}
$$

What are the Padé approximations of $(1-z)^{k}$?
Answer: Rational functions that give good approximations to $(1-z)^{k}$ near the origin.

Important Equation:

$$
P_{r}-(1-z)^{k} Q_{r}=z^{2 r+1} E_{r}
$$

What are the Padé approximations of $(1-z)^{k}$?
Answer: Rational functions that give good approximations to $(1-z)^{k}$ near the origin.

Important Equation:

$$
\begin{aligned}
& P_{r}-(1-z)^{k} Q_{r}=z^{2 r+1} E_{r} \\
\operatorname{deg} P_{r}= & \operatorname{deg} Q_{r}=r<k, \quad \operatorname{deg} \boldsymbol{E}_{r}=k-r-1
\end{aligned}
$$

Some Properties of the Polynomials:

(i) $P_{r}(z),(-z)^{k} Q_{r}(z)$, and $z^{2 r+1} E_{r}(z)$ satisfy

$$
z(z-1) y^{\prime \prime}+(2 r(1-z)-(k-1) z) y^{\prime}+r(k+r) y=0 .
$$

(ii) $Q_{r}(z)=\sum_{j=0}^{r}\binom{2 r-j}{r}\binom{k-r+j-1}{j} z^{j}$
(iii) $Q_{r}(z)=\frac{(k+r)!}{(k-r-1)!r!r!} \int_{0}^{1}(1-t)^{r} t^{k-r-1}(1-t+z t)^{r} \mathrm{~d} t$
(iv) $P_{r}(z) Q_{r+1}(z)-Q_{r}(z) P_{r+1}(z)=c z^{2 r+1}$

$$
P_{r}-(1-z)^{k} Q_{r}=z^{2 r+1} E_{r}
$$

$$
P_{r}-(1-z)^{k} Q_{r}=z^{2 r+1} E_{r}
$$

Warning: In the applications you are about to see, the true identies used have been changed.

$$
P_{r}-(1-z)^{k} Q_{r}=z^{2 r+1} E_{r}
$$

WARNING: In the applications you are about to see, the true identies used have been changed. They have been changed to conform to the identity above. The identity above gives a result of the type wanted. Typically, a closer analysis of these polynomials or even a variant of the polynomials is used to obtain the currently best known results in the applications.

Irrationality measures:

CLASSIC PEANUTS CHARLES M. SCHULZ

Irrationality measures:

Theorem (Liouville): Fix $\alpha \in \mathbb{R}-\mathbb{Q}$ with α algebraic and of degree n. Then there is a constant $C=$ $C(\alpha)>0$ such that

$$
\left|\alpha-\frac{a}{b}\right|>\frac{C}{b^{n}}
$$

where a and b with $b>0$ are arbitrary integers.

Irrationality measures:

Theorem (Liouville): Fix $\alpha \in \mathbb{R}-\mathbb{Q}$ with α algebraic and of degree n. Then there is a constant $C=$ $C(\alpha)>0$ such that

$$
\left|\alpha-\frac{a}{b}\right|>\frac{C}{b^{n}}
$$

where a and b with $b>0$ are arbitrary integers.

Irrationality measures:

Theorem (Roth): Fix $\varepsilon>0$ and $\alpha \in \mathbb{R}-\mathbb{Q}$ with α algebraic. Then there is a constant $C=C(\alpha, \varepsilon)>$ 0 such that

$$
\left|\alpha-\frac{a}{b}\right|>\frac{C}{b^{2+\varepsilon}}
$$

where a and b with $b>0$ are arbitrary integers.

Irrationality measures:

Theorem (Roth): Fix $\varepsilon>0$ and $\alpha \in \mathbb{R}-\mathbb{Q}$ with α algebraic. Then there is a constant $C=C(\alpha, \varepsilon)>$ 0 such that

$$
\left|\alpha-\frac{a}{b}\right|>\frac{C}{b^{2+\varepsilon}}
$$

where a and b with $b>0$ are arbitrary integers.

Comment: Liouville's result is effective; Roth's is not.

Irrationality measures:

Theorem (Baker): For a and b integers with $b>0$,

$$
\left|\sqrt[3]{2}-\frac{a}{b}\right|>\frac{C}{b^{2.955}}
$$

where $C=10^{-6}$.

Irrationality measures:

Theorem (Baker): For $a \& b$ integers with $b>0$,

$$
\left|\sqrt[3]{2}-\frac{a}{b}\right|>\frac{1}{10^{6} b^{2.955}}
$$

Irrationality measures:

Theorem (Chudnovsky): For $a \& b$ integers with $b>0$,

$$
\left|\sqrt[3]{2}-\frac{a}{b}\right|>\frac{1}{c \cdot b^{2.43}}
$$

Irrationality measures:

Theorem (Bennett): For $a \& b$ integers with $b>0$,

$$
\left|\sqrt[3]{2}-\frac{a}{b}\right|>\frac{1}{c \cdot b^{2.47}}
$$

Irrationality measures:

Theorem (Bennett): For $a \& b$ integers with $b>0$,

$$
\left|\sqrt[3]{2}-\frac{a}{b}\right|>\frac{1}{4 \cdot b^{2.47}}
$$

Irrationality measures:

Theorem (Bennett): For $a \& b$ integers with $b>0$,

$$
\left|\sqrt[3]{2}-\frac{a}{b}\right|>\frac{1}{4 \cdot b^{2.47}}
$$

Comment: Similar explicit estimates have also been made for certain other cube roots.

The Basic Approach:

The Basic Approach:

$$
P_{r}-(1-z)^{k} \quad Q_{r}=z^{2 r+1} E_{r}
$$

The Basic Approach:

$$
P_{r}-(1-z)^{1 / 3} Q_{r}=z^{2 r+1} E_{r}
$$

The Basic Approach:

$$
\begin{gathered}
P_{r}-(1-z)^{1 / 3} Q_{r}=z^{2 r+1} E_{r} \\
3 / 128
\end{gathered}
$$

The Basic Approach:

$$
P_{r}-(125 / 128)^{1 / 3} Q_{r}=z^{2 r+1} E_{r}
$$

The Basic Approach:

$$
P_{r}-(125 / 128)^{1 / 3} Q_{r}=z^{2 r+1} E_{r}
$$

Rearrange and Normalize to Integers

The Basic Approach:

$$
P_{r}-(125 / 128)^{1 / 3} Q_{r}=z^{2 r+1} E_{r}
$$

Rearrange and Normalize to Integers

$$
\sqrt[3]{2} b_{r}-a_{r}=\text { small }
$$

The Basic Approach:

$$
P_{r}-(125 / 128)^{1 / 3} Q_{r}=z^{2 r+1} E_{r}
$$

Rearrange and Normalize to Integers

$$
\sqrt[3]{2} b_{r}-a_{r}=\text { small }_{r}
$$

The Basic Approach:

$$
P_{r}-(125 / 128)^{1 / 3} Q_{r}=z^{2 r+1} E_{r}
$$

Rearrange and Normalize to Integers

$$
\begin{aligned}
& \sqrt[3]{2} b_{r}-a_{r}=\text { small }_{r} \\
& \left|\sqrt[3]{2}-\frac{a_{r}}{b_{r}}\right|=\text { small }_{r}
\end{aligned}
$$

The Basic Approach:

$$
P_{r}-(125 / 128)^{1 / 3} Q_{r}=z^{2 r+1} E_{r}
$$

Rearrange and Normalize to Integers

$$
\begin{aligned}
& \sqrt[3]{2} b_{r}-a_{r}=\text { small }_{r} \\
& \left|\sqrt[3]{2}-\frac{a_{r}}{b_{r}}\right|=\text { small }_{r}
\end{aligned}
$$

The Basic Approach:

$$
P_{r}-(125 / 128)^{1 / 3} Q_{r}=z^{2 r+1} E_{r}
$$

Rearrange and Normalize to Integers

$$
\begin{aligned}
& \sqrt[3]{2} b_{r}-a_{r}=\text { small }_{r} \\
& \left|\sqrt[3]{2}-\frac{a_{r}}{b_{r}}\right|=\text { small }_{r}
\end{aligned}
$$

Wait!!

The Basic Approach:

$$
P_{r}-(125 / 128)^{1 / 3} Q_{r}=z^{2 r+1} E_{r}
$$

Rearrange and Normalize to Integers

$$
\begin{aligned}
& \sqrt[3]{2} b_{r}-a_{r}=\text { small }_{r} \\
& \left|\sqrt[3]{2}-\frac{a_{r}}{b_{r}}\right|=\text { small }_{r}
\end{aligned}
$$

Wait!! I thought we wanted that LARGE!!

The Basic Approach:

$$
\left|\sqrt[3]{2}-\frac{a_{r}}{b_{r}}\right|=\text { small }_{r}
$$

The Basic Approach:

$$
\left|\sqrt[3]{2}-\frac{a_{r}}{b_{r}}\right|=\text { small }_{r}
$$

What's smallr?

The Basic Approach:

$$
\left|\sqrt[3]{2}-\frac{a_{r}}{b_{r}}\right|=\text { small, }
$$

The Basic Approach:

$$
\left|\sqrt[3]{2}-\frac{a_{r}}{b_{r}}\right|=\text { small }_{r}
$$

What's small ı? Let b be a positive integer. Choosing r right, one can obtain

$$
\text { small }_{r}<\frac{1}{2 b b_{r}} \quad \text { and } \quad b_{r}<c b^{1.47}
$$

The Basic Approach:

$$
\left|\sqrt[3]{2}-\frac{a_{r}}{b_{r}}\right|=\text { small }_{r}
$$

What's small ${ }_{r}$? Let b be a positive integer. Choosing r right, one can obtain
small $_{r}<\frac{1}{2 b b_{r}} \quad$ and $\quad b_{r}<c b^{1.47}$.
$\left|\sqrt[3]{2}-\frac{a}{b}\right| \geq$

The Basic Approach:

$$
\left|\sqrt[3]{2}-\frac{a_{r}}{b_{r}}\right|=\text { small, }
$$

What's smallı? Let b be a positive integer. Choosing r right, one can obtain
small $_{r}<\frac{1}{2 b b_{r}} \quad$ and $\quad b_{r}<c b^{1.47}$.
$\sqrt[3]{2}-\frac{a}{b}\left|\geq\left|\frac{a_{r}}{b_{r}}-\frac{a}{b}\right|-\left|\sqrt[3]{2}-\frac{a_{r}}{b_{r}}\right|>\right.$

The Basic Approach:

$$
\left|\sqrt[3]{2}-\frac{a_{r}}{b_{r}}\right|=\text { small }_{r}
$$

What's small ${ }_{r}$? Let b be a positive integer. Choosing r right, one can obtain
small $_{r}<\frac{1}{2 b b_{r}} \quad$ and $\quad b_{r}<c b^{1.47}$.
$\sqrt[3]{2}-\frac{a}{b}\left|\geq\left|\frac{a_{r}}{b_{r}}-\frac{a}{b}\right|-\left|\sqrt[3]{2}-\frac{a_{r}}{b_{r}}\right|>\right.$

The Basic Approach:

$$
\left|\sqrt[3]{2}-\frac{a_{r}}{b_{r}}\right|=\text { small, }
$$

What's small ${ }_{r}$? Let b be a positive integer. Choosing r right, one can obtain
small $r<\frac{1}{2 b b_{r}} \quad$ and $\quad b_{r}<c b^{1.47}$.
$\left|\sqrt[3]{2}-\frac{a}{b}\right| \geq\left|\frac{a_{r}}{b_{r}}-\frac{a}{b}\right|-\left|\sqrt[3]{2}-\frac{a_{r}}{b_{r}}\right|>\frac{1}{b b_{r}}$

The Basic Approach:

$$
\left|\sqrt[3]{2}-\frac{a_{r}}{b_{r}}\right|=\text { small, }
$$

What's small ${ }_{r}$? Let b be a positive integer. Choosing r right, one can obtain
small $_{r}<\frac{1}{2 b b_{r}} \quad$ and $\quad b_{r}<c b^{1.47}$.

$$
\sqrt[3]{2}-\frac{a}{b}\left|\geq\left|\frac{a_{r}}{b_{r}}-\frac{a}{b}\right|-\left|\sqrt[3]{2}-\frac{a_{r}}{b_{r}}\right|>\frac{1}{b b_{r}}\right.
$$

The Basic Approach:

$$
\left|\sqrt[3]{2}-\frac{a_{r}}{b_{r}}\right|=\text { small }_{r}
$$

What's small ${ }_{r}$? Let b be a positive integer. Choosing r right, one can obtain
small $r<\frac{1}{2 b b_{r}} \quad$ and $\quad b_{r}<c b^{1.47}$.
$\sqrt[3]{2}-\frac{a}{b}\left|\geq\left|\frac{a_{r}}{b_{r}}-\frac{a}{b}\right|-\left|\sqrt[3]{2}-\frac{a_{r}}{b_{r}}\right|>\frac{1}{b b_{r}}\right.$

The Basic Approach:

$$
\left|\sqrt[3]{2}-\frac{a_{r}}{b_{r}}\right|=\text { small }_{r}
$$

What's small ${ }_{r}$? Let b be a positive integer. Choosing r right, one can obtain
small $_{r}<\frac{1}{2 b b_{r}} \quad$ and $\quad b_{r}<c b^{1.47}$.
$\left|\sqrt[3]{2}-\frac{a}{b}\right| \geq\left|\frac{a_{r}}{b_{r}}-\frac{a}{b}\right|-\left|\sqrt[3]{2}-\frac{a_{r}}{b_{r}}\right|>\frac{1}{b b_{r}}$

The Basic Approach:

$$
\left|\sqrt[3]{2}-\frac{a_{r}}{b_{r}}\right|=\text { small }_{r}
$$

What's small ${ }_{r}$? Let b be a positive integer. Choosing r right, one can obtain
small $_{r}<\frac{1}{2 b b_{r}} \quad$ and $\quad b_{r}<c b^{1.47}$.
$\left|\sqrt[3]{2}-\frac{a}{b}\right| \geq\left|\frac{a_{r}}{b_{r}}-\frac{a}{b}\right|-\left|\sqrt[3]{2}-\frac{a_{r}}{b_{r}}\right|>\frac{1}{b b_{r}}-$

The Basic Approach:

$$
\left|\sqrt[3]{2}-\frac{a_{r}}{b_{r}}\right|=\text { small }
$$

What's small ${ }_{r}$? Let b be a positive integer. Choosing r right, one can obtain
small $_{r}<\frac{1}{2 b b_{r}} \quad$ and $\quad b_{r}<c b^{1.47}$.
$\left|\sqrt[3]{2}-\frac{a}{b}\right| \geq\left|\frac{a_{r}}{b_{r}}-\frac{a}{b}\right|-\left|\sqrt[3]{2}-\frac{a_{r}}{b_{r}}\right|>\frac{1}{b b_{r}}-\frac{1}{2 b b_{r}}$

The Basic Approach:

$$
\left|\sqrt[3]{2}-\frac{a_{r}}{b_{r}}\right|=\text { small, }
$$

What's small ${ }_{r}$? Let b be a positive integer. Choosing r right, one can obtain
small $_{r}<\frac{1}{2 b b_{r}} \quad$ and $\quad b_{r}<c b^{1.47}$.
$\left|\sqrt[3]{2}-\frac{a}{b}\right| \geq\left|\frac{a_{r}}{b_{r}}-\frac{a}{b}\right|-\left|\sqrt[3]{2}-\frac{a_{r}}{b_{r}}\right|>\frac{1}{2 b b_{r}}$

The Basic Approach:

$$
\left|\sqrt[3]{2}-\frac{a_{r}}{b_{r}}\right|=\text { small, }
$$

What's small ${ }_{r}$? Let b be a positive integer. Choosing r right, one can obtain
small $r<\frac{1}{2 b b_{r}} \quad$ and $\quad b_{r}<c b^{1.47}$.
$\left|\sqrt[3]{2}-\frac{a}{b}\right| \geq\left|\frac{a_{r}}{b_{r}}-\frac{a}{b}\right|-\left|\sqrt[3]{2}-\frac{a_{r}}{b_{r}}\right|>\frac{1}{2 b b_{r}}$

The Basic Approach:

$$
\left|\sqrt[3]{2}-\frac{a_{r}}{b_{r}}\right|=\text { small, }
$$

What's small ${ }_{r}$? Let b be a positive integer. Choosing r right, one can obtain
small $_{r}<\frac{1}{2 b b_{r}} \quad$ and $\quad b_{r}<c b^{1.47}$.
$\left|\sqrt[3]{2}-\frac{a}{b}\right| \geq\left|\frac{a_{r}}{b_{r}}-\frac{a}{b}\right|-\left|\sqrt[3]{2}-\frac{a_{r}}{b_{r}}\right|>\frac{1}{2 c b^{2.47}}$

The Basic Approach:

$$
\left|\sqrt[3]{2}-\frac{a_{r}}{b_{r}}\right|=\text { small, }
$$

What's small ${ }_{r}$? Let b be a positive integer. Choosing r right, one can obtain
small $_{r}<\frac{1}{2 b b_{r}} \quad$ and $\quad b_{r}<c b^{1.47}$.
$\left|\sqrt[3]{2}-\frac{a}{b}\right| \geq\left|\frac{a_{r}}{b_{r}}-\frac{a}{b}\right|-\left|\sqrt[3]{2}-\frac{a_{r}}{b_{r}}\right|>\frac{1}{4 \cdot b^{2.47}}$

Diophantine equations:

SPEED BUMP DAVE COVERLY

Diophantine equations:

Theorem (Bennett): For a and b integers with $b>0$,

$$
\left|\sqrt[3]{2}-\frac{a}{b}\right|>\frac{1}{4 \cdot b^{2.47}}
$$

Diophantine equations:

Theorem (Bennett): For a and b integers with $b \neq 0$,

$$
\left|\sqrt[3]{2}-\frac{a}{b}\right|>\frac{1}{4 \cdot b^{2.47}}
$$

Diophantine equations:

Theorem (Bennett): For a and b integers with $b \neq 0$,

$$
\left|\sqrt[3]{2}-\frac{a}{b}\right|>\frac{1}{4 \cdot|b|^{2.47}}
$$

Diophantine equations:

Theorem (Bennett): For a and b integers with $b \neq 0$,

$$
\left|\sqrt[3]{2}-\frac{a}{b}\right|>\frac{1}{4 \cdot|b|^{2.5}} .
$$

Diophantine equations:

Theorem (Bennett): For a and b integers with $b \neq 0$,

$$
\begin{aligned}
& \left|\sqrt[3]{2}-\frac{a}{b}\right|>\frac{1}{4 \cdot|b|^{2.5}} \\
& x^{3}-2 y^{3}=n
\end{aligned}
$$

Diophantine equations:

Theorem (Bennett): For a and b integers with $b \neq 0$,

$$
\begin{aligned}
& \left|\sqrt[3]{2}-\frac{a}{b}\right|>\frac{1}{4 \cdot|b|^{2.5}} \\
& x^{3}-2 y^{3}=n, \quad y \neq 0
\end{aligned}
$$

Diophantine equations:

Theorem (Bennett): For a and b integers with $b \neq 0$,

$$
\left|\sqrt[3]{2}-\frac{a}{b}\right|>\frac{1}{4 \cdot|b|^{2.5}} .
$$

$$
x^{3}-2 y^{3}=n, \quad y \neq 0
$$

$$
\left|\sqrt[3]{2}-\frac{x}{y}\right|\left|\sqrt[3]{2} e^{2 \pi \mathrm{i} / 3}-\frac{x}{y}\right|\left|\sqrt[3]{2} e^{4 \pi \mathrm{i} / 3}-\frac{x}{y}\right|=\frac{|n|}{|y|^{3}}
$$

Diophantine equations:

Theorem (Bennett): For a and b integers with $b \neq 0$,

$$
\left|\sqrt[3]{2}-\frac{a}{b}\right|>\frac{1}{4 \cdot|b|^{2.5}} .
$$

$$
x^{3}-2 y^{3}=n, \quad y \neq 0
$$

$$
\left|\sqrt[3]{2}-\frac{x}{y}\right|\left|\sqrt[3]{2} e^{2 \pi \mathrm{i} / 3}-\frac{x}{y}\right|\left|\sqrt[3]{2} e^{4 \pi \mathrm{i} / 3}-\frac{x}{y}\right|=\frac{|n|}{|\boldsymbol{y}|^{3}}
$$

Diophantine equations:

Theorem (Bennett): For a and b integers with $b \neq 0$,

$$
\begin{gathered}
\left|\sqrt[3]{2}-\frac{a}{b}\right|>\frac{1}{4 \cdot|b|^{2.5}} \\
x^{3}-2 y^{3}=n, \quad y \neq 0 \\
\left|\sqrt[3]{2}-\frac{x}{y}\right|\left|\sqrt[3]{2} e^{2 \pi \mathrm{i} / 3}-\frac{x}{y}\right|\left|\sqrt[3]{2} e^{4 \pi \mathrm{i} / 3}-\frac{x}{y}\right|=\frac{|n|}{|y|^{3}} \\
\left|\sqrt[3]{2}-\frac{x}{y}\right|<\frac{|n|}{|y|^{3}}
\end{gathered}
$$

Diophantine equations:

Theorem (Bennett): For a and b integers with $b \neq 0$,

$$
\begin{gathered}
\left|\sqrt[3]{2}-\frac{a}{b}\right|>\frac{1}{4 \cdot|b|^{2.5}} \\
x^{3}-2 y^{3}=n, \quad y \neq 0 \\
\left|\sqrt[3]{2}-\frac{x}{y}\right|\left|\sqrt[3]{2} e^{2 \pi \mathrm{i} / 3}-\frac{x}{y}\right|\left|\sqrt[3]{2} e^{4 \pi \mathrm{i} / 3}-\frac{x}{y}\right|=\frac{|n|}{|y|^{3}} \\
\frac{1}{4|y|^{2.5}}<\left|\sqrt[3]{2}-\frac{x}{y}\right|<\frac{|n|}{|y|^{3}}
\end{gathered}
$$

Diophantine equations:

$$
x^{3}-2 y^{3}=n, \quad y \neq 0
$$

$$
\begin{gathered}
\left|\sqrt[3]{2}-\frac{x}{y}\right|\left|\sqrt[3]{2} e^{2 \pi \mathrm{i} / 3}-\frac{x}{y}\right|\left|\sqrt[3]{2} e^{4 \pi \mathrm{i} / 3}-\frac{x}{y}\right|=\frac{|n|}{|y|^{3}} \\
\frac{1}{4|y|^{2.5}}<\left|\sqrt[3]{2}-\frac{x}{y}\right|<\frac{|n|}{|y|^{3}}
\end{gathered}
$$

Diophantine equations:

$$
\begin{gathered}
x^{3}-2 y^{3}=n, \quad y \neq 0 \\
\left|\sqrt[3]{2}-\frac{x}{y}\right|\left|\sqrt[3]{2} e^{2 \pi \mathrm{i} / 3}-\frac{x}{y}\right|\left|\sqrt[3]{2} e^{4 \pi \mathrm{i} / 3}-\frac{x}{y}\right|=\frac{|n|}{|y|^{3}} \\
\frac{1}{4|y|^{2.5}}<\left|\sqrt[3]{2}-\frac{x}{y}\right|<\frac{|n|}{|y|^{3}} \\
|y|^{1 / 2}<4|n|
\end{gathered}
$$

Diophantine equations:

$$
\begin{gathered}
x^{3}-2 y^{3}=n, \quad y \neq 0 \\
\left|\sqrt[3]{2}-\frac{x}{y}\right|\left|\sqrt[3]{2} e^{2 \pi \mathrm{i} / 3}-\frac{x}{y}\right|\left|\sqrt[3]{2} e^{4 \pi \mathrm{i} / 3}-\frac{x}{y}\right|=\frac{|n|}{|y|^{3}} \\
\frac{1}{4|y|^{2.5}}<\left|\sqrt[3]{2}-\frac{x}{y}\right|<\frac{|n|}{|y|^{3}} \\
|y|^{1 / 2}<4|n| \Longrightarrow|y|<16 n^{2}
\end{gathered}
$$

Diophantine equations:

$$
\begin{gathered}
x^{3}-2 y^{3}=n, \quad y \neq 0 \\
\left|\sqrt[3]{2}-\frac{x}{y}\right|\left|\sqrt[3]{2} e^{2 \pi \mathrm{i} / 3}-\frac{x}{y}\right|\left|\sqrt[3]{2} e^{4 \pi \mathrm{i} / 3}-\frac{x}{y}\right|=\frac{|n|}{|y|^{3}} \\
\frac{1}{4|y|^{2.5}}<\left|\sqrt[3]{2}-\frac{x}{y}\right|<\frac{|n|}{|y|^{3}} \\
|y|^{1 / 2}<4|n| \Longrightarrow|y|<16 n^{2}
\end{gathered}
$$

Diophantine equations:

Theorem: Let n be a non-zero integer. If x and y are integers satisfying $x^{3}-2 y^{3}=n$, then $|y|<16 n^{2}$.

Diophantine equations:

Theorem (Bennett): If a, b, and n are integers with $a b \neq 0$ and $n \geq 3$, then the equation

$$
\left|a x^{n}+b y^{n}\right|=1
$$

has at most 1 solution in positive integers x and y.

Waring's Problem:

Waring's Problem:

Waring's Problem: Let k be an integer ≥ 2. Then there exists a number s such that every natural number is a sum of $s k^{\text {th }}$ powers.

Waring's Problem:
Waring's Problem: Let k be an integer ≥ 2. Then there exists a number s such that every natural number is a sum of $s k^{\text {th }}$ powers. If $g(k)$ is the least such s, what is $g(k)$?

Waring's Problem:

Waring's Problem: Let k be an integer ≥ 2. Then there exists a number s such that every natural number is a sum of $s k^{\text {th }}$ powers. If $g(\boldsymbol{k})$ is the least such s, what is $g(k)$?

Known: (i) $g(k)=2^{k}+\left[\left(\frac{3}{2}\right)^{k}\right]-2$

Waring's Problem:

Waring's Problem: Let k be an integer ≥ 2. Then there exists a number s such that every natural number is a sum of $s k^{\text {th }}$ powers. If $g(\boldsymbol{k})$ is the least such s, what is $g(k)$?

Known: (i) $g(k)=2^{k}+\left[\left(\frac{3}{2}\right)^{k}\right]-2$
(ii) no one knows how to prove (i)

Waring's Problem:

Waring's Problem: Let k be an integer ≥ 2. Then there exists a number s such that every natural number is a sum of $s k^{\text {th }}$ powers. If $g(k)$ is the least such s, what is $g(k)$?

Known: (i) $g(k)=2^{k}+\left[\left(\frac{3}{2}\right)^{k}\right]-2$
(ii) no one knows how to prove (i)
(iii) (i) holds if $\left\|\left(\frac{3}{2}\right)^{k}\right\|>0.75^{k}$

Waring's Problem:

Waring's Problem: Let k be an integer ≥ 2. Then there exists a number s such that every natural number is a sum of $s k^{\text {th }}$ powers. If $g(k)$ is the least such s, what is $g(k)$?

Known: (i) $g(k)=2^{k}+\left[\left(\frac{3}{2}\right)^{k}\right]-2$
(ii) no one knows how to prove (i)
(iii) (i) holds if $\left\|\left(\frac{3}{2}\right)^{k}\right\|>0.75^{k}$
(iv) (iii) holds if $k>8$

Waring's Problem:
Waring's Problem: Let k be an integer ≥ 2. Then there exists a number s such that every natural number is a sum of $s k^{\text {th }}$ powers. If $g(k)$ is the least such s, what is $g(k)$?

Known: (i) $g(k)=2^{k}+\left[\left(\frac{3}{2}\right)^{k}\right]-2$
(ii) no one knows how to prove (i)
(iii) (i) holds if $\left\|\left(\frac{3}{2}\right)^{k}\right\|>0.75^{k}$
(iv) (iii) holds if $k>8$
(v) no one knows how to prove (iv)

Waring's Problem:

Known: (i) $g(k)=2^{k}+\left[\left(\frac{3}{2}\right)^{k}\right]-2$
(ii) No one knows how to prove (i).
(iii) (i) holds if $\left\|\left(\frac{3}{2}\right)^{k}\right\|>0.75^{k}$

Waring's Problem:

Known: (i) $g(k)=2^{k}+\left[\left(\frac{3}{2}\right)^{k}\right]-2$
(ii) No one knows how to prove (i).
(iii) (i) holds if $\left\|\left(\frac{3}{2}\right)^{k}\right\|>0.75^{k}$

Theorem (Beakers): If $k>4$, then

$$
\left\|\left(\frac{3}{2}\right)^{k}\right\|>0.5358^{k} .
$$

Waring's Problem:

Known: (i) $g(k)=2^{k}+\left[\left(\frac{3}{2}\right)^{k}\right]-2$
(ii) No one knows how to prove (i).
(iii) (i) holds if $\left\|\left(\frac{3}{2}\right)^{k}\right\|>0.75^{k}$

Theorem (Dubitskas): If $k>4$, then

$$
\left\|\left(\frac{3}{2}\right)^{k}\right\|>0.5767^{k} .
$$

The factorization of $n(n+1)$:

The factorization of $n(n+1)$:

Well-Known: The largest prime factor of $n(n+1)$ tends to infinity with n.

The factorization of $n(n+1)$:

Well-Known: The largest prime factor of $n(n+1)$ tends to infinity with \boldsymbol{n}.

Let $p_{1}, p_{2}, \ldots, p_{r}$ be primes. There is an N such that if $n \geq N$ and

$$
n(n+1)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} m
$$

for some integer m, then $m>1$.

Let $p_{1}, p_{2}, \ldots, p_{r}$ be primes. There is an N such that if $n \geq N$ and

$$
n(n+1)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} m
$$

for some integer m, then $m>1$.

Let $p_{1}, p_{2}, \ldots, p_{r}$ be primes. There is an N such that if $n \geq N$ and

$$
n(n+1)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} m
$$

for some integer m, then $m>1$.

Lehmer: Gave some explicit estimates:

Let $p_{1}, p_{2}, \ldots, p_{r}$ be primes. There is an N such that if $n \geq N$ and

$$
n(n+1)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} m
$$

for some integer m, then $m>1$.

Lehmer: Gave some explicit estimates:
$n(n+1)$ divisible only by primes $\leq 11 \Longrightarrow n \leq$

Let $p_{1}, p_{2}, \ldots, p_{r}$ be primes. There is an N such that if $n \geq N$ and

$$
n(n+1)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} m
$$

for some integer m, then $m>1$.

Lehmer: Gave some explicit estimates:

$n(n+1)$ divisible only by primes $\leq 11 \Longrightarrow n \leq$... only by primes $\leq 41 \Longrightarrow n \leq$

Let $p_{1}, p_{2}, \ldots, p_{r}$ be primes. There is an N such that if $n \geq N$ and

$$
n(n+1)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} m
$$

for some integer m, then $m>1$.

Lehmer: Gave some explicit estimates:

$n(n+1)$ divisible only by primes $\leq 11 \Longrightarrow n \leq 9800$
\ldots only by primes $\leq 41 \Longrightarrow n \leq$

Let $p_{1}, p_{2}, \ldots, p_{r}$ be primes. There is an \boldsymbol{N} such that if $n \geq N$ and

$$
n(n+1)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} m
$$

for some integer m, then $m>1$.

Lehmer: Gave some explicit estimates:

$n(n+1)$ divisible only by primes $\leq 11 \Longrightarrow n \leq 9800$
\ldots only by primes $\leq 41 \Longrightarrow n \leq 63927525375$

Let $p_{1}, p_{2}, \ldots, p_{r}$ be primes. There is an N such that if $n \geq N$ and

$$
n(n+1)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} m
$$

for some integer m, then $m>1$.

Let $p_{1}, p_{2}, \ldots, p_{r}$ be primes. There is an N such that if $n \geq N$ and

$$
n(n+1)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} m
$$

for some integer m, then $m>1$.

Let $p_{1}, p_{2}, \ldots, p_{r}$ be primes. There is an N such that if $n \geq N$ and

$$
\begin{aligned}
& n(n+1)=p_{1}^{e_{1}} p_{2}^{e_{2}} \dddot{\mathscr{L}} p_{r}^{e_{r}} m \\
& \text { teger } m \text {, then } m>\mathscr{L} .
\end{aligned}
$$

Let $p_{1}, p_{2}, \ldots, p_{r}$ be primes. There is an N such that if $n \geq N$ and

$$
n(n+1)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} m
$$

for some integer m, then $m>n^{\theta}$.

Want: Let $p_{1}, p_{2}, \ldots, p_{r}$ be primes. There is an $N=N\left(\theta, p_{1}, \ldots, p_{r}\right)$ such that if $n \geq N$ and

$$
n(n+1)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} m
$$

for some integer m, then $m>n^{\theta}$.

Want: Let $p_{1}, p_{2}, \ldots, p_{r}$ be primes. There is an $N=N\left(\theta, p_{1}, \ldots, p_{r}\right)$ such that if $n \geq N$ and

$$
n(n+1)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} m
$$

for some integer m, then $m>n^{\theta}$.
$a b c$-conjecture $\Longrightarrow \theta=$

Want: Let $p_{1}, p_{2}, \ldots, p_{r}$ be primes. There is an $N=N\left(\theta, p_{1}, \ldots, p_{r}\right)$ such that if $n \geq N$ and

$$
n(n+1)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} m
$$

for some integer m, then $m>n^{\theta}$.
$a b c$-conjecture $\Longrightarrow \theta=1-\varepsilon$

Want: Let $p_{1}, p_{2}, \ldots, p_{r}$ be primes. There is an $N=N\left(\theta, p_{1}, \ldots, p_{r}\right)$ such that if $n \geq N$ and $n(n+1)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} m$
for some integer m, then $m>n^{\theta}$.
$a b c$-conjecture $\Longrightarrow \theta=1-\varepsilon$
unconditionally one can obtain $\theta=$

Want: Let $p_{1}, p_{2}, \ldots, p_{r}$ be primes. There is an $N=N\left(\theta, p_{1}, \ldots, p_{r}\right)$ such that if $n \geq N$ and

$$
n(n+1)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} m
$$

for some integer m, then $m>n^{\theta}$.
$a b c$-conjecture $\Longrightarrow \theta=1-\varepsilon$
unconditionally one can obtain $\theta=1-\varepsilon$

Want: Let $p_{1}, p_{2}, \ldots, p_{r}$ be primes. There is an $N=N\left(\theta, p_{1}, \ldots, p_{r}\right)$ such that if $n \geq N$ and

$$
n(n+1)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} m
$$

for some integer m, then $m>n^{\theta}$.
$a b c$-conjecture $\Longrightarrow \theta=1-\varepsilon$
unconditionally one can obtain $\theta=1-\varepsilon$
(ineffective)

Want: Let $p_{1}, p_{2}, \ldots, p_{r}$ be primes. There is an $N=N\left(\theta, p_{1}, \ldots, p_{r}\right)$ such that if $n \geq N$ and

$$
n(n+1)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} m
$$

for some integer m, then $m>n^{\theta}$.

Effective Approach:

Want: Let $p_{1}, p_{2}, \ldots, p_{r}$ be primes. There is an $\boldsymbol{N}=\boldsymbol{N}\left(\boldsymbol{\theta}, \boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{r}\right)$ such that if $\boldsymbol{n} \geq \boldsymbol{N}$ and

$$
n(n+1)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} m
$$

for some integer m, then $m>n^{\theta}$.

Effective Approach: (Linear Forms of Logarithms)

Want: Let $p_{1}, p_{2}, \ldots, p_{r}$ be primes. There is an $\boldsymbol{N}=\boldsymbol{N}\left(\boldsymbol{\theta}, \boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{r}\right)$ such that if $\boldsymbol{n} \geq \boldsymbol{N}$ and

$$
n(n+1)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} m
$$

for some integer m, then $m>n^{\theta}$.

Effective Approach: (Linear Forms of Logarithms)

$$
\theta=\frac{c}{\log \log n}
$$

Want: Let $p_{1}, p_{2}, \ldots, p_{r}$ be primes. There is an $N=N\left(\theta, p_{1}, \ldots, p_{r}\right)$ such that if $n \geq N$ and

$$
n(n+1)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} m
$$

for some integer m, then $m>n^{\theta}$.

Effective Approach: (Linear Forms of Logarithms)

$$
\theta=\frac{c}{\log \log n}
$$

Problem: Can we narrow the gap between these ineffective and effective results?

Want: Let $p_{1}, p_{2}, \ldots, p_{r}$ be primes. There is an $N=N\left(\theta, p_{1}, \ldots, p_{r}\right)$ such that if $n \geq N$ and

$$
n(n+1)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} m
$$

for some integer m, then $m>n^{\theta}$.

Want: Let $p_{1}, p_{2}, \ldots, p_{r}$ be primes. There is an $N=N\left(\theta, p_{1}, \ldots, p_{r}\right)$ such that if $n \geq N$ and

$$
n(n+1)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} m
$$

for some integer m, then $m>n^{\theta}$.

Theorem (Bennett, F., Trifonov): If $n \geq 9$ and

$$
n(n+1)=2^{k} 3^{\ell} m
$$

then

$$
m \geq
$$

Want: Let $p_{1}, p_{2}, \ldots, p_{r}$ be primes. There is an $\boldsymbol{N}=\boldsymbol{N}\left(\boldsymbol{\theta}, \boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{r}\right)$ such that if $\boldsymbol{n} \geq \boldsymbol{N}$ and

$$
n(n+1)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} m
$$

for some integer m, then $m>n^{\theta}$.

Theorem (Bennett, F., Trifonov): If $n \geq 9$ and

$$
n(n+1)=2^{k} 3^{\ell} m
$$

then

$$
m \geq n^{1 / 4}
$$

Conjecture: For $n>512$,

$$
n(n+1)=2^{u} 3^{v} m \Longrightarrow m>\sqrt{n} .
$$

Conjecture: For $n>512$,

$$
n(n+1)=2^{u} 3^{v} m \Longrightarrow m>\sqrt{n} .
$$

Comment: The conjecture has been verified for

$$
512<n \leq
$$

Conjecture: For $n>512$,

$$
n(n+1)=2^{u} 3^{v} m \Longrightarrow m>\sqrt{n} .
$$

Comment: The conjecture has been verified for

$$
512<n \leq 10^{1000} .
$$

The Method:

The Method:

$$
n(n+1)=3^{k} 2^{\ell} m
$$

The Method:

$$
\begin{gathered}
n(n+1)=3^{k} 2^{\ell} m \\
3^{k} m_{1}-2^{\ell} m_{2}= \pm 1
\end{gathered}
$$

The Method:

$$
\begin{gathered}
n(n+1)=3^{k} 2^{\ell} m \\
3^{k} m_{1}-2^{\ell} m_{2}= \pm 1
\end{gathered}
$$

Main Idea: Find "small" integers $\boldsymbol{P}, \boldsymbol{Q}$, and \boldsymbol{E} such that

$$
3^{k} P-2^{\ell} Q=E
$$

The Method:

$$
\begin{gathered}
n(n+1)=3^{k} 2^{\ell} m \\
3^{k} m_{1}-2^{\ell} m_{2}= \pm 1
\end{gathered}
$$

Main Idea: Find "small" integers P, Q, and E such that

$$
3^{k} P-2^{\ell} Q=E .
$$

Then

$$
3^{k}\left(Q m_{1}-P m_{2}\right)= \pm Q-E m_{2} .
$$

The Method:

$$
\begin{gathered}
n(n+1)=3^{k} 2^{\ell} m \\
3^{k} m_{1}-2^{\ell} m_{2}= \pm 1
\end{gathered}
$$

Main Idea: Find "small" integers P, Q, and E such that

$$
3^{k} P-2^{\ell} Q=E .
$$

Then

$$
3^{k}\left(Q m_{1}-P m_{2}\right)= \pm Q-E m_{2} .
$$

Main Idea: Find "small" integers P, Q, and E such that

$$
3^{k} P-2^{\ell} Q=E
$$

and

$$
Q m_{1}-P m_{2} \neq 0
$$

Then

$$
3^{k}\left(Q m_{1}-P m_{2}\right)= \pm Q-E m_{2}
$$

Main Idea: Find "small" integers $\boldsymbol{P}, \boldsymbol{Q}$, and \boldsymbol{E} such that

$$
3^{k} P-2^{\ell} Q=E
$$

and

$$
Q m_{1}-P m_{2} \neq 0
$$

Then

$$
3^{k}\left(Q m_{1}-P m_{2}\right)= \pm Q-E m_{2}
$$

Obtain an upper bound on 3^{k}.

Main Idea: Find "small" integers P, Q, and E such that

$$
3^{k} P-2^{\ell} Q=E
$$

and

$$
Q m_{1}-P m_{2} \neq 0
$$

Then

$$
3^{k}\left(Q m_{1}-P m_{2}\right)= \pm Q-E m_{2}
$$

Obtain an upper bound on 3^{k}. Since $3^{k} m_{1} \geq n$, it follows that m_{1} and $m=m_{1} m_{2}$ are not small.

The "small" integers P, Q, and E are obtained through

 the use of Padé approximations for $(1-z)^{k}$.The "small" integers P, Q, and E are obtained through the use of Padé approximations for $(1-z)^{k}$.

More precisely, one takes $z=1 / 9$ in the equation

$$
P_{r}(z)-(1-z)^{k} Q_{r}(z)=z^{2 r+1} E_{r}(z) .
$$

What's Needed for the Method to Work:

What's Needed for the Method to Work:
One largely needs to be dealing with two primes (like 2 and 3) with a difference of powers of these primes being small (like $3^{2}-2^{3}=1$).

Galois groups of classical polynomials:

Galois groups of classical polynomials:

- D. Hilbert (1892) used his now classical Hilbert's Irreducibility Theorem to show that for each integer $n \geq 1$, there is polynomial $f(x) \in \mathbb{Z}[x]$ such that the Galois group associated with $f(x)$ is the symmetric group S_{n}.

Galois groups of classical polynomials:

- D. Hilbert (1892) used his now classical Hilbert's Irreducibility Theorem to show that for each integer $n \geq 1$, there is polynomial $f(x) \in \mathbb{Z}[x]$ such that the Galois group associated with $f(x)$ is the symmetric group S_{n}. He also showed the analogous result in the case of the alternating group A_{n}.

Galois groups of classical polynomials:

- D. Hilbert (1892) used his now classical Hilbert's Irreducibility Theorem to show that for each integer $n \geq 1$, there is polynomial $f(x) \in \mathbb{Z}[x]$ such that the Galois group associated with $f(x)$ is the symmetric group S_{n}. He also showed the analogous result in the case of the alternating group A_{n}.
- Hilbert's work and work of E. Noether (1918) began what is now called Inverse Galois Theory.

Galois groups of classical polynomials:

- D. Hilbert (1892) used his now classical Hilbert's Irreducibility Theorem to show that for each integer $n \geq 1$, there is polynomial $f(x) \in \mathbb{Z}[x]$ such that the Galois group associated with $f(x)$ is the symmetric group S_{n}. He also showed the analogous result in the case of the alternating group A_{n}.
- Hilbert's work and work of E. Noether (1918) began what is now called Inverse Galois Theory.
- Van der Waerden showed that for "almost all" polynomials $f(x) \in \mathbb{Z}[x]$, the Galois group associated with $f(x)$ is the symmetric group S_{n}.

Galois groups of classical polynomials:

- Schur showed $L_{n}^{(0)}(x)$ has Galois group S_{n}.

Galois groups of classical polynomials:

- Schur showed $L_{n}^{(0)}(x)$ has Galois group S_{n}.
- Schur showed $L_{n}^{(1)}(x)$ has Galois group A_{n} (the alternating group) if n is odd.

Galois groups of classical polynomials:

- Schur showed $L_{n}^{(0)}(x)$ has Galois group S_{n}.
- Schur showed $L_{n}^{(1)}(x)$ has Galois group A_{n} (the alternating group) if n is odd.
- Schur showed $\sum_{j=0}^{n} \frac{x^{j}}{j!}$ has Galois group A_{n} if $4 \mid n$.

Galois groups of classical polynomials:

- Schur showed $L_{n}^{(0)}(x)$ has Galois group S_{n}.
- Schur showed $L_{n}^{(1)}(x)$ has Galois group A_{n} (the alternating group) if n is odd.
- Schur showed $\sum_{j=0}^{n} \frac{x^{j}}{j!}$ has Galois group A_{n} if $4 \mid n$.
- Schur did not find an explicit sequence of polynomials having Galois group A_{n} with $n \equiv 2(\bmod 4)$.

Galois groups of classical polynomials:

Theorem (R. Gow, 1989): If $n>2$ is even and

$$
L_{n}^{(n)}(x)=\sum_{j=0}^{n}\binom{2 n}{n-j} \frac{(-x)^{j}}{j!}
$$

is irreducible, then the Galois group of $L_{n}^{(n)}(x)$ is A_{n}.

Galois groups of classical polynomials:

Theorem (R. Gow, 1989): If $n>2$ is even and

$$
L_{n}^{(n)}(x)=\sum_{j=0}^{n}\binom{2 n}{n-j} \frac{(-x)^{j}}{j!}
$$

is irreducible, then the Galois group of $L_{n}^{(n)}(x)$ is \boldsymbol{A}_{n}.
Theorem (joint work with R. Williams): For almost all positive integers n the polynomial $L_{n}^{(n)}(x)$ is irreducible (and, hence, has Galois group $\boldsymbol{A}_{\boldsymbol{n}}$ for almost all even n).

Galois groups of classical polynomials:

Theorem (joint work with R. Williams): For almost all positive integers n the polynomial $L_{n}^{(n)}(x)$ is irreducible.

Galois groups of classical polynomials:

Theorem (joint work with R. Williams): For almost all positive integers n the polynomial $L_{n}^{(n)}(x)$ is irreducible.

Comment: The method had an ineffective component to it. We could show that if n is sufficiently large and $L_{n}^{(n)}(x)$ is reducible, then $L_{n}^{(n)}(x)$ has a linear factor. But we didn't know what sufficiently large was.

Galois groups of classical polynomials:

Theorem (joint work with R. Williams): For almost all positive integers n the polynomial $L_{n}^{(n)}(x)$ is irreducible.

Comment: The method had an ineffective component to it. We could show that if n is sufficiently large and $L_{n}^{(n)}(x)$ is reducible, then $L_{n}^{(n)}(x)$ has a linear factor. But we didn't know what sufficiently large was.

Work in Progress with Trifonov: There is an effetive bound N such that if $n \geq N$ and $n \equiv 2$ $(\bmod 4)$, then $L_{n}^{(n)}(x)$ is irreducible.

Galois groups of classical polynomials:

Theorem (joint work with R. Williams): For almost all positive integers n the polynomial $L_{n}^{(n)}(x)$ is irreducible.

Comment: The method had an ineffective component to it. We could show that if n is sufficiently large and $L_{n}^{(n)}(x)$ is reducible, then $L_{n}^{(n)}(x)$ has a linear factor. But we didn't know what sufficiently large was.

Work in Progress with Trifonov: There is an effetive bound N such that if $n \geq N$ and $n \equiv 2$ $(\bmod 4)$, then $L_{n}^{(n)}(x)$ has Galois group A_{n}.

The Ramanujan-Nagell equation:

[^0]
The Ramanujan-Nagell equation:

Classical Ramanujan-Nagell Theorem: If x and n are positive integers satisfying

$$
x^{2}+7=2^{n}
$$

then

The Ramanujan-Nagell equation:

Classical Ramanujan-Nagell Theorem: If x and n are positive integers satisfying

$$
x^{2}+7=2^{n}
$$

then

$$
x \in\{1,3,5,11,181\}
$$

The Ramanujan-Nagell equation:

Some Background: Beukers used a method "similar" to the approach for finding irrationality measures to show that $\sqrt{2}$ cannot be approximated too well by rationals a / b with b a power of 2 . This implies bounds for solutions to the Diophantine equation $x^{2}+D=$ 2^{n} with D fixed. He showed that if $D \neq 7$, then the equation has ≤ 4 solutions. Related work by Apéry, Beukers, and Bennett establishes that for odd primes p not dividing D, the equation $x^{2}+D=p^{n}$ has at most 3 solutions. All of these are in some sense best possible (though more can and has been said).

The Ramanujan-Nagell equation:

Classical Ramanujan-Nagell Theorem: If x and n are positive integers satisfying

$$
x^{2}+7=2^{n}
$$

then

$$
x \in\{1,3,5,11,181\}
$$

The Ramanujan-Nagell equation:

Classical Ramanujan-Nagell Theorem: If x and n are positive integers satisfying

$$
x^{2}+7=2^{n}
$$

then

$$
x \in\{1,3,5,11,181\} .
$$

Problem: If $x^{2}+7=2^{n} m$ and x is not in the set above, then can we say that m must be large?

Problem: If $x^{2}+7=2^{n} m$ and x is not in the set above, then can we say that m must be large?

Connection with $n(n+1)$ problem:

Problem: If $x^{2}+7=2^{n} m$ and x is not in the set above, then can we say that m must be large?

Connection with $n(n+1)$ problem:

$$
x^{2}+7=2^{n} m
$$

Problem: If $x^{2}+7=2^{n} m$ and x is not in the set above, then can we say that m must be large?

Connection with $n(n+1)$ problem:

$$
x^{2}+7=2^{n} m
$$

$$
\left(\frac{x+\sqrt{-7}}{2}\right)\left(\frac{x-\sqrt{-7}}{2}\right)=\left(\frac{1+\sqrt{-7}}{2}\right)^{n-2}\left(\frac{1-\sqrt{-7}}{2}\right)^{n-2} m
$$

Problem: If $x^{2}+7=2^{n} m$ and x is not in the set above, then can we say that m must be large?

Connection with $n(n+1)$ problem:

$$
x^{2}+7=2^{n} m
$$

Problem: If $x^{2}+7=2^{n} m$ and x is not in the set above, then can we say that m must be large?

Connection with $n(n+1)$ problem:

$$
x^{2}+7=2^{n} m
$$

Theorem (Bennett, F., Trifonov): If $\boldsymbol{x}, \boldsymbol{n}$ and m are positive integers satisfying

$$
x^{2}+7=2^{n} m \quad \text { and } \quad x \notin\{1,3,5,11,181\}
$$

then

$$
m \geq \text { ??? }
$$

Theorem (Bennett, F., Trifonov): If $\boldsymbol{x}, \boldsymbol{n}$ and m are positive integers satisfying

$$
x^{2}+7=2^{n} m \quad \text { and } \quad x \notin\{1,3,5,11,181\}
$$

then

$$
m \geq x^{1 / 2}
$$

Theorem (Bennett, F., Trifonov): If $\boldsymbol{x}, \boldsymbol{n}$ and \boldsymbol{m} are positive integers satisfying

$$
x^{2}+7=2^{n} m \quad \text { and } \quad x \notin\{1,3,5,11,181\}
$$

then

$$
m \geq x^{1 / 2}
$$

Comment: In the case of $x^{2}+7=2^{n} m$, the difference of the primes $(1+\sqrt{-7}) / 2$ and $(1-\sqrt{-7}) / 2$ each raised to the $13^{\text {th }}$ power has absolute value ≈ 2.65 and the powers themselves have absolute value ≈ 90.51

Intermission

k-free numbers in short intervals:

"Now that desk looks better. Everything's squared away, yessir, squaaaacared away."

k-free numbers in short intervals:

Problem: Find $\theta=\theta(k)$ as small as possible such that, for x sufficiently large, the interval $\left(x, x+x^{\theta}\right.$] contains a k-free number.

k-free numbers in short intervals:

Problem: Find $\theta=\theta(k)$ as small as possible such that, for x sufficiently large, the interval $\left(x, x+x^{\theta}\right.$] contains a k-free number.

Main Idea: Show there are integers in $\left(x, x+x^{\theta}\right]$ not divisible by the $\boldsymbol{k}^{\text {th }}$ power of a prime. Consider primes in different size ranges. Deal with small primes and large primes separately.

Problem: Find $\theta=\theta(\boldsymbol{k})$ as small as possible such that, for x sufficiently large, the interval $\left(x, x+x^{\theta}\right.$] contains a \boldsymbol{k}-free number.

Problem: Find $\theta=\theta(\boldsymbol{k})$ as small as possible such that, for x sufficiently large, the interval $\left(x, x+x^{\theta}\right.$] contains a \boldsymbol{k}-free number.

Small Primes: $p \leq z$

Problem: Find $\theta=\theta(\boldsymbol{k})$ as small as possible such that, for x sufficiently large, the interval $\left(x, x+x^{\theta}\right.$] contains a \boldsymbol{k}-free number.

Small Primes: $p \leq z$ where $z=x^{\theta} \sqrt{\log x}$

Problem: Find $\boldsymbol{\theta}=\boldsymbol{\theta}(\boldsymbol{k})$ as small as possible such that, for x sufficiently large, the interval $\left(x, x+x^{\theta}\right]$ contains a \boldsymbol{k}-free number.

Small Primes: $p \leq z$ where $z=x^{\theta} \sqrt{\log x}$
The number of integers $n \in\left(x, x+x^{\theta}\right.$] divisible by such a p^{k} is bounded by $(2 / 3) x^{\theta}$.

Large Primes: $p \in(N, 2 N], N \geq z=x^{\theta} \sqrt{\log x}$

Large Primes: $p \in(N, 2 N], N \geq z=x^{\theta} \sqrt{\log x}$
$x<p^{k} \boldsymbol{m} \leq x+x^{\theta}$

Large Primes: $p \in(N, 2 N], N \geq z=x^{\theta} \sqrt{\log x}$

$$
x<p^{k} m \leq x+x^{\theta} \Longrightarrow \frac{x}{p^{k}}<m \leq \frac{x}{p^{k}}+\frac{x^{\theta}}{p^{k}}
$$

Large Primes: $p \in(N, 2 N], N \geq z=x^{\theta} \sqrt{\log x}$

$$
\begin{aligned}
x<p^{k} m \leq x+x^{\theta} & \Longrightarrow \frac{x}{p^{k}}<m \leq \frac{x}{p^{k}}+\frac{x^{\theta}}{p^{k}} \\
& \Longrightarrow\left\|\frac{x}{p^{k}}\right\|<\frac{x^{\theta}}{N^{k}}
\end{aligned}
$$

Large Primes: $p \in(N, 2 N], N \geq z=x^{\theta} \sqrt{\log x}$

$$
\begin{aligned}
x<p^{k} m \leq x+x^{\theta} & \Longrightarrow \frac{x}{p^{k}}<m \leq \frac{x}{p^{k}}+\frac{x^{\theta}}{p^{k}} \\
& \Longrightarrow\left\|\frac{x}{p^{k}}\right\|<\frac{x^{\theta}}{N^{k}}
\end{aligned}
$$

where $\|t\|=\min \{|t-\ell|: \ell \in \mathbb{Z}\}$

Large Primes: $p \in(N, 2 N], N \geq z=x^{\theta} \sqrt{\log x}$

$$
\begin{aligned}
x<p^{k} m \leq x+x^{\theta} & \Longrightarrow \frac{x}{p^{k}}<m \leq \frac{x}{p^{k}}+\frac{x^{\theta}}{p^{k}} \\
& \Longrightarrow\left\|\frac{x}{p^{k}}\right\|<\frac{x^{\theta}}{N^{k}}
\end{aligned}
$$

where $\|t\|=\min \{|t-\ell|: \ell \in \mathbb{Z}\}$

Idea: Show there are few primes $p \in(N, 2 N]$ with x / p^{k} that close to an integer.

Large Primes: $p \in(N, 2 N], N \geq z=x^{\theta} \sqrt{\log x}$

$$
\begin{aligned}
x<p^{k} m \leq x+x^{\theta} & \Longrightarrow \frac{x}{p^{k}}<m \leq \frac{x}{p^{k}}+\frac{x^{\theta}}{p^{k}} \\
& \Longrightarrow\left\|\frac{x}{p^{k}}\right\|<\frac{x^{\theta}}{N^{k}}
\end{aligned}
$$

where $\|t\|=\min \{|t-\ell|: \ell \in \mathbb{Z}\}$

Idea: Show there are few integers $p \in(N, 2 N]$ with x / p^{k} that close to an integer.

Large Primes: $p \in(N, 2 N], N \geq z=x^{\theta} \sqrt{\log x}$

$$
\begin{aligned}
x<p^{k} m \leq x+x^{\theta} & \Longrightarrow \frac{x}{p^{k}}<m \leq \frac{x}{p^{k}}+\frac{x^{\theta}}{p^{k}} \\
& \Longrightarrow\left\|\frac{x}{p^{k}}\right\|<\frac{x^{\theta}}{N^{k}}
\end{aligned}
$$

where $\|t\|=\min \{|t-\ell|: \ell \in \mathbb{Z}\}$

Idea: Show there are few integers $u \in(N, 2 N]$ with x / u^{k} that close to an integer.

$$
\left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad u \in(N, 2 N], \quad N \geq x^{\theta} \sqrt{\log x}
$$

$$
\left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad u \in(N, 2 N], \quad N \geq x^{\theta} \sqrt{\log x}
$$

Differences:
$\left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad u \in(N, 2 N], \quad N \geq x^{\theta} \sqrt{\log x}$

Differences:

$$
\left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad\left\|\frac{x}{(u+a)^{k}}\right\|<\frac{x^{\theta}}{N^{k}}
$$

$\left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad u \in(N, 2 N], \quad N \geq x^{\theta} \sqrt{\log x}$

Differences:

$$
\begin{aligned}
& \left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad\left\|\frac{x}{(u+a)^{k}}\right\|<\frac{x^{\theta}}{N^{k}} \\
& \frac{x}{u^{k}}-\frac{x}{(u+a)^{k}}
\end{aligned}
$$

$\left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad u \in(N, 2 N], \quad N \geq x^{\theta} \sqrt{\log x}$

Differences:

$$
\begin{aligned}
& \left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad\left\|\frac{x}{(u+a)^{k}}\right\|<\frac{x^{\theta}}{N^{k}} \\
& \frac{x}{u^{k}}-\frac{x}{(u+a)^{k}} \asymp \frac{a x}{u^{k+1}}
\end{aligned}
$$

$\left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad u \in(N, 2 N], \quad N \geq x^{\theta} \sqrt{\log x}$

Differences:

$$
\begin{aligned}
& \left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad\left\|\frac{x}{(u+a)^{k}}\right\|<\frac{x^{\theta}}{N^{k}} \\
& \frac{x}{u^{k}}-\frac{x}{(u+a)^{k}} \asymp \frac{a x}{u^{k+1}} \asymp \frac{a x}{N^{k+1}}
\end{aligned}
$$

$\left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad u \in(N, 2 N], \quad N \geq x^{\theta} \sqrt{\log x}$

Differences:

$$
\begin{aligned}
& \left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad\left\|\frac{x}{(u+a)^{k}}\right\|<\frac{x^{\theta}}{N^{k}} \\
& \frac{x}{u^{k}}-\frac{x}{(u+a)^{k}} \asymp \frac{a x}{u^{k+1}} \asymp \frac{a x}{N^{k+1}}
\end{aligned}
$$

$$
\left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad u \in(N, 2 N], \quad N \geq x^{\theta} \sqrt{\log x}
$$

Differences:

$$
\begin{aligned}
& \left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad\left\|\frac{x}{(u+a)^{k}}\right\|<\frac{x^{\theta}}{N^{k}} \\
& \frac{x}{u^{k}}-\frac{x}{(u+a)^{k}} \asymp \frac{a x}{u^{k+1}} \asymp \frac{a x}{N^{k+1}}
\end{aligned}
$$

consider $N=x^{1 / k}$

$$
\left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad u \in(N, 2 N], \quad N \geq x^{\theta} \sqrt{\log x}
$$

Differences:

$$
\begin{aligned}
& \left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad\left\|\frac{x}{(u+a)^{k}}\right\|<\frac{x^{\theta}}{N^{k}} \\
& \frac{x}{u^{k}}-\frac{x}{(u+a)^{k}} \asymp \frac{a x}{u^{k+1}} \asymp \frac{a}{x^{1 / k}}
\end{aligned}
$$

consider $N=x^{1 / k}$

$$
\left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad u \in(N, 2 N], \quad N \geq x^{\theta} \sqrt{\log x}
$$

Differences:

$$
\begin{aligned}
& \left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad\left\|\frac{x}{(u+a)^{k}}\right\|<\frac{x^{\theta}}{N^{k}} \\
& \frac{x}{u^{k}}-\frac{x}{(u+a)^{k}} \asymp \frac{a x}{u^{k+1}} \asymp \frac{a}{x^{1 / k}}
\end{aligned}
$$

consider $N=x^{1 / k}, a<x^{1 /(2 k)}$

$$
\left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad u \in(N, 2 N], \quad N \geq x^{\theta} \sqrt{\log x}
$$

Differences:

$$
\begin{aligned}
& \left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad\left\|\frac{x}{(u+a)^{k}}\right\|<\frac{x^{\theta}}{N^{k}} \\
& \frac{x}{u^{k}}-\frac{x}{(u+a)^{k}} \asymp \frac{a x}{u^{k+1}} \asymp \frac{a}{x^{1 / k}}
\end{aligned}
$$

consider $N=x^{1 / k}, a<x^{1 /(2 k)}, \theta \approx 1 / k$

$$
\left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad u \in(N, 2 N], \quad N \geq x^{\theta} \sqrt{\log x}
$$

Differences:

$$
\begin{aligned}
& \left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad\left\|\frac{x}{(u+a)^{k}}\right\|<\frac{x^{\theta}}{N^{k}} \\
& \frac{x}{u^{k}}-\frac{x}{(u+a)^{k}} \asymp \frac{a x}{u^{k+1}} \asymp \frac{a}{x^{1 / k}}
\end{aligned}
$$

consider $N=x^{1 / k}, a<x^{1 /(2 k)}, \theta \approx 1 / k$
LHS small compared to RHS

$$
\left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad u \in(N, 2 N], \quad N \geq x^{\theta} \sqrt{\log x}
$$

$$
\left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad u \in(N, 2 N], \quad N \geq x^{\theta} \sqrt{\log x}
$$

"Modified" Differences:

$$
\left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad\left\|\frac{x}{(u+a)^{k}}\right\|<\frac{x^{\theta}}{N^{k}}
$$

$$
\left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad u \in(N, 2 N], \quad N \geq x^{\theta} \sqrt{\log x}
$$

"Modified" Differences:

$$
\left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad\left\|\frac{x}{(u+a)^{k}}\right\|<\frac{x^{\theta}}{N^{k}}
$$

$\frac{x}{u^{k}} P-\frac{x}{(u+a)^{k}} Q \quad$ small

$$
\left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad u \in(N, 2 N], \quad N \geq x^{\theta} \sqrt{\log x}
$$

"Modified" Differences:

$$
\left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad\left\|\frac{x}{(u+a)^{k}}\right\|<\frac{x^{\theta}}{N^{k}}
$$

$\frac{x}{u^{k}} P-\frac{x}{(u+a)^{k}} Q \quad$ small (but not too small)

$$
\left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad u \in(N, 2 N], \quad N \geq x^{\theta} \sqrt{\log x}
$$

"Modified" Differences:

$$
\left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad\left\|\frac{x}{(u+a)^{k}}\right\|<\frac{x^{\theta}}{N^{k}}
$$

$\frac{x}{u^{k}} P-\frac{x}{(u+a)^{k}} Q \quad$ small (but not too small)
$(u+a)^{k} P-u^{k} Q \quad$ small (but not too small)

$$
\left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad u \in(N, 2 N], \quad N \geq x^{\theta} \sqrt{\log x}
$$

"Modified" Differences:

$$
\left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad\left\|\frac{x}{(u+a)^{k}}\right\|<\frac{x^{\theta}}{N^{k}}
$$

$\frac{x}{u^{k}} \boldsymbol{P}-\frac{\boldsymbol{x}}{(u+a)^{k}} \boldsymbol{Q} \quad$ small (but not too small)
$(u+a)^{k} P-u^{k} Q \quad$ small (but not too small)
consider $\quad P_{r}(z)-(1-z)^{k} Q_{r}(z) \quad$ with $z=\frac{a}{u+a}$

$$
\left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad u \in(N, 2 N], \quad N \geq x^{\theta} \sqrt{\log x}
$$

"Modified" Differences:

Theorem (Halberstam \& Roth):

$$
\left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad u \in(N, 2 N], \quad N \geq x^{\theta} \sqrt{\log x}
$$

"Modified" Differences:

Theorem (Halberstam \& Roth \& Nair):

$$
\left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad u \in(N, 2 N], \quad N \geq x^{\theta} \sqrt{\log x}
$$

"Modified" Differences:
Theorem (Halberstam \& Roth \& Nair): For x large, there is a k-free number in $\left(x, x+x^{1 /(2 k)}\right]$.
$\left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad u \in(N, 2 N], \quad N \geq x^{\theta} \sqrt{\log x}$

Modified Differences plus Divided Differences:

$$
\left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad u \in(N, 2 N], \quad N \geq x^{\theta} \sqrt{\log x}
$$

Modified Differences plus Divided Differences:

Theorem (F. \& Trifonov): For x sufficiently large, there is a squarefree number in $\left(x, x+c x^{1 / 5} \log x\right]$.

$$
\left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad u \in(N, 2 N], \quad N \geq x^{\theta} \sqrt{\log x}
$$

Modified Differences plus Divided Differences:

Theorem (F. \& Trifonov): For x sufficiently large, there is a squarefree number in $\left(x, x+c x^{1 / 5} \log x\right]$.

Theorem (Trifonov): For x sufficiently large, there is a k-free number in $\left(x, x+c x^{1 /(2 k+1)} \log x\right]$.

k-free values of polynomials and binary forms:

Copyright 92001 Thaves, Distributed by Newspaper Enterprise Association, Inc.

k-free values of polynomials and binary forms:

The method for obtaining results about gaps between k-free numbers generalizes to k-free values of polynomials.

k-free values of polynomials and binary forms:

The method for obtaining results about gaps between k-free numbers generalizes to k-free values of polynomials. Suppose $f(x) \in \mathbb{Z}[x]$ is irreducible and $\operatorname{deg} f=n$.

k-free values of polynomials and binary forms:

The method for obtaining results about gaps between k-free numbers generalizes to k-free values of polynomials. Suppose $f(x) \in \mathbb{Z}[x]$ is irreducible and $\operatorname{deg} f=n$. In what follows, we suppose further that f has no fixed $k^{\text {th }}$ power divisors.

k-free values of polynomials and binary forms:

The method for obtaining results about gaps between k-free numbers generalizes to k-free values of polynomials. Suppose $f(x) \in \mathbb{Z}[x]$ is irreducible and $\operatorname{deg} f=n$. In what follows, we suppose further that f has no fixed $k^{\text {th }}$ power divisors.

Theorem (Nair): Let $k \geq n+1$. For x sufficiently large, there is an integer m such that $f(m)$ is k free with

$$
x<m \leq x+c x^{\frac{n}{2 k-n+1}}
$$

Theorem (Nair): Let $k \geq n+1$. For x sufficiently large, there is an integer m such that $f(m)$ is k free with

$$
\boldsymbol{x}<\boldsymbol{m} \leq \boldsymbol{x}+\boldsymbol{c} \boldsymbol{x}^{\frac{n}{2 k-n+1}}
$$

Theorem (Nair): Let $k \geq n+1$. For x sufficiently large, there is an integer m such that $f(m)$ is k free with

$$
x<m \leq x+c x^{\frac{n}{2 k-n+1}}
$$

Theorem: Let $k \geq n+1$. For x sufficiently large, there is an integer m such that $f(m)$ is k-free with

$$
x<m \leq x+c x^{\frac{n}{2 k-n+r}}
$$

where $r=$

Theorem (Nair): Let $k \geq n+1$. For x sufficiently large, there is an integer m such that $f(m)$ is k free with

$$
x<m \leq x+c x^{\frac{n}{2 k-n+1}}
$$

Theorem: Let $k \geq n+1$. For \boldsymbol{x} sufficiently large, there is an integer m such that $f(m)$ is k-free with

$$
x<m \leq x+c x^{\frac{n}{2 k-n+r}}
$$

where $r=\sqrt{2 n}-\frac{1}{2}$.

Basic Idea: One works in a number field where $f(x)$ has a linear factor. As in the case $f(x)=x$, one wants to show certain u (in the ring of algebraic integers in the field) are not close by considering

$$
(u+a)^{k} P-u^{k} Q
$$

arising from Padé approximations. One uses that this expression is an integer and, hence, either 0 or ≥ 1.

Basic Idea: One works in a number field where $f(x)$ has a linear factor. As in the case $f(x)=x$, one wants to show certain u (in the ring of algebraic integers in the field) are not close by considering

$$
(u+a)^{k} P-u^{k} Q
$$

arising from Padé approximations. One uses that this expression is an integer and, hence, either 0 or ≥ 1.

Difficulty: An "integer" in this context can be small without being 0 .

Basic Idea: One works in a number field where $f(x)$ has a linear factor. As in the case $f(x)=x$, one wants to show certain u (in the ring of algebraic integers in the field) are not close by considering

$$
(u+a)^{k} P-u^{k} Q
$$

arising from Padé approximations. One uses that this expression is an integer and, hence, either 0 or ≥ 1.

Difficulty: An "integer" in this context can be small without being 0 .

Solution: If it's small, work with a conjugate instead.

Comment: In the case that $k \leq n$, one can try the same methods. The gap size becomes "bad" in the sense that one obtains $m \in(x, x+h]$ where $f(m)$ is k-free but h increases as k decreases. There is a point where h exceeds x itself and the method fails (the size of $f(m)$ is no longer of order x^{n}). Nair took the limit of what can be done with $k \leq n$ and obtained

Comment: In the case that $k \leq n$, one can try the same methods. The gap size becomes "bad" in the sense that one obtains $m \in(x, x+h]$ where $f(m)$ is k-free but h increases as k decreases. There is a point where h exceeds x itself and the method fails (the size of $f(m)$ is no longer of order x^{n}). Nair took the limit of what can be done with $k \leq n$ and obtained

Theorem (Nair): If $f(x)$ is irreducible of degree n and $k \geq(2 \sqrt{2}-1) n / 2$, then there are infinitely many integers m for which $f(m)$ is k-free.

Theorem (Nair): If $f(x)$ is irreducible of degree n and $k \geq(2 \sqrt{2}-1) n / 2$, then there are infinitely many integers m for which $f(m)$ is k-free.

Theorem (Nair): If $f(x)$ is irreducible of degree n and $k \geq(2 \sqrt{2}-1) n / 2$, then there are infinitely many integers m for which $f(m)$ is k-free.

Theorem: If $f(x, y)$ is an irreducible binary form of degree n and $k \geq(2 \sqrt{2}-1) n / 4$, then there are infinitely many integer pairs (a, b) for which $f(a, b)$ is k-free.

The $a b c$-conjecture:

THE BORN LOSER ART SANSOM

The $a b c$-conjecture:

Notation: $Q(n)=\prod p$
$p \mid n$

The $a b c$-conjecture:

Notation: $Q(n)=\prod_{p \mid n} p$
The $a b c$-Conjecture: For a and b in \mathbb{Z}^{+}, define

$$
L_{a, b}=\frac{\log (a+b)}{\log Q(a b(a+b))}
$$

and

$$
\mathcal{L}=\left\{L_{a, b}: a \geq 1, b \geq 1, \operatorname{gcd}(a, b)=1\right\} .
$$

The $a b c$-conjecture:

Notation: $Q(n)=\prod_{p \mid n} p$
The $a b c$-Conjecture: For a and b in \mathbb{Z}^{+}, define

$$
L_{a, b}=\frac{\log (a+b)}{\log Q(a b(a+b))}
$$

and

$$
\mathcal{L}=\left\{L_{a, b}: a \geq 1, b \geq 1, \operatorname{gcd}(a, b)=1\right\} .
$$

The set of limit points of \mathcal{L} is the interval $[1 / 3,1]$.

$$
\begin{gathered}
L_{a, b}=\frac{\log (a+b)}{\log Q(a b(a+b))} \\
\mathcal{L}=\left\{L_{a, b}: a \geq 1, b \geq 1, \operatorname{gcd}(a, b)=1\right\}
\end{gathered}
$$

$$
\begin{gathered}
L_{a, b}=\frac{\log (a+b)}{\log Q(a b(a+b))} \\
\mathcal{L}=\left\{L_{a, b}: a \geq 1, b \geq 1, \operatorname{gcd}(a, b)=1\right\}
\end{gathered}
$$

Theorem: The set of limit points of \mathcal{L} includes the interval [1/3, 36/37].

$$
\begin{gathered}
L_{a, b}=\frac{\log (a+b)}{\log Q(a b(a+b))} \\
\mathcal{L}=\left\{L_{a, b}: a \geq 1, b \geq 1, \operatorname{gcd}(a, b)=1\right\}
\end{gathered}
$$

Theorem: The set of limit points of \mathcal{L} includes the interval [1/3, 36/37].
(work of Browkin, Greaves, F., Nitaj, Schinzel)

Approach: Makes use of a preliminary result about squarefree values of binary forms.

Approach: Makes use of a preliminary result about squarefree values of binary forms. In particular, for

$$
\begin{aligned}
f(x, y)=x y & (x+y)(x-y)\left(x^{2}+y^{2}\right)\left(2 x^{2}+y^{2}\right)\left(x^{2}+2 y^{2}\right) \\
& \times\left(x^{4}-x^{2} y^{2}+y^{4}\right)\left(3 x^{4}+3 x^{2} y^{2}+y^{4}\right)\left(x^{4}+3 x^{2} y^{2}+3 y^{4}\right)
\end{aligned}
$$

the number $f(x, y) / 6$ takes on the right proportion of squarefree values for

$$
X<x \leq 2 X, \quad Y<y \leq 2 Y, \quad X=Y^{\alpha}
$$

where $\alpha \in(1,3)$.

Polynomial Identity:

Polynomial Identity:

$$
P_{3}(z)-(1-z)^{7} Q_{3}(z)=z^{7} E_{3}(z)
$$

where

$$
\begin{gathered}
P_{3}(z)=(2 z-1)\left(3 z^{2}-3 z+1\right), \\
Q_{3}(z)=-(z+1)\left(z^{2}+z+1\right),
\end{gathered}
$$

and

$$
E_{3}(z)=-(z-2)\left(z^{2}-3 z+3\right)
$$

Polynomial Identity:

$$
P_{3}(z)-(1-z)^{7} Q_{3}(z)=z^{7} E_{3}(z)
$$

Polynomial Identity:

$$
\begin{aligned}
& P_{3}(z)-(1-z)^{7} Q_{3}(z)=z^{7} E_{3}(z) \\
& z=\frac{x}{x+y} \Longrightarrow
\end{aligned}
$$

Polynomial Identity:

$$
\begin{gathered}
P_{3}(z)-(1-z)^{7} Q_{3}(z)=z^{7} E_{3}(z) \\
z=\frac{x}{x+y} \Longrightarrow\left\{\begin{array}{c}
(x+y)^{7}(x-y)\left(x^{2}-x y+y^{2}\right) \\
+y^{7}(2 x+y)\left(3 x^{2}+3 x y+y^{2}\right) \\
=x^{7}(x+2 y)\left(x^{2}+3 x y+3 y^{2}\right)
\end{array}\right.
\end{gathered}
$$

$$
\begin{aligned}
& (x+y)^{7}(x-y)\left(x^{2}-x y+y^{2}\right) \\
& \quad+y^{7}(2 x+y)\left(3 x^{2}+3 x y+y^{2}\right) \\
& =x^{7}(x+2 y)\left(x^{2}+3 x y+3 y^{2}\right)
\end{aligned}
$$

$$
\begin{gathered}
(x+y)^{7}(x-y)\left(x^{2}-x y+y^{2}\right) \\
\quad+y^{7}(2 x+y)\left(3 x^{2}+3 x y+y^{2}\right) \\
=x^{7}(x+2 y)\left(x^{2}+3 x y+3 y^{2}\right) \\
\left(x^{2}+y^{2}\right)^{7}\left(x^{2}-y^{2}\right)\left(x^{4}-x^{2} y^{2}+y^{4}\right) \\
\quad+y^{14}\left(2 x^{2}+y^{2}\right)\left(3 x^{4}+3 x^{2} y^{2}+y^{4}\right) \\
=x^{14}\left(x^{2}+2 y^{2}\right)\left(x^{4}+3 x^{2} y^{2}+3 y^{4}\right)
\end{gathered}
$$

$$
\begin{gathered}
(x+y)^{7}(x-y)\left(x^{2}-x y+y^{2}\right) \\
+y^{7}(2 x+y)\left(3 x^{2}+3 x y+y^{2}\right) \\
=x^{7}(x+2 y)\left(x^{2}+3 x y+3 y^{2}\right) \\
\left(x^{2}+y^{2}\right)^{7}\left(x^{2}-y^{2}\right)\left(x^{4}-x^{2} y^{2}+y^{4}\right) \\
+y^{14}\left(2 x^{2}+y^{2}\right)\left(3 x^{4}+3 x^{2} y^{2}+y^{4}\right) \\
= \\
x^{14}\left(x^{2}+2 y^{2}\right)\left(x^{4}+3 x^{2} y^{2}+3 y^{4}\right) \\
f(x, y)= \\
\\
x y(x+y)(x-y)\left(x^{2}+y^{2}\right)\left(2 x^{2}+y^{2}\right)\left(x^{2}+2 y^{2}\right) \\
\\
\times\left(x^{4}-x^{2} y^{2}+y^{4}\right)\left(3 x^{4}+3 x^{2} y^{2}+y^{4}\right)\left(x^{4}+3 x^{2} y^{2}+3 y^{4}\right)
\end{gathered}
$$

$$
\begin{gathered}
(x+y)^{7}(x-y)\left(x^{2}-x y+y^{2}\right) \\
+y^{7}(2 x+y)\left(3 x^{2}+3 x y+y^{2}\right) \\
=x^{7}(x+2 y)\left(x^{2}+3 x y+3 y^{2}\right) \\
\left(x^{2}+y^{2}\right)^{7}\left(x^{2}-y^{2}\right)\left(x^{4}-x^{2} y^{2}+y^{4}\right) \\
+y^{14}\left(2 x^{2}+y^{2}\right)\left(3 x^{4}+3 x^{2} y^{2}+y^{4}\right) \\
=x^{14}\left(x^{2}+2 y^{2}\right)\left(x^{4}+3 x^{2} y^{2}+3 y^{4}\right) \\
f(x, y)=x y(x+y)(x-y)\left(x^{2}+y^{2}\right)\left(2 x^{2}+y^{2}\right)\left(x^{2}+2 y^{2}\right) \\
\\
\times\left(x^{4}-x^{2} y^{2}+y^{4}\right)\left(3 x^{4}+3 x^{2} y^{2}+y^{4}\right)\left(x^{4}+3 x^{2} y^{2}+3 y^{4}\right)
\end{gathered}
$$

$$
\begin{gathered}
(x+y)^{7}(x-y)\left(x^{2}-x y+y^{2}\right) \\
+y^{7}(2 x+y)\left(3 x^{2}+3 x y+y^{2}\right) \\
=x^{7}(x+2 y)\left(x^{2}+3 x y+3 y^{2}\right) \\
\left(x^{2}+y^{2}\right)^{7}\left(x^{2}-y^{2}\right)\left(x^{4}-x^{2} y^{2}+y^{4}\right) \\
+y^{14}\left(2 x^{2}+y^{2}\right)\left(3 x^{4}+3 x^{2} y^{2}+y^{4}\right) \\
=x^{14}\left(x^{2}+2 y^{2}\right)\left(x^{4}+3 x^{2} y^{2}+3 y^{4}\right) \\
f(x, y)=x y(x+y)(x-y)\left(x^{2}+y^{2}\right)\left(2 x^{2}+y^{2}\right)\left(x^{2}+2 y^{2}\right) \\
\\
\times\left(x^{4}-x^{2} y^{2}+y^{4}\right)\left(3 x^{4}+3 x^{2} y^{2}+y^{4}\right)\left(x^{4}+3 x^{2} y^{2}+3 y^{4}\right)
\end{gathered}
$$

$$
\begin{gathered}
a=\left(x^{2}+y^{2}\right)^{7}\left(x^{2}-y^{2}\right)\left(x^{4}-x^{2} y^{2}+y^{4}\right) \\
b=y^{14}\left(2 x^{2}+y^{2}\right)\left(3 x^{4}+3 x^{2} y^{2}+y^{4}\right) \\
X=Y^{\alpha}, \quad 1<\alpha<3 \\
a+b=x^{14}\left(x^{2}+2 y^{2}\right)\left(x^{4}+3 x^{2} y^{2}+3 y^{4}\right)
\end{gathered}
$$

$$
\begin{gathered}
a=\left(x^{2}+y^{2}\right)^{7}\left(x^{2}-y^{2}\right)\left(x^{4}-x^{2} y^{2}+y^{4}\right) \\
b=y^{14}\left(2 x^{2}+y^{2}\right)\left(3 x^{4}+3 x^{2} y^{2}+y^{4}\right) \\
X=Y^{\alpha}, \quad 1<\alpha<3 \\
a+b=x^{14}\left(x^{2}+2 y^{2}\right)\left(x^{4}+3 x^{2} y^{2}+3 y^{4}\right) \\
f(x, y)=x y(x+y)(x-y)\left(x^{2}+y^{2}\right)\left(2 x^{2}+y^{2}\right)\left(x^{2}+2 y^{2}\right) \\
\quad \times\left(x^{4}-x^{2} y^{2}+y^{4}\right)\left(3 x^{4}+3 x^{2} y^{2}+y^{4}\right)\left(x^{4}+3 x^{2} y^{2}+3 y^{4}\right)
\end{gathered}
$$

$$
\begin{gathered}
a=\left(x^{2}+y^{2}\right)^{7}\left(x^{2}-y^{2}\right)\left(x^{4}-x^{2} y^{2}+y^{4}\right) \\
b=y^{14}\left(2 x^{2}+y^{2}\right)\left(3 x^{4}+3 x^{2} y^{2}+y^{4}\right) \\
X=Y^{\alpha}, \quad 1<\alpha<3 \\
a+b=x^{14}\left(x^{2}+2 y^{2}\right)\left(x^{4}+3 x^{2} y^{2}+3 y^{4}\right) \\
\begin{array}{c}
f(x, y)=x y(x+y)(x-y)\left(x^{2}+y^{2}\right)\left(2 x^{2}+y^{2}\right)\left(x^{2}+2 y^{2}\right) \\
\times\left(x^{4}-x^{2} y^{2}+y^{4}\right)\left(3 x^{4}+3 x^{2} y^{2}+y^{4}\right)\left(x^{4}+3 x^{2} y^{2}+3 y^{4}\right)
\end{array} \\
L_{a, b}=\frac{\log (a+b)}{\log Q(a b(a+b))}
\end{gathered}
$$

$$
\begin{gathered}
a=\left(x^{2}+y^{2}\right)^{7}\left(x^{2}-y^{2}\right)\left(x^{4}-x^{2} y^{2}+y^{4}\right) \\
b=y^{14}\left(2 x^{2}+y^{2}\right)\left(3 x^{4}+3 x^{2} y^{2}+y^{4}\right) \\
X=Y^{\alpha}, \quad 1<\alpha<3 \\
a+b=x^{14}\left(x^{2}+2 y^{2}\right)\left(x^{4}+3 x^{2} y^{2}+3 y^{4}\right) \\
\begin{array}{c}
f(x, y)=x y(x+y)(x-y)\left(x^{2}+y^{2}\right)\left(2 x^{2}+y^{2}\right)\left(x^{2}+2 y^{2}\right) \\
\times\left(x^{4}-x^{2} y^{2}+y^{4}\right)\left(3 x^{4}+3 x^{2} y^{2}+y^{4}\right)\left(x^{4}+3 x^{2} y^{2}+3 y^{4}\right)
\end{array} \\
L_{a, b}=\frac{\log (a+b)}{\log Q(a b(a+b))}
\end{gathered}
$$

$$
\begin{gathered}
a=\left(x^{2}+y^{2}\right)^{7}\left(x^{2}-y^{2}\right)\left(x^{4}-x^{2} y^{2}+y^{4}\right) \\
b=y^{14}\left(2 x^{2}+y^{2}\right)\left(3 x^{4}+3 x^{2} y^{2}+y^{4}\right) \\
X=Y^{\alpha}, \quad 1<\alpha<3 \\
a+b=x^{14}\left(x^{2}+2 y^{2}\right)\left(x^{4}+3 x^{2} y^{2}+3 y^{4}\right) \\
\begin{array}{c}
f(x, y)=x y(x+y)(x-y)\left(x^{2}+y^{2}\right)\left(2 x^{2}+y^{2}\right)\left(x^{2}+2 y^{2}\right) \\
\times\left(x^{4}-x^{2} y^{2}+y^{4}\right)\left(3 x^{4}+3 x^{2} y^{2}+y^{4}\right)\left(x^{4}+3 x^{2} y^{2}+3 y^{4}\right)
\end{array} \\
L_{a, b}=\frac{\log (a+b)}{\log Q(a b(a+b))} \approx \frac{20 \alpha \log Y}{}
\end{gathered}
$$

$$
\begin{gathered}
a=\left(x^{2}+y^{2}\right)^{7}\left(x^{2}-y^{2}\right)\left(x^{4}-x^{2} y^{2}+y^{4}\right) \\
b=y^{14}\left(2 x^{2}+y^{2}\right)\left(3 x^{4}+3 x^{2} y^{2}+y^{4}\right) \\
X=Y^{\alpha}, \quad 1<\alpha<3 \\
a+b=x^{14}\left(x^{2}+2 y^{2}\right)\left(x^{4}+3 x^{2} y^{2}+3 y^{4}\right) \\
f(x, y)=x y(x+y)(x-y)\left(x^{2}+y^{2}\right)\left(2 x^{2}+y^{2}\right)\left(x^{2}+2 y^{2}\right) \\
\times\left(x^{4}-x^{2} y^{2}+y^{4}\right)\left(3 x^{4}+3 x^{2} y^{2}+y^{4}\right)\left(x^{4}+3 x^{2} y^{2}+3 y^{4}\right)
\end{gathered}
$$

$$
\begin{gathered}
a=\left(x^{2}+y^{2}\right)^{7}\left(x^{2}-y^{2}\right)\left(x^{4}-x^{2} y^{2}+y^{4}\right) \\
b=y^{14}\left(2 x^{2}+y^{2}\right)\left(3 x^{4}+3 x^{2} y^{2}+y^{4}\right) \\
X=Y^{\alpha}, \quad 1<\alpha<3 \\
a+b=x^{14}\left(x^{2}+2 y^{2}\right)\left(x^{4}+3 x^{2} y^{2}+3 y^{4}\right) \\
\begin{array}{c}
f(x, y)=x y(x+y)(x-y)\left(x^{2}+y^{2}\right)\left(2 x^{2}+y^{2}\right)\left(x^{2}+2 y^{2}\right) \\
\times\left(x^{4}-x^{2} y^{2}+y^{4}\right)\left(3 x^{4}+3 x^{2} y^{2}+y^{4}\right)\left(x^{4}+3 x^{2} y^{2}+3 y^{4}\right)
\end{array} \\
L_{a, b}=\frac{\log (a+b)}{\log Q(a b(a+b))} \approx \frac{20 \alpha \log Y}{(21 \alpha+1) \log Y}
\end{gathered}
$$

$$
\begin{gathered}
a=\left(x^{2}+y^{2}\right)^{7}\left(x^{2}-y^{2}\right)\left(x^{4}-x^{2} y^{2}+y^{4}\right) \\
b=y^{14}\left(2 x^{2}+y^{2}\right)\left(3 x^{4}+3 x^{2} y^{2}+y^{4}\right) \\
X=Y^{\alpha}, \quad 1<\alpha<3 \\
a+b=x^{14}\left(x^{2}+2 y^{2}\right)\left(x^{4}+3 x^{2} y^{2}+3 y^{4}\right) \\
f(x, y)=x y(x+y)(x-y)\left(x^{2}+y^{2}\right)\left(2 x^{2}+y^{2}\right)\left(x^{2}+2 y^{2}\right) \\
\times\left(x^{4}-x^{2} y^{2}+y^{4}\right)\left(3 x^{4}+3 x^{2} y^{2}+y^{4}\right)\left(x^{4}+3 x^{2} y^{2}+3 y^{4}\right) \\
L_{a, b}=\frac{\log (a+b)}{\log Q(a b(a+b))} \approx \frac{20 \alpha}{21 \alpha+1}
\end{gathered}
$$

$$
L_{a, b}=\frac{\log (a+b)}{\log Q(a b(a+b))} \approx \frac{20 \alpha}{21 \alpha+1}
$$

$$
\begin{aligned}
& L_{a, b}=\frac{\log (a+b)}{\log Q(a b(a+b))} \approx \frac{20 \alpha}{21 \alpha+1} \\
& \quad 1<\alpha<3 \Longrightarrow
\end{aligned}
$$

$$
\begin{gathered}
L_{a, b}=\frac{\log (a+b)}{\log Q(a b(a+b))} \approx \frac{20 \alpha}{21 \alpha+1} \\
1<\alpha<3 \Longrightarrow ? ?<L_{a, b}<? ?
\end{gathered}
$$

$$
\begin{gathered}
L_{a, b}=\frac{\log (a+b)}{\log Q(a b(a+b))} \approx \frac{20 \alpha}{21 \alpha+1} \\
1<\alpha<3 \Longrightarrow \frac{10}{11}<L_{a, b}<\frac{15}{16}
\end{gathered}
$$

$$
\begin{gathered}
L_{a, b}=\frac{\log (a+b)}{\log Q(a b(a+b))} \approx \frac{20 \alpha}{21 \alpha+1} \\
1<\alpha<3 \Longrightarrow \frac{10}{11}<L_{a, b}<\frac{15}{16}
\end{gathered}
$$

Comment: This shows $[10 / 11,15 / 16]$ is contained in the set of limit points of $L_{a, b}$. A similar argument is given for other subintervals of $[1 / 3,36 / 37]$ (not all involving Padé approximations).

[^0]: Zits and all associated characters O2000 Zits Partnership.

