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e k-free numbers in short intervals
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What are the Pad é approximations of (1 — z)*?

Answer: Rational functions that give good approxi-
mations to (1 — z)* near the origin.

Important Equation: degree < k (usually)

ZmR(z)
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What are the Pad é approximations of (1 — z)*?

Answer: Rational functions that give good approxi-
mations to (1 — z)* near the origin.

Important Equation:

Pfr_ (]_ — Z)kar- — Z2r+1Er
deg P = degQr =7r<k, degE,=k—1r—1



Some Properties of the Polynomials:

() P.(2), (—2)*Q,(2), and 2?"t1E,(2) satisfy
z2(z—1)y" + (2r(1—2z)—(k—1)z)y’ + r(k+7r)y = 0.
e =3 (7 )T )
j=0 > " g

(k+7)!
(k—r—1)!r!7r!

(i) Q,(2) = /Ol(l—t)""tk_’"_l(l—t—l—zt)""dt

(V) Pr(2)Qri1(2) — Qr(2)Pri1(z) = cz?™ 11
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Pfr — (]_ — Z)kar — ZZT—I—]_ET

WARNING: In the applications you are

about to see, the true identies used have
been changed. They have been changed

to conform to the identity above. The
iIdentity above gives a result of the type
wanted. Typically, a closer analysis of
these polynomials or even a variant of the
polynomials is used to obtain the currently
best known results in the applications.
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Irrationality measures:

Theorem (Roth):Fixe > 0 and a € R — Q with « al-
gebraic. Then there is a constant C = C(«, &) >
0 such that

C
b2—|—€

where a and b with b > 0 are arbitrary integers.

o=l
a__
b

Comment: Liouville’s result is effective; Roth’s is not.
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C
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Irrationality measures:
Theorem( Bennett ): Fora & b integers withb > 0,

3 a 1
}ﬁ—g‘ = 4. p247

Comment: Similar explicit estimates have also been
made for certain other cube roots.
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V2 b, — a, = small,

Wait!! | thought we wanted that LARGE!!
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The Basic Approach:

What’s small,? Let b be a positive integer. Choosing
r right, one can obtain

smally < and b, < Cb1'47.
T
3 a Qr a 3 Ar 1
L PL TN
‘ bl = 1b. b bl = 4.b%47
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Diophantine equations:

Theorem: Let n be a non-zero integer. If x and y are
integers satisfying 3 —2y> = n, then |y| < 16n?2.



Diophantine equations:

Theorem (Bennett):If a, b, and n are integers with
ab # 0 and n > 3, then the equation

lax™ + by"| =1

has at most 1 solution in positive integers x and y.
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Waring’s Problem: Let k be an integer > 2. Then
there exists a number s such that every natural num-

ber is a sum of s k" powers. If g(k) is the least such
s, what is g(k)?

Known: (i) g(k) = 2F + [(g)k] —2

(i) no one knows how to prove (i)
(iii) (i) holds if H(§)k|) > 0.75k
2
(iv) (i) holds if & > 8
(v) no one knows how to prove (iv)



Waring’s Problem:

Known: (i) g(k) = 2F + [(g)k] —2

(i) No one knows how to prove (i).

(iii) (i) holds if H@)kH > 0.75k



Waring’s Problem:

Known: (i) g(k) = 2F + [(g)k] —2

(i) No one knows how to prove (i).

(iii) (i) holds if H@)kH > 0.75k

Theorem (Beukers): If & > 4, then

3\ k L
3" > osssst.



Waring’s Problem:

Known: (i) g(k) = 2F + [(g)k] —2

(i) No one knows how to prove (i).

(iii) (i) holds if H@)kH > 0.75k

Theorem(Dubitskas): If & > 4, then

3\ k L
13" > os7ert.
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Let p1,p2,...,pr be primes. There is an IN such
that if n > N and
ei1_eo

n(n+1) =p; py°-- - pyTm
for some integer m, then m > 1.

Lehmer: Gave some explicit estimates:

n(n-+1) divisible only by primes < 11 —> n < 9800
... only by primes < 41 — n < 63927525375
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Want. Let py,po,...,p,r De primes. There Is an
N = N(@,p1,...,pr) such thatif n > N and

€1,.€2

n(n +1) = p; p, e prTm

for some integer m, then m > n?.

abc-conjecture —> 0 =1 —¢

unconditionally one can obtain 6 =1 — ¢
(ineffective)



Want. Let py,po,...,p,r De primes. There Is an
N = N(@,p1,...,pr) such thatif n > N and

n(n + 1) = pi'p5? .- pyrm
for some integer m, then m > n?.

Effective Approach:



Want. Let py,po,...,p,r De primes. There Is an
N = N(@,p1,...,pr) such thatif n > N and

n(n + 1) = pi'p5? .- pyrm
for some integer m, then m > n?.

Effective Approach: (Linear Forms of Logarithms)



Want. Let py,po,...,p,r De primes. There Is an
N = N(@,p1,...,pr) such thatif n > N and

n(n + 1) = pi'p5? .- pyrm
for some integer m, then m > n?.

Effective Approach: (Linear Forms of Logarithms)
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n(n + 1) = pi'p5? .- pyrm
for some integer m, then m > n?.

Effective Approach: (Linear Forms of Logarithms)

C

0

B log log n

Problem: Can we narrow the gap between
these Ineffective and effective results?
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Want. Let py,po,...,p,r De primes. There Is an

N = N(@,p1,...,pr) such thatif n > N and

€1,.€2

n(n +1) = p; p, e prTm

for some integer m, then m > n?.

Theorem (Bennett, F., Trifonov): Ifn > 9 and

n(n+ 1) = 2F3tm,

then

m > ni/4,
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n(n+1) =2“3"m — m > V/n.

Comment: The conjecture has been verified for
512 < n < 101000,
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Main Idea: Find “small” integers P, @, and E such
that

skp _2Q = E
and
Qmq — Pmo # 0.
Then

s (Qmq — Pm2) = £Q — Emeo.

Obtain an upper bound on 3. Since 3*my > n, it
follows that m1 and m = mqm9 are not small.
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The “small” integers P, Q, and E are obtained through
the use of Padé approximations for (1 — z)¥.

More precisely, one takes z = 1/9 in the equation

Pr(z) — (1 — 2)kQ.,(2) = 22" T1E,.(2).
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What's Needed for the Method to Work:

One largely needs to be dealing with two primes (like

2 and 3) with a difference of powers of these primes
being small (like 32 — 23 = 1).
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Galois groups of classical polynomials:

e D. Hilbert (1892) used his now classical Hilbert’s
Irreducibility Theorem to show that for each integer
n > 1, there is polynomial f(x) € Z[x] such that
the Galois group associated with f(x) is the sym-
metric group S,,. He also showed the analogous
result in the case of the alternating group A,,.

e Hilbert’s work and work of E. Noether (1918) began
what is now called Inverse Galois Theory.

e Van der Waerden showed that for “almost all” poly-
nomials f(x) € Z|x], the Galois group associated
with f(x) is the symmetric group Sp,.
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Galois groups of classical polynomials:

e Schur showed Lq(lo)(a:) has Galois group Sy,.

e Schur showed szl)(a:) has Galois group A,, (the
alternating group) if n Is odd.

e Schur showed E — has Galois group Ay, if 4|n.
— gl
3=0

e Schur did not find an explicit sequence of polyno-
mials having Galois group A, withn = 2 (mod 4).



Galois groups of classical polynomials:

Theorem (R. Gow, 1989): If n > 2 is even and

Ly (x) = an ( an ) (o)

iz \—J 7!

IS irreducible, then the Galois group of L,,({") (x)is Ap.



Galois groups of classical polynomials:

Theorem (R. Gow, 1989): If n > 2 is even and

Ly (x) = an ( an ) (o)

iz \—J 7!
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Galois groups of classical polynomials:

Theorem (joint work with R. Williams):  For almost
all positive integers n the polynomial sz")(a:) IS irre-
ducible.

Comment: The method had an ineffective compo-
nent to it. We could show that if n Is sufficiently large
and Lf{")(w) IS reducible, then L,,(,,n)(w) has a linear
factor. But we didn’t know what sufficiently large was.

Work in Progress with Trifonov: There is an ef-
fetive bound NV such thatif n > N and n = 2

(mod 4), then L{™ (z) has Galois group Ap.
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The Ramanujan-Nagell equation:

Some Background: Beukers used a method “simi-
lar” to the approach for finding irrationality measures
to show that +/2 cannot be approximated too well by
rationals a /b with b a power of 2. This implies bounds
for solutions to the Diophantine equation % + D =
2" with D fixed. He showed that if D # 7, then the
equation has < 4 solutions. Related work by Apéry,
Beukers, and Bennett establishes that for odd primes
p not dividing D, the equation =2 + D = p™ has at
most 3 solutions. All of these are in some sense best
possible (though more can and has been said).
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Classical Ramanujan-Nagell Theorem: Ifx and n
are positive integers satisfying
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then
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Problem: If 2 + 7 = 2™m and z is not in the set
above, then can we say that m must be large?

Connection with n(n + 1) problem:

2 + 7 =2"m

N ) =

2 2 2 2
T T T T

linear linear prime prime



Theorem (Bennett, F., Trifonov): If 2, n and m are pos-
itive integers satisfying

z?+7=2"m and =z ¢ {1,3,5,11,181},

then
m > 77?7
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Theorem (Bennett, F., Trifonov): If 2, n and m are pos-
itive integers satisfying

z?+7=2"m and =z ¢ {1,3,5,11,181},

then
m > rl/2

Comment: In the case of 22 + 7 = 2"™m, the differ-
ence of the primes (1 ++/=7)/2and (1 — /—7)/2
each raised to the 13t® power has absolute value
~ 2.65 and the powers themselves have absolute
value = 90.51.
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Problem: Find 8 = 6(k) as small as possible such
that, for x sufficiently large, the interval (z, z + x]
contains a k-free number.

Main Idea: Show there are integers in (z, z + 9]
not divisible by the Kt power of a prime. Consider
primes in different size ranges. Deal with small primes
and large primes separately.
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Problem: Find 8 = 6(k) as small as possible such
that, for « sufficiently large, the interval (z, z + ]
contains a k-free number.

Small Primes: p < z where z = z%/logz

The number of integers n € (z, z + «?] divisible by
such a p* is bounded by (2/3)x?.
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Large Primes: p € (N,2N], N > z = 2Y\/logx

L 0 £ £ .CBH
r<pm<ztzr = 5 <m< o+
p p* p

10

= [l < &

where ||t|| = min{|t — £| : £ € Z}

ldea: Show there are few integers u€ (IN, 2N | with
z /u¥that close to an integer.
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H—H < T u € (N,2N], N > wex/logm

Differences:

|2 < 2 | < 5
Nk’ (u + a)k Nk
€T €T axr a

N

uk (u + a)k T gkt T L1/k

consider N = 2/, a < 21/2F) 9~ 1/k
LHS small compared to RHS
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9
H—H < T u € (N,2N], N > wex/loga:

“Modified” Differences:
20 - 20

Al < v el < v

‘ || Nk’ (u + a)k Nk
~ P ~ Q small (but not too small)
uk (u + a)k

(u 4+ a)*P — «*Q small (but not too small)

consider Pr(z) — (1 — 2)*Q,(2) with z =

u + a
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x x
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“Modified” Differences:

Theorem (Halberstam & Roth & Nair):
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H_kH < -, w€(N,2N], N>az%/logz

u N

“Modified” Differences:

Theorem (Halberstam & Roth & Nair):  For x large,
there is a k-free number in (z, z + 1/(2k)].
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0

Xr X
H—kH < ~n U € (N,2N], N > a:ex/loga:

u N

Modified Differences plus Divided Differences:

Theorem (F. & Trifonov): For x sufficiently large, there
is a squarefree number in (z, z + czl/° log z].

Theorem (Trifonov): For x sufficiently large, there is
a k-free number in (z, z + cxl/(2k+1) 1og x].
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k-free values of polynomials and binary forms:

The method for obtaining results about gaps between
k-free numbers generalizes to k-free values of poly-
nomials. Suppose f(x) € Z|x]| is irreducible and
deg f = n. In what follows, we suppose further that
f has no fixed k" power divisors.

Theorem (Nair): Let kK > n + 1. For x sufficiently
large, there is an integer m such that f(m) is k-
free with

n
r<m< x4 cr2k—ntl,
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Theorem (Nair): Let kK > n + 1. For x sufficiently

large, there is an integer m such that f(m) is k-
free with

n
r < m< x4+ cx2k—ntl,

Theorem:Let & > n + 1. For x sufficiently large,
there is an integer m such that f(m) is k-free with

n
r < m< x+ cx2k—ntr,

where r = v/2n — %




Basic Idea: One works in a number field where f(x)
has a linear factor. As in the case f(x) = x, one
wants to show certain u (in the ring of algebraic inte-
gers Iin the field) are not close by considering

(u + a)*P — «FQ

arising from Pade approximations. One uses that this
expression Is an integer and, hence, either 0 or > 1.
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Difficulty:  An “integer” in this context can be small
without being 0.



Basic Idea: One works in a number field where f(x)
has a linear factor. As in the case f(x) = x, one
wants to show certain u (in the ring of algebraic inte-
gers Iin the field) are not close by considering

(u + a)*P — «FQ

arising from Pade approximations. One uses that this
expression Is an integer and, hence, either 0 or > 1.

Difficulty:  An “integer” in this context can be small
without being 0.

Solution: If it's small, work with a conjugate instead.



Comment: In the case that £ < n, one can try the
same methods. The gap size becomes “bad” in the
sense that one obtains m € (x, x + h| where f(m)
IS k-free but h increases as k decreases. There is a
point where h exceeds x itself and the method fails
(the size of f(m) is no longer of order x™). Nair
took the limit of what can be done with k¥ < n and
obtained



Comment: In the case that £ < n, one can try the
same methods. The gap size becomes “bad” in the
sense that one obtains m € (x, x + h| where f(m)
IS k-free but h increases as k decreases. There is a
point where h exceeds x itself and the method fails
(the size of f(m) is no longer of order x™). Nair
took the limit of what can be done with k¥ < n and
obtained

Theorem (Nair): If f(x) is irreducible of degree n and
k > (24/2 — 1)n/2, then there are infinitely many
integers m for which f(m) is k-free.
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Theorem (Nair): If f(x) is irreducible of degree n and
k > (24/2 — 1)n/2, then there are infinitely many
integers m for which f(m) is k-free.

Theorem:If f(x,y) is an irreducible binary form of

degree nand k > (24/2 —1)n/4, then there are

infinitely many integer pairs (a, b) for which f(a, b)
IS k-free.
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Notation: Q(n) = ][ p
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The abc-Conjecture:; For a and b in Z™T, define
B log(a + b)
- logQ(ab(a + b))

La,b

and
L={Lgsp:a>1,b>1,gcd(a,b) = 1}.



The abc-conjecture:

Notation: Q(n) = ][ p

pln

The abc-Conjecture:; For a and b in Z™T, define
B log(a + b)
- logQ(ab(a + b))

La,b

and
L={Lgsp:a>1,b>1,gcd(a,b) = 1}.
The set of limit points of £ is the interval [1/3, 1].
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_ log(a + b)
log Q(ab(a + b))

La,b
L={Lsp:a>1,b>1,gcd(a,b) =1}

Theorem: The set of limit points of £ includes the
interval [1/3,36/37].



_ log(a + b)
log Q(ab(a + b))

La,b
L={Lsp:a>1,b>1,gcd(a,b) =1}

Theorem: The set of limit points of £ includes the
interval [1/3,36/37].

(work of Browkin, Greaves, F., Nitaj, Schinzel)



Approach: Makes use of a preliminary result about
squarefree values of binary forms.



Approach: Makes use of a preliminary result about
squarefree values of binary forms. In particular, for

f(z,y) = zy(z + y)(z — y)(=® + v°) (22* + v°) (=® + 2¢°)
X (x* — x?y® + y*) (3z* + 32”y® + y*) (z* + 32°y” + 3y?)

the number f(x,y)/6 takes on the right proportion
of squarefree values for

X<zrx<2X, Y<y<2Y, X=Y%
where a € (1, 3).
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Polynomial Identity:

P3(z) — (1 — 2)'Q3(2) = 2" E3(2)
where
P3(z) = (22 — 1)(32% — 3z + 1),
Q3(z) = —(z+1)(z2° + z + 1),
and

F3(z) = —(z — 2)(2? — 32+ 3)
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Py(z) — (1 — 2)"Q3(z) = 2" E3(2)




Polynomial Identity:

Py(z) — (1 — 2)"Q3(z) = 2" E3(2)

z = + y'(2z + y) (32” 4 3zy + y?)

. { (& +9) (& — 9)(@* — 2y + ¥?)
—
=z (x + 2y) (=® + 3zy + 3y?)

r—+ vy



(z +9) (z — y)(z® — zy + y?)
+y" (22 + y)(32? + 3zy + y?)

= 2" (z + 2y)(z* + 3zy + 3y°)



(z +9) (z — y)(z® — zy + y?)
+y" (22 + y)(32? + 3zy + y?)

= 2" (z + 2y)(z* + 3zy + 3y°)

(% + y*)"(z? — y?)(z* — 2%y® + y*)
+ y'*(22% + y?) (3z* + 32°y* + y*)
_ 51314(2132 + 2y2)(w4 + 3:132y2 + 3y4)



(z +9) (z — y)(z® — zy + y?)
+y" (22 + y)(32? + 3zy + y?)

= 2" (z + 2y)(z* + 3zy + 3y°)
(% + y*)"(z? — y?)(z* — 2%y® + y*)
+ y'4(22% + y?) (3z* + 32%y* + y?)
_ 51314(332 + 2y2)(w4 + 3$2y2 + 3y4)

f(x,y) =zy(x + y)(z — y) (@ + y*)(22* + y*) (z® + 2y°)
X (! — x?y® + y*) (3z* + 32”y® + y*) (z* + 32°y” + 3y?)



(z +9) (z — y)(z® — zy + y?)
+y" (22 + y)(32? + 3zy + y?)

= 2" (z + 2y)(z* + 3zy + 3y°)
(z? + y?) (@ — y*) (2 — 2%y* + y*)
+ y'4(22% + y?) (3z* + 32%y* + y?)
_ CB14(332 + 2y2)(w4 + 3$2y2 + 3y4)

f(x,y) =zy(x + y)(z — y)(@® + y*)(22* + y*) (z® + 2y°)
X (! — x?y® + y*) (3z* + 32”y* + y*) (z* + 32°y” + 3y?)



(z +9) (z — y)(z® — zy + y?)
+y" (22 + y)(32? + 3zy + y?)

= 2" (z + 2y)(z* + 3zy + 3y°)
(% + y?) (2 — y?) (z* — 2%y* + y?)
+ y'4(22° + y?) (3z* + 32%y? + y?)
_ 5614(332 1 2y2)(w4 + 3a32y2 + 3y4)

f(x,y) =zy(x + y)(z — y)(@® + y*)(22* + y*) (z® + 2y°)
X (! — x?y® + y*) (3z* + 32”y® + y*) (z* + 32°y” + 3y?)



a = (z?+y?) (z? — y?)(a* — 2 v ?+yh)
b=y'*(2x% + y*)(3z* + 3z%y” + y*)
X=Y% 1<a<3

a-+ b= :1314(:132 + 2y2)(w4 - 3w2y2 4 3y4)



a = (z°+y*) " (2® — y?)(z* — 2%y* + y*)
b= y'*(22% 4 y*)(3z* + 32°y”* + y*)
X=Y% 1<a<3
a+b=ax"(z?+ 2y°)(z* + 3z°y” + 3y*)

f(z,y) = zy(z + y)(z — y)(=® + v°) (22* + v*) (® + 2¢°)
X (! — x?*y® + y*) (3z* + 32”y® + y*) (z* + 32°y” + 3y?)



a = (2 4+ y*)"(z* — v*)(=* — =%y + y*)
b=y'*(22* + y*) (32" + 3z°y* + y)
X=Y% 1<a<3
a+ b =zl (2? + 29?%)(z?* + 32%y* + 3y?)

f(z,y) = zy(z + y)(z — y)(=® + y*) (22> + y°) (=® + 29°)
X (m4 . w2y2 _|_ y4)(3:134 _|_ 3$2y2 _|_ y4)(.’134 _|_ 3£B2y2 _|_ 3y4)
log(a + b)
La,,b —
log Q(ab(a -+ b))




a = (2 4+ y*)"(z* — v*)(=* — =%y + y*)
b=y'*(22* + y*) (32" + 3z°y* + y)
X=Y% 1<a<3
a+ b=zt (x? + 2¢y?) (= + 32%y? + 3y?)

f(z,y) = zy(z + y)(z — y)(=® + y*) (22> + y°) (=® + 29°)
% ($4 . m2y2 _|_ y4)(3:1:4 _|_ 3£B2y2 _|_ ’y4)($4 _|_ 3:132y2 _|_ 3y4)
log(a + b)
La,,b —
log Q(ab(a -+ b))




a — (2132 1+ y2)7(a:2 . yZ)(wél . m2y2 + ,y4)
b= yl4(222 + y?) (322 + 32292 + y?)
X=Y% 1<a<3
a+ b =zl (2? + 29?%)(z?* + 32%y* + 3y?)

f(xy) = zy(z +y)(z — y)(z° + y*)(22° + y*) (z* + 2¢7)
X (z' — ay® +y) (32" + 32%y* + y') (2" + 32%y” + 3y")
P log(a + b) . 20alogY
“® ™ log Q(ab(a + b))




a — (2132 1+ y2)7(a32 . y2)(w4 . m2,!‘/2 + y4)
b= yl4(222 + y?) (322 + 32292 + y?)
X=Y% 1<a<3
a+ b =zl (2? + 29?%)(z?* + 32%y* + 3y?)

f(z,y) = zy(z + y)(z — y)(=® + y*) (22> + y°) (=® + 29°)
X (z* — 2?’y® + y*) (3z* + 32’y* + y*) (z* + 3z°y” + 3y?)
P log(a + b) . 20alogY
“® ™ log Q(ab(a + b))




a — (2132 1+ y2)7(a:2 . yZ)(wél . m2y2 + ,y4)
b=y'*(22* + y*) (32" + 3z°y* + y)
X=Y% 1<a<3
a+ b =zl (2? + 29?%)(z?* + 32%y* + 3y?)

f(z,y) = zy(z + y) (= — y)(a® + y°) (22° + ¥*) (a” + 297
X (m4 . w2y2 _|_ y4)(3:134 _|_ 3$2y2 _|_ y4)(.’134 _|_ 3£B2y2 _|_ 3y4)
P log(a + b) . 20alogY
a,b = log Q(ab(a + b)) - (2laa+ 1) logY




a = (z°+ vy (=® — y?)(z* — z°y* + y*)
b=y'*(2x% + y*)(3z* + 3z%y” + y*)
X=Y% 1<a<3
a+ b =zl (2? + 29?%)(z?* + 32%y* + 3y?)

f(z,y) = zy(z + y)(z — y) (= + y°) (22" + y*) (z* + 2y7)
X (z' — ay® +y) (32" + 32%y* + y') (2" + 32%y” + 3y")
P log(a + b) 20«
“® " log Q(ab(a + b))  2la+ 1




log(a + b) 20«

L — I~
EHe log Q(ab(a + b)) 21l + 1



log(a + b) 20«

L — I~
EHe log Q(ab(a + b)) 21l + 1

1<a<<3d3 —



log(a + b) 20«

L — I~
EHe log Q(ab(a + b)) 21l + 1

l1<a<3 = 72 <Lgp<??



log(a + b) 20«

L — I~
EHe log Q(ab(a + b)) 21l + 1

lca<d — 27 o2
a —_— —_—
11 %0 ™ 16



P log(a + b) 20«
25D = log Q(ab(a + b)) ~ 21a + 1
10 15

1<a<<3 — — <L < —
11 %0 ™ 16

Comment: This shows [10/11,15/16] is contained
in the set of limit points of L 3. A similar argument
IS given for other subintervals of [1/3,36/37] (not all
Involving Padé approximations).
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