Applications of Padé Approximations of $(1-z)^{k}$ to Number Theory

by Michael Filaseta
University of South Carolina

General Areas of Applications:

General Areas of Applications:

- irrationality measures

General Areas of Applications:

- irrationality measures
- diophantine equations

General Areas of Applications:

- irrationality measures
- diophantine equations
- Waring's problem

General Areas of Applications:

- irrationality measures
- diophantine equations
- Waring's problem
- the factorization of $\boldsymbol{n}(\boldsymbol{n}+1)$

General Areas of Applications:

- irrationality measures
- diophantine equations
- Waring's problem
- the factorization of $\boldsymbol{n}(\boldsymbol{n}+1)$
- Galois groups associated with classical polynomials

General Areas of Applications:

- irrationality measures
- diophantine equations
- Waring's problem
- the factorization of $\boldsymbol{n}(\boldsymbol{n}+1)$
- Galois groups associated with classical polynomials
- the Ramanujan-Nagell equation

General Areas of Applications:

- irrationality measures
- diophantine equations
- Waring's problem
- the factorization of $\boldsymbol{n}(\boldsymbol{n}+1)$
- Galois groups associated with classical polynomials
- the Ramanujan-Nagell equation
- k-free numbers in short intervals

General Areas of Applications:

- irrationality measures
- diophantine equations
- Waring's problem
- the factorization of $\boldsymbol{n}(\boldsymbol{n}+1)$
- Galois groups associated with classical polynomials
- the Ramanujan-Nagell equation
- k-free numbers in short intervals
- \boldsymbol{k}-free values of polynomials and binary forms

General Areas of Applications:

- irrationality measures
- diophantine equations
- Waring's problem
- the factorization of $\boldsymbol{n}(\boldsymbol{n}+1)$
- Galois groups associated with classical polynomials
- the Ramanujan-Nagell equation
- \boldsymbol{k}-free numbers in short intervals
- \boldsymbol{k}-free values of polynomials and binary forms
- the $a b c$-conjecture

What are the Padé approximations of $(1-z)^{k}$?

What are the Padé approximations of $(1-z)^{k}$?

Answer: Rational functions that give good approximations to $(1-z)^{k}$ near the origin.

What are the Padé approximations of $(1-z)^{k}$?

Answer: Rational functions that give good approximations to $(1-z)^{k}$ near the origin.

What are the Padé approximations of e^{z} ?

Answer: Rational functions that give good approximations to e^{z} near the origin.

What are the Padé approximations of $(1-z)^{k}$?

Answer: Rational functions that give good approximations to $(1-z)^{k}$ near the origin.

What are the Padé approximations of $(1-z)^{k}$?

Answer: Rational functions that give good approximations to $(1-z)^{k}$ near the origin.

What are the Padé approximations of $(1-z)^{k}$?

Answer: Rational functions that give good approximations to $(1-z)^{k}$ near the origin.

Important Equation:

What are the Padé approximations of $(1-z)^{k}$?

Answer: Rational functions that give good approximations to $(1-z)^{k}$ near the origin.

Important Equation:

$$
P-(1-z)^{k} Q=z^{m} E
$$

What are the Padé approximations of $(1-z)^{k}$?

Answer: Rational functions that give good approximations to $(1-z)^{k}$ near the origin.

Important Equation:

$$
P_{r}-(1-z)^{k} Q_{r}=z^{m} E_{r}
$$

What are the Padé approximations of $(1-z)^{k}$?

Answer: Rational functions that give good approximations to $(1-z)^{k}$ near the origin.

Important Equation:

$$
P_{r}-(1-z)^{k} Q_{r}=z^{2 r+1} E_{r}
$$

What are the Padé approximations of $(1-z)^{k}$?

Answer: Rational functions that give good approximations to $(1-z)^{k}$ near the origin.

Important Equation:

$$
P_{r}-(1-z)^{k} Q_{r}=z^{2 r+1} E_{r}
$$

What are the Padé approximations of $(1-z)^{k}$?

Answer: Rational functions that give good approximations to $(1-z)^{k}$ near the origin.

Important Equation:

$$
P_{r}-(1-z)^{k} Q_{r}=z^{2 r+1} E_{r}
$$

What are the Padé approximations of $(1-z)^{k}$?

Answer: Rational functions that give good approximations to $(1-z)^{k}$ near the origin.

Important Equation:

$$
\begin{aligned}
& P_{r}-(1-z)^{k} Q_{r}=z^{2 r+1} \boldsymbol{E}_{r} \\
\operatorname{deg} P_{r}= & \operatorname{deg} Q_{r}=r<k, \quad \operatorname{deg} \boldsymbol{E}_{r}=k-r-1
\end{aligned}
$$

Some Properties of the Polynomials:

(i) $P_{r}(z),(-z)^{k} Q_{r}(z)$, and $z^{2 r+1} \boldsymbol{E}_{r}(z)$ satisfy

$$
z(z-1) y^{\prime \prime}+(2 r(1-z)-(k-1) z) y^{\prime}+r(k+r) y=0
$$

(ii) $Q_{r}(z)=\sum_{j=0}^{r}\binom{2 r-j}{r}\binom{k-r+j-1}{j} z^{j}$
(iii) $Q_{r}(x)=\frac{(k+r)!}{(k-r-1)!r!r!} \int_{0}^{1}(1-t)^{r} t^{k-r-1}(1-t+x t)^{r} \mathrm{~d} t$
(iv) $P_{r}(x) Q_{r+1}(x)-Q_{r}(x) P_{r+1}(x)=c x^{2 r+1}$

$$
P_{r}-(1-z)^{k} Q_{r}=z^{2 r+1} E_{r}
$$

$$
P_{r}-(1-z)^{k} Q_{r}=z^{2 r+1} E_{r}
$$

WARNING: In the applications you are about to see, this identity is used to get a result of the type wanted. Typically, a closer analysis of these polynomials or even a variant of the polynomials is needed to obtain the currently best known results in these applications.

Irrationality measures:

Irrationality measures:

Theorem (Liouville): Fix $\boldsymbol{\alpha} \in \mathbb{R}-\mathbb{Q}$ with $\boldsymbol{\alpha}$ algebraic and of degree n. Then there is a constant $C=C(\alpha)>$ 0 such that

$$
\left|\alpha-\frac{a}{b}\right|>\frac{C}{b^{n}}
$$

where \boldsymbol{a} and \boldsymbol{b} with $\boldsymbol{b}>0$ are arbitrary integers.

Irrationality measures:

Theorem (Liouville): Fix $\boldsymbol{\alpha} \in \mathbb{R}-\mathbb{Q}$ with $\boldsymbol{\alpha}$ algebraic and of degree n. Then there is a constant $C=C(\alpha)>$ 0 such that

$$
\left|\alpha-\frac{a}{b}\right|>\frac{C}{b^{n}}
$$

where \boldsymbol{a} and \boldsymbol{b} with $\boldsymbol{b}>\mathbf{0}$ are arbitrary integers.

Irrationality measures:

Theorem (Roth): Fix $\varepsilon>0$ and $\alpha \in \mathbb{R}-\mathbb{Q}$ with α algebraic. Then there is a constant $C=C(\alpha, \varepsilon)>0$ such that

$$
\left|\alpha-\frac{a}{b}\right|>\frac{C}{b^{2+\varepsilon}}
$$

where \boldsymbol{a} and \boldsymbol{b} with $\boldsymbol{b}>0$ are arbitrary integers.

Irrationality measures:

Theorem (Roth): Fix $\varepsilon>0$ and $\alpha \in \mathbb{R}-\mathbb{Q}$ with α algebraic. Then there is a constant $C=C(\alpha, \varepsilon)>0$ such that

$$
\left|\alpha-\frac{a}{b}\right|>\frac{C}{b^{2+\varepsilon}}
$$

where a and b with $b>0$ are arbitrary integers.

Comment: Liouville's result is effective; Roth's is not.

Irrationality measures:

Theorem (Baker): For \boldsymbol{a} and \boldsymbol{b} integers with $\boldsymbol{b}>0$,

$$
\left|\sqrt[3]{2}-\frac{a}{b}\right|>\frac{C}{b^{2.955}}
$$

where $C=10^{-6}$.

Irrationality measures:

Theorem (Baker): For \boldsymbol{a} and \boldsymbol{b} integers with $\boldsymbol{b}>\boldsymbol{0}$,

$$
\left|\sqrt[3]{2}-\frac{a}{b}\right|>\frac{1}{10^{6} b^{2.955}}
$$

Irrationality measures:

Theorem (Chudnovsky): For \boldsymbol{a} and \boldsymbol{b} integers with $\boldsymbol{b}>\mathbf{0}$,

$$
\left|\sqrt[3]{2}-\frac{a}{b}\right|>\frac{1}{c \cdot b^{2.43}}
$$

Irrationality measures:

Theorem (Bennett): For \boldsymbol{a} and \boldsymbol{b} integers with $\boldsymbol{b}>\boldsymbol{0}$,

$$
\left|\sqrt[3]{2}-\frac{a}{b}\right|>\frac{1}{c \cdot b^{2.47}}
$$

Irrationality measures:

Theorem (Bennett): For \boldsymbol{a} and \boldsymbol{b} integers with $\boldsymbol{b}>\boldsymbol{0}$,

$$
\left|\sqrt[3]{2}-\frac{a}{b}\right|>\frac{1}{4 \cdot b^{2.47}}
$$

Irrationality measures:

Theorem (Bennett): For \boldsymbol{a} and \boldsymbol{b} integers with $\boldsymbol{b}>\boldsymbol{0}$,

$$
\left|\sqrt[3]{2}-\frac{a}{b}\right|>\frac{1}{4 \cdot b^{2.47}}
$$

Comment: Similar explicit estimates have also been made for certain other cube roots.

The Basic Approach:

The Basic Approach:

$$
P_{r}-(1-z)^{k} \quad Q_{r}=z^{2 r+1} E_{r}
$$

The Basic Approach:

$$
P_{r}-(1-z)^{1 / 3} Q_{r}=z^{2 r+1} E_{r}
$$

The Basic Approach:

$$
\begin{gathered}
P_{r}-(1-\underset{\uparrow}{z})^{1 / 3} Q_{r}=z^{2 r+1} E_{r} \\
3 / 128
\end{gathered}
$$

The Basic Approach:

$$
P_{r}-(125 / 128)^{1 / 3} Q_{r}=z^{2 r+1} E_{r}
$$

The Basic Approach:

$$
\begin{gathered}
P_{r}-(125 / 128)^{1 / 3} Q_{r}=z^{2 r+1} E_{r} \\
\text { Rearrange and Normalize to Integers }
\end{gathered}
$$

The Basic Approach:

$$
\begin{aligned}
& P_{r}-(125 / 128)^{1 / 3} Q_{r}=z^{2 r+1} E_{r} \\
& \text { Rearrange and Normalize to Integers } \\
& \quad \sqrt[3]{2} b_{r}-a_{r}=\text { small }
\end{aligned}
$$

The Basic Approach:

$$
\begin{aligned}
& P_{r}-(125 / 128)^{1 / 3} Q_{r}=z^{2 r+1} E_{r} \\
& \text { Rearrange and Normalize to Integers } \\
& \quad \sqrt[3]{2} b_{r}-a_{r}=\text { small }_{r}
\end{aligned}
$$

The Basic Approach:

$$
P_{r}-(125 / 128)^{1 / 3} Q_{r}=z^{2 r+1} E_{r}
$$

Rearrange and Normalize to Integers

$$
\begin{aligned}
& \sqrt[3]{2} b_{r}-a_{r}=\text { small }_{r} \\
& \left|\sqrt[3]{2}-\frac{a_{r}}{b_{r}}\right|=\operatorname{small}_{r}
\end{aligned}
$$

The Basic Approach:

$$
P_{r}-(125 / 128)^{1 / 3} Q_{r}=z^{2 r+1} E_{r}
$$

Rearrange and Normalize to Integers

$$
\begin{aligned}
& \sqrt[3]{2} b_{r}-a_{r}=\operatorname{small}_{r} \\
& \left|\sqrt[3]{2}-\frac{a_{r}}{b_{r}}\right|=\text { small }_{r}
\end{aligned}
$$

The Basic Approach:

$$
\begin{aligned}
& P_{r}-(125 / 128)^{1 / 3} Q_{r}=z^{2 r+1} E_{r} \\
& \text { Rearrange and Normalize to Integers } \\
& \quad \sqrt[3]{2} b_{r}-a_{r}=\text { small }_{r} \\
& \quad\left|\sqrt[3]{2}-\frac{a_{r}}{b_{r}}\right|=\text { small }_{r}
\end{aligned}
$$

The Basic Approach:

$$
\begin{aligned}
& P_{r}-(125 / 128)^{1 / 3} Q_{r}=z^{2 r+1} E_{r} \\
& \text { Rearrange and Normalize to Integers } \\
& \quad \sqrt[3]{2} b_{r}-a_{r}=\text { small }_{r} \\
& \quad\left|\sqrt[3]{2}-\frac{a_{r}}{b_{r}}\right|=\text { small }_{r}
\end{aligned}
$$

Wait!! I thought we wanted that LARGE!!

The Basic Approach:

$$
\left|\sqrt[3]{2}-\frac{\boldsymbol{a}_{\boldsymbol{r}}}{\boldsymbol{b}_{\boldsymbol{r}}}\right|=\text { small }_{r}
$$

The Basic Approach:

$$
\left|\sqrt[3]{2}-\frac{\boldsymbol{a}_{\boldsymbol{r}}}{\boldsymbol{b}_{\boldsymbol{r}}}\right|=\operatorname{small}_{r}
$$

What's small ${ }_{r}$?

The Basic Approach:

$$
\left|\sqrt[3]{2}-\frac{\boldsymbol{a}_{r}}{\boldsymbol{b}_{\boldsymbol{r}}}\right|=\text { small }_{r}
$$

What's small? ? Let b be a positive integer.

The Basic Approach:

$$
\left|\sqrt[3]{2}-\frac{\boldsymbol{a}_{\boldsymbol{r}}}{\boldsymbol{b}_{\boldsymbol{r}}}\right|=\operatorname{small}_{r}
$$

What's small ${ }_{r}$? Let \boldsymbol{b} be a positive integer. By choosing \boldsymbol{r} right, one can obtain

$$
{ }_{\text {small }}^{r}<\frac{1}{2 b b_{r}} \quad \text { and } \quad b_{r}<c b^{1.47}
$$

The Basic Approach:

$$
\left|\sqrt[3]{2}-\frac{\boldsymbol{a}_{\boldsymbol{r}}}{\boldsymbol{b}_{\boldsymbol{r}}}\right|=\text { small }_{r}
$$

What's small ${ }_{r}$? Let \boldsymbol{b} be a positive integer. By choosing \boldsymbol{r} right, one can obtain

$$
\text { small } r<\frac{1}{2 b b_{r}} \quad \text { and } \quad b_{r}<c b^{1.47}
$$

$\left|\sqrt[3]{2}-\frac{a}{b}\right| \geq$

The Basic Approach:

$$
\left|\sqrt[3]{2}-\frac{a_{r}}{b_{r}}\right|=\text { small }_{r}
$$

What's small ${ }_{r}$? Let \boldsymbol{b} be a positive integer. By choosing \boldsymbol{r} right, one can obtain

$$
\text { small } r<\frac{1}{2 b b_{r}} \quad \text { and } \quad b_{r}<c b^{1.47}
$$

$$
\left|\sqrt[3]{2}-\frac{a}{b}\right| \geq\left|\frac{a_{r}}{b_{r}}-\frac{a}{b}\right|-\left|\sqrt[3]{2}-\frac{a_{r}}{b_{r}}\right|>
$$

The Basic Approach:

$$
\left|\sqrt[3]{2}-\frac{a_{r}}{b_{r}}\right|=\text { small }_{r}
$$

What's small ${ }_{r}$? Let \boldsymbol{b} be a positive integer. By choosing \boldsymbol{r} right, one can obtain

$$
\operatorname{small}_{r}<\frac{1}{2 b b_{r}} \quad \text { and } \quad b_{r}<c b^{1.47}
$$

$$
\left|\sqrt[3]{2}-\frac{a}{b}\right| \geq\left|\frac{a_{r}}{b_{r}}-\frac{a}{b}\right|-\left|\sqrt[3]{2}-\frac{a_{r}}{b_{r}}\right|>
$$

The Basic Approach:

$$
\left|\sqrt[3]{2}-\frac{a_{r}}{b_{r}}\right|=\text { small }_{r}
$$

What's small ${ }_{r}$? Let \boldsymbol{b} be a positive integer. By choosing \boldsymbol{r} right, one can obtain

$$
{ }_{\text {small }}^{r} \ll \frac{1}{2 b b_{r}} \quad \text { and } \quad b_{r}<c b^{1.47}
$$

$$
\left|\sqrt[3]{2}-\frac{a}{b}\right| \geq\left|\frac{a_{r}}{b_{r}}-\frac{a}{b}\right|-\left|\sqrt[3]{2}-\frac{a_{r}}{b_{r}}\right|>\frac{1}{b b_{r}}
$$

The Basic Approach:

$$
\left|\sqrt[3]{2}-\frac{a_{r}}{b_{r}}\right|=\text { small }_{r}
$$

What's small ${ }_{r}$? Let \boldsymbol{b} be a positive integer. By choosing \boldsymbol{r} right, one can obtain

$$
\operatorname{small}_{r}<\frac{1}{2 b b_{r}} \quad \text { and } \quad b_{r}<c b^{1.47}
$$

$$
\left|\sqrt[3]{2}-\frac{a}{b}\right| \geq\left|\frac{a_{r}}{b_{r}}-\frac{a}{b}\right|-\left|\sqrt[3]{2}-\frac{a_{r}}{b_{r}}\right|>\frac{1}{b b_{r}}
$$

The Basic Approach:

$$
\left|\sqrt[3]{2}-\frac{a_{r}}{b_{r}}\right|=\text { small }_{r}
$$

What's small ${ }_{r}$? Let \boldsymbol{b} be a positive integer. By choosing \boldsymbol{r} right, one can obtain

$$
\operatorname{small}_{r}<\frac{1}{2 b b_{r}} \quad \text { and } \quad b_{r}<c b^{1.47}
$$

$$
\left|\sqrt[3]{2}-\frac{a}{b}\right| \geq\left|\frac{a_{r}}{b_{r}}-\frac{a}{b}\right|-\left|\sqrt[3]{2}-\frac{a_{r}}{b_{r}}\right|>\frac{1}{b b_{r}}
$$

The Basic Approach:

$$
\left|\sqrt[3]{2}-\frac{\boldsymbol{a}_{\boldsymbol{r}}}{\boldsymbol{b}_{\boldsymbol{r}}}\right|=\operatorname{small}_{r}
$$

What's small ${ }_{r}$? Let \boldsymbol{b} be a positive integer. By choosing \boldsymbol{r} right, one can obtain

$$
{ }_{\text {small }}^{r} \ll \frac{1}{2 b b_{r}} \quad \text { and } \quad b_{r}<c b^{1.47}
$$

$$
\left|\sqrt[3]{2}-\frac{a}{b}\right| \geq\left|\frac{a_{r}}{b_{r}}-\frac{a}{b}\right|-\left|\sqrt[3]{2}-\frac{a_{r}}{b_{r}}\right|>\frac{1}{b b_{r}}
$$

The Basic Approach:

$$
\left|\sqrt[3]{2}-\frac{\boldsymbol{a}_{\boldsymbol{r}}}{\boldsymbol{b}_{\boldsymbol{r}}}\right|=\operatorname{small}_{r}
$$

What's small ${ }_{r}$? Let \boldsymbol{b} be a positive integer. By choosing \boldsymbol{r} right, one can obtain

$$
{ }_{\text {small }}^{r} \ll \frac{1}{2 b b_{r}} \quad \text { and } \quad b_{r}<c b^{1.47}
$$

$$
\left|\sqrt[3]{2}-\frac{a}{b}\right| \geq\left|\frac{a_{r}}{b_{r}}-\frac{a}{b}\right|-\left|\sqrt[3]{2}-\frac{a_{r}}{b_{r}}\right|>\frac{1}{b b_{r}}-
$$

The Basic Approach:

$$
\left|\sqrt[3]{2}-\frac{a_{r}}{b_{r}}\right|=\text { small }_{r}
$$

What's small ${ }_{r}$? Let \boldsymbol{b} be a positive integer. By choosing \boldsymbol{r} right, one can obtain

$$
{ }_{\text {small }}^{r} \ll \frac{1}{2 b b_{r}} \quad \text { and } \quad b_{r}<c b^{1.47}
$$

$$
\left|\sqrt[3]{2}-\frac{a}{b}\right| \geq\left|\frac{a_{r}}{b_{r}}-\frac{a}{b}\right|-\left|\sqrt[3]{2}-\frac{a_{r}}{b_{r}}\right|>\frac{1}{b b_{r}}-\frac{1}{2 b b_{r}}
$$

The Basic Approach:

$$
\left|\sqrt[3]{2}-\frac{a_{r}}{b_{r}}\right|=\text { small }_{r}
$$

What's small ${ }_{r}$? Let \boldsymbol{b} be a positive integer. By choosing \boldsymbol{r} right, one can obtain

$$
{ }_{\text {small }}^{r} \ll \frac{1}{2 b b_{r}} \quad \text { and } \quad b_{r}<c b^{1.47}
$$

$$
\left|\sqrt[3]{2}-\frac{a}{b}\right| \geq\left|\frac{a_{r}}{b_{r}}-\frac{a}{b}\right|-\left|\sqrt[3]{2}-\frac{a_{r}}{b_{r}}\right|>\frac{1}{2 b b_{r}}
$$

The Basic Approach:

$$
\left|\sqrt[3]{2}-\frac{a_{r}}{b_{r}}\right|=\text { small }_{r}
$$

What's small ${ }_{r}$? Let \boldsymbol{b} be a positive integer. By choosing \boldsymbol{r} right, one can obtain

$$
\operatorname{small}_{r}<\frac{1}{2 b b_{r}} \quad \text { and } \quad b_{r}<c b^{1.47}
$$

$$
\left|\sqrt[3]{2}-\frac{a}{b}\right| \geq\left|\frac{a_{r}}{b_{r}}-\frac{a}{b}\right|-\left|\sqrt[3]{2}-\frac{a_{r}}{b_{r}}\right|>\frac{1}{2 b b_{r}}
$$

The Basic Approach:

$$
\left|\sqrt[3]{2}-\frac{\boldsymbol{a}_{\boldsymbol{r}}}{\boldsymbol{b}_{\boldsymbol{r}}}\right|=\operatorname{small}_{r}
$$

What's small ${ }_{r}$? Let \boldsymbol{b} be a positive integer. By choosing \boldsymbol{r} right, one can obtain

$$
\operatorname{small}_{r}<\frac{1}{2 b b_{r}} \quad \text { and } \quad b_{r}<c b^{1.47}
$$

$$
\sqrt[3]{2}-\frac{a}{b}\left|\geq\left|\frac{a_{r}}{b_{r}}-\frac{a}{b}\right|-\left|\sqrt[3]{2}-\frac{a_{r}}{b_{r}}\right|>\frac{1}{2 c b^{2.47}}\right.
$$

The Basic Approach:

$$
\left|\sqrt[3]{2}-\frac{a_{r}}{b_{r}}\right|=\text { small }_{r}
$$

What's small ${ }_{r}$? Let \boldsymbol{b} be a positive integer. By choosing \boldsymbol{r} right, one can obtain

$$
\operatorname{small}_{r}<\frac{1}{2 b b_{r}} \quad \text { and } \quad b_{r}<c b^{1.47}
$$

$$
\left|\sqrt[3]{2}-\frac{a}{b}\right| \geq\left|\frac{a_{r}}{b_{r}}-\frac{a}{b}\right|-\left|\sqrt[3]{2}-\frac{a_{r}}{b_{r}}\right|>\frac{1}{4 \cdot b^{2.47}}
$$

Diophantine equations:

Diophantine equations:

Theorem (Bennett): For \boldsymbol{a} and \boldsymbol{b} integers with $\boldsymbol{b}>0$,

$$
\left|\sqrt[3]{2}-\frac{a}{b}\right|>\frac{1}{4 \cdot b^{2.47}}
$$

Diophantine equations:

Theorem (Bennett): For \boldsymbol{a} and \boldsymbol{b} integers with $\boldsymbol{b} \neq 0$,

$$
\left|\sqrt[3]{2}-\frac{a}{b}\right|>\frac{1}{4 \cdot b^{2.47}}
$$

Diophantine equations:

Theorem (Bennett): For \boldsymbol{a} and \boldsymbol{b} integers with $\boldsymbol{b} \neq 0$,

$$
\left|\sqrt[3]{2}-\frac{a}{b}\right|>\frac{1}{4 \cdot|b|^{2.47}}
$$

Diophantine equations:

Theorem (Bennett): For \boldsymbol{a} and \boldsymbol{b} integers with $\boldsymbol{b} \neq 0$,

$$
\left|\sqrt[3]{2}-\frac{a}{b}\right|>\frac{1}{4 \cdot|b|^{2.5}}
$$

Diophantine equations:

Theorem (Bennett): For \boldsymbol{a} and \boldsymbol{b} integers with $\boldsymbol{b} \neq 0$,

$$
\begin{aligned}
& \left|\sqrt[3]{2}-\frac{a}{b}\right|>\frac{1}{4 \cdot|b|^{2.5}} \\
& x^{3}-2 y^{3}=n
\end{aligned}
$$

Diophantine equations:

Theorem (Bennett): For \boldsymbol{a} and \boldsymbol{b} integers with $\boldsymbol{b} \neq 0$,

$$
\begin{aligned}
\left|\sqrt[3]{2}-\frac{a}{b}\right|>\frac{1}{4 \cdot|b|^{2.5}} \\
x^{3}-2 y^{3}=n, \quad y \neq 0
\end{aligned}
$$

Diophantine equations:

Theorem (Bennett): For \boldsymbol{a} and \boldsymbol{b} integers with $\boldsymbol{b} \neq 0$,

$$
\begin{gathered}
\left|\sqrt[3]{2}-\frac{a}{b}\right|>\frac{1}{4 \cdot|b|^{2.5}} \\
x^{3}-2 y^{3}=n, \quad y \neq 0 \\
\left|\sqrt[3]{2}-\frac{x}{y}\right|\left|\sqrt[3]{2} e^{2 \pi \mathrm{i} / 3}-\frac{x}{y}\right|\left|\sqrt[3]{2} e^{4 \pi \mathrm{i} / 3}-\frac{x}{y}\right|=\frac{|n|}{|y|^{3}}
\end{gathered}
$$

Diophantine equations:

Theorem (Bennett): For \boldsymbol{a} and \boldsymbol{b} integers with $\boldsymbol{b} \neq 0$,

$$
\begin{gathered}
\left|\sqrt[3]{2}-\frac{a}{b}\right|>\frac{1}{4 \cdot|b|^{2.5}} \\
x^{3}-2 y^{3}=n, \quad y \neq 0 \\
\left|\sqrt[3]{2}-\frac{x}{y}\right|\left|\sqrt[3]{2} e^{2 \pi \mathrm{i} / 3}-\frac{x}{y}\right|\left|\sqrt[3]{2} e^{4 \pi \mathrm{i} / 3}-\frac{x}{y}\right|=\frac{|n|}{|y|^{3}}
\end{gathered}
$$

Diophantine equations:

Theorem (Bennett): For \boldsymbol{a} and \boldsymbol{b} integers with $\boldsymbol{b} \neq 0$,

$$
\begin{gathered}
\left|\sqrt[3]{2}-\frac{a}{b}\right|>\frac{1}{4 \cdot|b|^{2.5}} \\
x^{3}-2 y^{3}=n, \quad y \neq 0 \\
\left|\sqrt[3]{2}-\frac{x}{y}\right|\left|\sqrt[3]{2} e^{2 \pi i / 3}-\frac{x}{y}\right|\left|\sqrt[3]{2} e^{4 \pi \mathrm{i} / 3}-\frac{x}{y}\right|=\frac{|n|}{|y|^{3}} \\
\left|\sqrt[3]{2}-\frac{x}{y}\right|<\frac{|n|}{|y|^{3}}
\end{gathered}
$$

Diophantine equations:

Theorem (Bennett): For \boldsymbol{a} and \boldsymbol{b} integers with $\boldsymbol{b} \neq 0$,

$$
\begin{gathered}
\left|\sqrt[3]{2}-\frac{a}{b}\right|>\frac{1}{4 \cdot|b|^{2.5}} \\
x^{3}-2 y^{3}=n, \quad y \neq 0 \\
\left|\sqrt[3]{2}-\frac{x}{y}\right|\left|\sqrt[3]{2} e^{2 \pi \mathrm{i} / 3}-\frac{x}{y}\right|\left|\sqrt[3]{2} e^{4 \pi \mathrm{i} / 3}-\frac{x}{y}\right|=\frac{|n|}{|y|^{3}} \\
\frac{1}{4|y|^{2.5}}<\left|\sqrt[3]{2}-\frac{x}{y}\right|<\frac{|n|}{|y|^{3}}
\end{gathered}
$$

Diophantine equations:

$$
\begin{gathered}
x^{3}-2 y^{3}=n, \quad y \neq 0 \\
\left|\sqrt[3]{2}-\frac{x}{y}\right|\left|\sqrt[3]{2} e^{2 \pi \mathrm{i} / 3}-\frac{x}{y}\right|\left|\sqrt[3]{2} e^{4 \pi \mathrm{i} / 3}-\frac{x}{y}\right|=\frac{|n|}{|y|^{3}} \\
\frac{1}{4|y|^{2.5}}<\left|\sqrt[3]{2}-\frac{x}{y}\right|<\frac{|n|}{|y|^{3}}
\end{gathered}
$$

Diophantine equations:

$$
\begin{gathered}
x^{3}-2 y^{3}=n, \quad y \neq 0 \\
\left|\sqrt[3]{2}-\frac{x}{y}\right|\left|\sqrt[3]{2} e^{2 \pi \mathrm{i} / 3}-\frac{x}{y}\right|\left|\sqrt[3]{2} e^{4 \pi \mathrm{i} / 3}-\frac{x}{y}\right|=\frac{|n|}{|y|^{3}} \\
\frac{1}{4|y|^{2.5}}<\left|\sqrt[3]{2}-\frac{x}{y}\right|<\frac{|n|}{|y|^{3}} \\
|y|^{1 / 2}<4|n|
\end{gathered}
$$

Diophantine equations:

$$
\begin{gathered}
x^{3}-2 y^{3}=n, \quad y \neq 0 \\
\left|\sqrt[3]{2}-\frac{x}{y}\right|\left|\sqrt[3]{2} e^{2 \pi \mathrm{i} / 3}-\frac{x}{y}\right|\left|\sqrt[3]{2} e^{4 \pi \mathrm{i} / 3}-\frac{x}{y}\right|=\frac{|n|}{|y|^{3}} \\
\frac{1}{4|y|^{2.5}}<\left|\sqrt[3]{2}-\frac{x}{y}\right|<\frac{|n|}{|y|^{3}} \\
|y|^{1 / 2}<4|n| \Longrightarrow|y|<16 n^{2}
\end{gathered}
$$

Diophantine equations:

$$
\begin{gathered}
x^{3}-2 y^{3}=n, \quad y \neq 0 \\
\left|\sqrt[3]{2}-\frac{x}{y}\right|\left|\sqrt[3]{2} e^{2 \pi \mathrm{i} / 3}-\frac{x}{y}\right|\left|\sqrt[3]{2} e^{4 \pi \mathrm{i} / 3}-\frac{x}{y}\right|=\frac{|n|}{|y|^{3}} \\
\frac{1}{4|y|^{2.5}}<\left|\sqrt[3]{2}-\frac{x}{y}\right|<\frac{|n|}{|y|^{3}} \\
|y|^{1 / 2}<4|n| \Longrightarrow|y|<16 n^{2}
\end{gathered}
$$

Diophantine equations:

Theorem: Let \boldsymbol{n} be a non-zero integer. If \boldsymbol{x} and \boldsymbol{y} are integers satisfying $x^{3}-2 y^{3}=n$, then $|y|<16 n^{2}$.

Diophantine equations:

Theorem (Bennett): If $\boldsymbol{a}, \boldsymbol{b}$, and \boldsymbol{n} are integers with $\boldsymbol{a b} \neq$ 0 and $n \geq 3$, then the equation

$$
\left|a x^{n}+b y^{n}\right|=1
$$

has at most one solution in positive integers \boldsymbol{x} and \boldsymbol{y}.

Waring's Problem:

Waring's Problem:

Waring's Problem: Let \boldsymbol{k} be an integer ≥ 2. Then there exists a number s such that every natural number is a sum of $\boldsymbol{s} \boldsymbol{k}^{\text {th }}$ powers.

Waring's Problem:

Waring's Problem: Let \boldsymbol{k} be an integer ≥ 2. Then there exists a number s such that every natural number is a sum of $\boldsymbol{s} \boldsymbol{k}^{\text {th }}$ powers. If $\boldsymbol{g}(\boldsymbol{k})$ is the least such \boldsymbol{s}, what is $\boldsymbol{g}(\boldsymbol{k})$?

Waring's Problem:

Waring's Problem: Let \boldsymbol{k} be an integer ≥ 2. Then there exists a number s such that every natural number is a sum of $\boldsymbol{s} \boldsymbol{k}^{\text {th }}$ powers. If $\boldsymbol{g}(\boldsymbol{k})$ is the least such \boldsymbol{s}, what is $\boldsymbol{g}(\boldsymbol{k})$?

Known: (i) $g(k)=2^{k}+\left[\left(\frac{3}{2}\right)^{k}\right]-2$

Waring's Problem:

Waring's Problem: Let \boldsymbol{k} be an integer ≥ 2. Then there exists a number s such that every natural number is a sum of $\boldsymbol{s} \boldsymbol{k}^{\text {th }}$ powers. If $\boldsymbol{g}(\boldsymbol{k})$ is the least such \boldsymbol{s}, what is $\boldsymbol{g}(\boldsymbol{k})$?

Known: (i) $g(k)=2^{k}+\left[\left(\frac{3}{2}\right)^{k}\right]-2$
(ii) no one knows how to prove (i)

Waring's Problem:

Waring's Problem: Let \boldsymbol{k} be an integer ≥ 2. Then there exists a number s such that every natural number is a sum of $\boldsymbol{s} \boldsymbol{k}^{\text {th }}$ powers. If $\boldsymbol{g}(\boldsymbol{k})$ is the least such \boldsymbol{s}, what is $\boldsymbol{g}(\boldsymbol{k})$?

Known: (i) $\boldsymbol{g}(\boldsymbol{k})=2^{k}+\left[\left(\frac{3}{2}\right)^{k}\right]-2$
(ii) no one knows how to prove (i)
(iii) (i) holds if $\left\|\left(\frac{3}{2}\right)^{k}\right\|>0.75^{k}$

Waring's Problem:

Waring's Problem: Let \boldsymbol{k} be an integer ≥ 2. Then there exists a number s such that every natural number is a sum of $\boldsymbol{s} \boldsymbol{k}^{\text {th }}$ powers. If $\boldsymbol{g}(\boldsymbol{k})$ is the least such \boldsymbol{s}, what is $\boldsymbol{g}(\boldsymbol{k})$?

Known: (i) $g(k)=2^{k}+\left[\left(\frac{3}{2}\right)^{k}\right]-2$
(ii) no one knows how to prove (i)
(iii) (i) holds if $\left\|\left(\frac{3}{2}\right)^{k}\right\|>0.75^{k}$
(iv) (iii) holds if and only if $\boldsymbol{k}>8$

Waring's Problem: Let \boldsymbol{k} be an integer ≥ 2. Then there exists a number s such that every natural number is a sum of $\boldsymbol{s} \boldsymbol{k}^{\text {th }}$ powers. If $\boldsymbol{g}(\boldsymbol{k})$ is the least such \boldsymbol{s}, what is $\boldsymbol{g}(\boldsymbol{k})$?

Known: (i) $g(k)=2^{k}+\left[\left(\frac{3}{2}\right)^{k}\right]-2$
(ii) no one knows how to prove (i)
(iii) (i) holds if $\left\|\left(\frac{3}{2}\right)^{k}\right\|>0.75^{k}$
(iv) (iii) holds if and only if $\boldsymbol{k}>8$
(v) no one knows how to prove (iv)

Waring's Problem:

Known: (i) $g(k)=2^{k}+\left[\left(\frac{3}{2}\right)^{k}\right]-2$
(ii) No one knows how to prove (i).
(iii) (i) holds if $\left\|\left(\frac{3}{2}\right)^{k}\right\|>0.75^{k}$

Waring's Problem:

Known: (i) $g(k)=2^{k}+\left[\left(\frac{3}{2}\right)^{k}\right]-2$
(ii) No one knows how to prove (i).
(iii) (i) holds if $\left\|\left(\frac{3}{2}\right)^{k}\right\|>0.75^{k}$

Theorem (Beakers): If $k>4$, then

$$
\left\|\left(\frac{3}{2}\right)^{k}\right\|>0.5358^{k}
$$

Waring's Problem:

Known: (i) $g(k)=2^{k}+\left[\left(\frac{3}{2}\right)^{k}\right]-2$
(ii) No one knows how to prove (i).
(iii) (i) holds if $\left\|\left(\frac{3}{2}\right)^{k}\right\|>0.75^{k}$

Theorem (Dubitskas): If $k>4$, then

$$
\left\|\left(\frac{3}{2}\right)^{k}\right\|>0.5767^{k}
$$

The factorization of $n(n+1)$:

The factorization of $n(n+1)$:

Well-Known: The largest prime factor of $\boldsymbol{n}(\boldsymbol{n}+1)$ tends to infinity with \boldsymbol{n}.

The factorization of $n(n+1)$:

Well-Known: The largest prime factor of $\boldsymbol{n}(\boldsymbol{n}+1)$ tends to infinity with \boldsymbol{n}.

Let $p_{1}, p_{2}, \ldots, p_{r}$ be primes. There is an N such that if $n \geq N$ and

$$
n(n+1)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} m
$$

for some integer m, then $m>1$.

Let $p_{1}, p_{2}, \ldots, p_{r}$ be primes. There is an N such that if $n \geq N$ and

$$
n(n+1)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} m
$$

for some integer m, then $m>1$.

Let $p_{1}, p_{2}, \ldots, p_{r}$ be primes. There is an N such that if $n \geq N$ and

$$
n(n+1)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} m
$$

for some integer m, then $m>1$.

Lehmer: Gave some explicit estimates:

Let $p_{1}, p_{2}, \ldots, p_{r}$ be primes. There is an N such that if $n \geq N$ and

$$
n(n+1)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} m
$$

for some integer m, then $m>1$.

Lehmer: Gave some explicit estimates:

$n(n+1)$ divisible only by primes $\leq 11 \Longrightarrow n \leq$

Let $p_{1}, p_{2}, \ldots, p_{r}$ be primes. There is an N such that if $n \geq N$ and

$$
n(n+1)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} m
$$

for some integer m, then $m>1$.

Lehmer: Gave some explicit estimates:

$n(n+1)$ divisible only by primes $\leq 11 \Longrightarrow n \leq$... only by primes $\leq 41 \Longrightarrow n \leq$

Let $p_{1}, p_{2}, \ldots, p_{r}$ be primes. There is an N such that if $n \geq N$ and

$$
n(n+1)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} m
$$

for some integer m, then $m>1$.

Lehmer: Gave some explicit estimates:

$n(n+1)$ divisible only by primes $\leq 11 \Longrightarrow n \leq 9800$ \ldots only by primes $\leq 41 \Longrightarrow n \leq$

Let $p_{1}, p_{2}, \ldots, p_{r}$ be primes. There is an N such that if $n \geq N$ and

$$
n(n+1)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} m
$$

for some integer m, then $m>1$.

Lehmer: Gave some explicit estimates:

$n(n+1)$ divisible only by primes $\leq 11 \Longrightarrow n \leq 9800$ \ldots only by primes $\leq 41 \Longrightarrow n \leq 63927525375$

Let $p_{1}, p_{2}, \ldots, p_{r}$ be primes. There is an N such that if $n \geq N$ and

$$
n(n+1)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} m
$$

for some integer m, then $m>1$.

Let $p_{1}, p_{2}, \ldots, p_{r}$ be primes. There is an N such that if $n \geq N$ and

$$
n(n+1)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} m
$$

for some integer m, then $m>1$.

Let $p_{1}, p_{2}, \ldots, p_{r}$ be primes. There is an N such that if $n \geq N$ and

$$
n(n+1)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} m
$$

for some integer m, then $m>1$.

Let $p_{1}, p_{2}, \ldots, p_{r}$ be primes. There is an N such that if $n \geq N$ and

$$
n(n+1)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} m
$$

for some integer \boldsymbol{m}, then $\boldsymbol{m}>\boldsymbol{n}^{\theta}$.

Want: Let $p_{1}, p_{2}, \ldots, p_{r}$ be primes. There is an $N=$ $N\left(\theta, p_{1}, \ldots, p_{r}\right)$ such that if $n \geq N$ and

$$
n(n+1)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} m
$$

for some integer m, then $m>n^{\theta}$.

Want: Let $p_{1}, p_{2}, \ldots, p_{r}$ be primes. There is an $N=$ $N\left(\theta, p_{1}, \ldots, p_{r}\right)$ such that if $n \geq N$ and

$$
n(n+1)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} m
$$

for some integer m, then $m>n^{\theta}$.

$$
a b c \text {-conjecture } \Longrightarrow \theta=
$$

Want: Let $p_{1}, p_{2}, \ldots, p_{r}$ be primes. There is an $N=$ $N\left(\theta, p_{1}, \ldots, p_{r}\right)$ such that if $n \geq N$ and

$$
n(n+1)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} m
$$

for some integer m, then $m>n^{\theta}$.

$$
a b c \text {-conjecture } \Longrightarrow \theta=1-\varepsilon
$$

Want: Let $p_{1}, p_{2}, \ldots, p_{r}$ be primes. There is an $N=$ $N\left(\theta, p_{1}, \ldots, p_{r}\right)$ such that if $n \geq N$ and

$$
n(n+1)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} m
$$

for some integer m, then $m>n^{\theta}$.

$$
a b c \text {-conjecture } \Longrightarrow \theta=1-\varepsilon
$$

unconditionally one can obtain $\theta=$

Want: Let $p_{1}, p_{2}, \ldots, p_{r}$ be primes. There is an $N=$ $\boldsymbol{N}\left(\boldsymbol{\theta}, \boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{r}\right)$ such that if $\boldsymbol{n} \geq \boldsymbol{N}$ and

$$
n(n+1)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} m
$$

for some integer m, then $m>n^{\theta}$.

$$
a b c \text {-conjecture } \Longrightarrow \theta=1-\varepsilon
$$

unconditionally one can obtain $\theta=1-\varepsilon$

Want: Let $p_{1}, p_{2}, \ldots, p_{r}$ be primes. There is an $N=$ $\boldsymbol{N}\left(\boldsymbol{\theta}, \boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{r}\right)$ such that if $\boldsymbol{n} \geq \boldsymbol{N}$ and

$$
n(n+1)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} m
$$

for some integer m, then $m>n^{\theta}$.

$$
a b c \text {-conjecture } \Longrightarrow \theta=1-\varepsilon
$$

unconditionally one can obtain $\theta=1-\varepsilon$ (ineffective)

Want: Let $p_{1}, p_{2}, \ldots, p_{r}$ be primes. There is an $N=$ $N\left(\theta, p_{1}, \ldots, p_{r}\right)$ such that if $n \geq N$ and

$$
n(n+1)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} m
$$

for some integer m, then $m>n^{\theta}$.

Effective Approach:

Want: Let $p_{1}, p_{2}, \ldots, p_{r}$ be primes. There is an $N=$ $\boldsymbol{N}\left(\boldsymbol{\theta}, \boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{r}\right)$ such that if $\boldsymbol{n} \geq \boldsymbol{N}$ and

$$
n(n+1)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} m
$$

for some integer m, then $m>n^{\theta}$.

Effective Approach: (Linear Forms of Logarithms)

Want: Let $p_{1}, p_{2}, \ldots, p_{r}$ be primes. There is an $N=$ $\boldsymbol{N}\left(\boldsymbol{\theta}, \boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{r}\right)$ such that if $\boldsymbol{n} \geq \boldsymbol{N}$ and

$$
n(n+1)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} m
$$

for some integer m, then $m>n^{\theta}$.

Effective Approach: (Linear Forms of Logarithms)

$$
\theta=\frac{c}{\log \log n}
$$

Want: Let $p_{1}, p_{2}, \ldots, p_{r}$ be primes. There is an $N=$ $\boldsymbol{N}\left(\boldsymbol{\theta}, \boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{r}\right)$ such that if $\boldsymbol{n} \geq \boldsymbol{N}$ and

$$
n(n+1)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} m
$$

for some integer m, then $m>n^{\theta}$.

Effective Approach: (Linear Forms of Logarithms)

$$
\theta=\frac{c}{\log \log n}
$$

Problem: Can we narrow the gap between these ineffective and effective results?

Want: Let $p_{1}, p_{2}, \ldots, p_{r}$ be primes. There is an $N=$ $N\left(\theta, p_{1}, \ldots, p_{r}\right)$ such that if $n \geq N$ and

$$
n(n+1)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} m
$$

for some integer m, then $m>n^{\theta}$.

Want: Let $p_{1}, p_{2}, \ldots, p_{r}$ be primes. There is an $N=$ $\boldsymbol{N}\left(\boldsymbol{\theta}, \boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{r}\right)$ such that if $\boldsymbol{n} \geq \boldsymbol{N}$ and

$$
n(n+1)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} m
$$

for some integer m, then $m>n^{\theta}$.

Theorem (Bennett, F., Trifonov): If $\boldsymbol{n} \geq \mathbf{9}$ and

$$
n(n+1)=2^{k} 3^{\ell} m
$$

then

$$
m \geq
$$

Want: Let $p_{1}, p_{2}, \ldots, p_{r}$ be primes. There is an $N=$ $\boldsymbol{N}\left(\boldsymbol{\theta}, \boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{r}\right)$ such that if $\boldsymbol{n} \geq \boldsymbol{N}$ and

$$
n(n+1)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} m
$$

for some integer m, then $m>n^{\theta}$.

Theorem (Bennett, F., Trifonov): If $\boldsymbol{n} \geq \mathbf{9}$ and

$$
n(n+1)=2^{k} 3^{\ell} m
$$

then

$$
m \geq n^{1 / 4}
$$

Conjecture: For $n>512$,

$$
n(n+1)=2^{u} 3^{v} m \Longrightarrow m>\sqrt{n}
$$

Conjecture: For $n>512$,

$$
n(n+1)=2^{u} 3^{v} m \Longrightarrow m>\sqrt{n}
$$

Comment: The conjecture has been verified for

$$
512<n \leq
$$

Conjecture: For $n>512$,

$$
n(n+1)=2^{u} 3^{v} m \Longrightarrow m>\sqrt{n}
$$

Comment: The conjecture has been verified for $512<n \leq 10^{1000}$.

The Method:

The Method:

$$
n(n+1)=3^{k} 2^{\ell} m
$$

The Method:

$$
\begin{gathered}
n(n+1)=3^{k} 2^{\ell} m \\
3^{k} m_{1}-2^{\ell} m_{2}= \pm 1
\end{gathered}
$$

The Method:

$$
\begin{gathered}
n(n+1)=3^{k} 2^{\ell} m \\
3^{k} m_{1}-2^{\ell} m_{2}= \pm 1
\end{gathered}
$$

Main Idea: Find "small" integers $\boldsymbol{P}, \boldsymbol{Q}$, and \boldsymbol{E} such that

$$
3^{k} P-2^{\ell} Q=E .
$$

The Method:

$$
\begin{gathered}
n(n+1)=3^{k} 2^{\ell} m \\
3^{k} m_{1}-2^{\ell} m_{2}= \pm 1
\end{gathered}
$$

Main Idea: Find "small" integers $\boldsymbol{P}, \boldsymbol{Q}$, and \boldsymbol{E} such that

$$
3^{k} P-2^{\ell} Q=E .
$$

Then

$$
3^{k}\left(Q m_{1}-P m_{2}\right)= \pm Q-E m_{2} .
$$

The Method:

$$
\begin{gathered}
n(n+1)=3^{k} 2^{\ell} m \\
3^{k} m_{1}-2^{\ell} m_{2}= \pm 1
\end{gathered}
$$

Main Idea: Find "small" integers $\boldsymbol{P}, \boldsymbol{Q}$, and \boldsymbol{E} such that

$$
3^{k} P-2^{\ell} Q=E .
$$

Then

$$
3^{k}\left(Q m_{1}-P m_{2}\right)= \pm Q-E m_{2} .
$$

Main Idea: Find "small" integers $\boldsymbol{P}, \boldsymbol{Q}$, and \boldsymbol{E} such that

$$
3^{k} P-2^{\ell} Q=E
$$

and

$$
Q m_{1}-P m_{2} \neq 0
$$

Then

$$
3^{k}\left(Q m_{1}-P m_{2}\right)= \pm Q-E m_{2}
$$

Main Idea: Find "small" integers $\boldsymbol{P}, \boldsymbol{Q}$, and \boldsymbol{E} such that

$$
3^{k} P-2^{\ell} Q=E
$$

and

$$
Q m_{1}-P m_{2} \neq 0
$$

Then

$$
3^{k}\left(Q m_{1}-P m_{2}\right)= \pm Q-E m_{2}
$$

Obtain an upper bound on 3^{k}.

Main Idea: Find "small" integers $\boldsymbol{P}, \boldsymbol{Q}$, and \boldsymbol{E} such that

$$
3^{k} P-2^{\ell} Q=E
$$

and

$$
Q m_{1}-P m_{2} \neq 0
$$

Then

$$
3^{k}\left(Q m_{1}-P m_{2}\right)= \pm Q-E m_{2}
$$

Obtain an upper bound on 3^{k}. Since $3^{k} \boldsymbol{m}_{1} \geq n$, it follows that \boldsymbol{m}_{1} and, hence, $\boldsymbol{m}=\boldsymbol{m}_{1} \boldsymbol{m}_{\mathbf{2}}$ are not small.

The "small" integers $\boldsymbol{P}, \boldsymbol{Q}$, and \boldsymbol{E} are obtained through the use of Padé approximations for $(1-x)^{k}$.

The "small" integers $\boldsymbol{P}, \boldsymbol{Q}$, and \boldsymbol{E} are obtained through the use of Padé approximations for $(1-x)^{k}$.

More precisely, one takes $z=1 / 9$ in the equation

$$
P_{r}(x)-(1-x)^{k} Q_{r}(x)=x^{2 r+1} E_{r}(x)
$$

What's Needed for the Method to Work:

What's Needed for the Method to Work:

One largely needs to be dealing with two primes (like 2 and 3) with a difference of powers of these primes being small (like $3^{2}-2^{3}=1$).

Galois groups associated with classical polynomials:

Galois groups associated with classical polynomials:

- D. Hilbert (1892) used his now classical Hilbert's Irreducibility Theorem to show that for each integer $n \geq 1$, there is polynomial $f(x) \in \mathbb{Z}[x]$ such that the Galois group associated with $f(x)$ is the symmetric group $\boldsymbol{S}_{\boldsymbol{n}}$.

Galois groups associated with classical polynomials:

- D. Hilbert (1892) used his now classical Hilbert's Irreducibility Theorem to show that for each integer $n \geq 1$, there is polynomial $f(x) \in \mathbb{Z}[\boldsymbol{x}]$ such that the Galois group associated with $f(x)$ is the symmetric group $\boldsymbol{S}_{\boldsymbol{n}}$. He also showed the analogous result in the case of the alternating group $\boldsymbol{A}_{\boldsymbol{n}}$.

Galois groups associated with classical polynomials:

- D. Hilbert (1892) used his now classical Hilbert's Irreducibility Theorem to show that for each integer $n \geq 1$, there is polynomial $\boldsymbol{f}(\boldsymbol{x}) \in \mathbb{Z}[\boldsymbol{x}]$ such that the Galois group associated with $f(x)$ is the symmetric group $\boldsymbol{S}_{\boldsymbol{n}}$. He also showed the analogous result in the case of the alternating group $\boldsymbol{A}_{\boldsymbol{n}}$.
- Hilbert's work and work of E. Noether (1918) began what has come to be known as Inverse Galois Theory.

Galois groups associated with classical polynomials:

- D. Hilbert (1892) used his now classical Hilbert's Irreducibility Theorem to show that for each integer $n \geq 1$, there is polynomial $f(x) \in \mathbb{Z}[\boldsymbol{x}]$ such that the Galois group associated with $f(x)$ is the symmetric group $\boldsymbol{S}_{\boldsymbol{n}}$. He also showed the analogous result in the case of the alternating group $\boldsymbol{A}_{\boldsymbol{n}}$.
- Hilbert's work and work of E. Noether (1918) began what has come to be known as Inverse Galois Theory.
- Van der Waerden showed that for "almost all" polynomials $f(x) \in \mathbb{Z}[x]$, the Galois group associated with $\boldsymbol{f}(\boldsymbol{x})$ is the symmetric group $\boldsymbol{S}_{\boldsymbol{n}}$.

Galois groups associated with classical polynomials:

- Schur showed $L_{n}^{(0)}(x)$ has Galois group S_{n}.

Galois groups associated with classical polynomials:

- Schur showed $L_{n}^{(0)}(x)$ has Galois group S_{n}.
- Schur showed $L_{n}^{(1)}(x)$ has Galois group $\boldsymbol{A}_{\boldsymbol{n}}$ (the alternating group) if \boldsymbol{n} is odd.

Galois groups associated with classical polynomials:

- Schur showed $L_{n}^{(0)}(x)$ has Galois group S_{n}.
- Schur showed $L_{n}^{(1)}(x)$ has Galois group $\boldsymbol{A}_{\boldsymbol{n}}$ (the alternating group) if \boldsymbol{n} is odd.
- Schur showed $\sum_{j=0}^{n} \frac{x^{j}}{j!}$ has Galois group A_{n} if $4 \mid n$.

Galois groups associated with classical polynomials:

- Schur showed $L_{n}^{(0)}(x)$ has Galois group S_{n}.
- Schur showed $L_{n}^{(1)}(x)$ has Galois group $\boldsymbol{A}_{\boldsymbol{n}}$ (the alternating group) if \boldsymbol{n} is odd.
- Schur showed $\sum_{j=0}^{n} \frac{x^{j}}{j!}$ has Galois group $\boldsymbol{A}_{\boldsymbol{n}}$ if $4 \mid n$.
- Schur did not find an explicit sequence of polynomials having Galois group A_{n} with $n \equiv 2(\bmod 4)$.

Galois groups associated with classical polynomials:
Theorem (R. Gow, 1989): If $\boldsymbol{n}>2$ is even and

$$
L_{n}^{(n)}(x)=\sum_{j=0}^{n}\binom{2 n}{n-j} \frac{(-x)^{j}}{j!}
$$

is irreducible, then the Galois group of $L_{n}^{(n)}(\boldsymbol{x})$ is $\boldsymbol{A}_{\boldsymbol{n}}$.

Galois groups associated with classical polynomials:

Theorem (R. Gow, 1989): If $\boldsymbol{n}>2$ is even and

$$
L_{n}^{(n)}(x)=\sum_{j=0}^{n}\binom{2 n}{n-j} \frac{(-x)^{j}}{j!}
$$

is irreducible, then the Galois group of $L_{n}^{(n)}(\boldsymbol{x})$ is $\boldsymbol{A}_{\boldsymbol{n}}$.
Theorem (joint work with R. Williams): For almost all positive integers n the polynomial $L_{n}^{(n)}(x)$ is irreducible (and, hence, has Galois group $\boldsymbol{A}_{\boldsymbol{n}}$ for almost all even \boldsymbol{n}).

Galois groups associated with classical polynomials:

Theorem (joint work with R. Williams): For almost all positive integers n the polynomial $L_{n}^{(n)}(x)$ is irreducible (and, hence, has Galois group $\boldsymbol{A}_{\boldsymbol{n}}$ for almost all even \boldsymbol{n}).

Galois groups associated with classical polynomials:

Theorem (joint work with R. Williams): For almost all positive integers n the polynomial $L_{n}^{(n)}(x)$ is irreducible (and, hence, has Galois group $\boldsymbol{A}_{\boldsymbol{n}}$ for almost all even \boldsymbol{n}).

Comment: The method had an ineffective component to it. We could show that if n is sufficiently large and $L_{n}^{(n)}(x)$ is reducible, then $L_{n}^{(n)}(x)$ has a linear factor. But we didn't know what sufficiently large was.

Galois groups associated with classical polynomials:

Theorem (joint work with R. Williams): For almost all positive integers n the polynomial $L_{n}^{(n)}(x)$ is irreducible (and, hence, has Galois group $\boldsymbol{A}_{\boldsymbol{n}}$ for almost all even \boldsymbol{n}).

Comment: The method had an ineffective component to it. We could show that if n is sufficiently large and $L_{n}^{(n)}(x)$ is reducible, then $L_{n}^{(n)}(x)$ has a linear factor. But we didn't know what sufficiently large was.

Work in Progress with Trifonov: There is an effetive bound N such that if $n \geq N$ and $n \equiv 2(\bmod 4)$, then $L_{n}^{(n)}(x)$ is irreducible.

Galois groups associated with classical polynomials:

Theorem (joint work with R. Williams): For almost all positive integers n the polynomial $L_{n}^{(n)}(x)$ is irreducible (and, hence, has Galois group $\boldsymbol{A}_{\boldsymbol{n}}$ for almost all even \boldsymbol{n}).

Comment: The method had an ineffective component to it. We could show that if n is sufficiently large and $L_{n}^{(n)}(x)$ is reducible, then $L_{n}^{(n)}(x)$ has a linear factor. But we didn't know what sufficiently large was.

Work in Progress with Trifonov: There is an effetive bound N such that if $n \geq N$ and $n \equiv 2(\bmod 4)$, then $L_{n}^{(n)}(x)$ has Galois group A_{n}.

The Ramanujan-Nagell equation:

The Ramanujan-Nagell equation:

Classical Ramanujan-Nagell Theorem: If \boldsymbol{x} and \boldsymbol{n} are integers satisfying

$$
x^{2}+7=2^{n}
$$

then

$$
x \in\{1,3,5,11,181\} .
$$

The Ramanujan-Nagell equation:

Some Background: Beukers used a method "similar" to the approach for finding irrationality measures to show that $\sqrt{2}$ cannot be approximated too well by rationals a / b with b a power of 2 . This implies bounds for solutions to the Diophantine equation $x^{2}+D=2^{n}$ with D fixed. This led to him showing that if $D \neq 7$, then the equation has at most 4 solutions. Related independent work by Apéry, Beukers, and Bennett establishes that for odd primes p not dividing D, the equation $x^{2}+D=p^{n}$ has at most 3 solutions. All of these are in some sense best possible (though more can and has been said).

The Ramanujan-Nagell equation:

Classical Ramanujan-Nagell Theorem: If \boldsymbol{x} and \boldsymbol{n} are integers satisfying

$$
x^{2}+7=2^{n}
$$

then

$$
x \in\{1,3,5,11,181\} .
$$

The Ramanujan-Nagell equation:

Classical Ramanujan-Nagell Theorem: If \boldsymbol{x} and \boldsymbol{n} are integers satisfying

$$
x^{2}+7=2^{n}
$$

then

$$
x \in\{1,3,5,11,181\} .
$$

Problem: If $x^{2}+7=2^{n} m$ and x is not in the set above, then can we say that \boldsymbol{m} must be large?

Problem: If $x^{2}+7=2^{n} m$ and x is not in the set above, then can we say that \boldsymbol{m} must be large?

Connection with $n(n+1)$ problem:

Problem: If $x^{2}+7=2^{n} m$ and x is not in the set above, then can we say that \boldsymbol{m} must be large?

Connection with $n(n+1)$ problem:

$$
x^{2}+7=2^{n} m
$$

Problem: If $x^{2}+7=2^{n} m$ and x is not in the set above, then can we say that \boldsymbol{m} must be large?

Connection with $n(n+1)$ problem:

$$
x^{2}+7=2^{n} m
$$

$$
\left(\frac{x+\sqrt{-7}}{2}\right)\left(\frac{x-\sqrt{-7}}{2}\right)=\left(\frac{1+\sqrt{-7}}{2}\right)^{n-2}\left(\frac{1-\sqrt{-7}}{2}\right)^{n-2} m
$$

Problem: If $x^{2}+7=2^{n} m$ and x is not in the set above, then can we say that \boldsymbol{m} must be large?

Connection with $n(n+1)$ problem:

$$
x^{2}+7=2^{n} m
$$

$$
\begin{aligned}
& \left(\frac{x+\sqrt{-7}}{2}\right)\left(\frac{x-\sqrt{-7}}{2}\right)=\left(\frac{1+\sqrt{-7}}{2}\right)^{n-2}\left(\frac{1-\sqrt{-7}}{2}\right)^{n-2} m \\
& \uparrow \\
& \text { linear } \\
& \text { linear }
\end{aligned}
$$

Problem: If $x^{2}+7=2^{n} m$ and x is not in the set above, then can we say that m must be large?

Connection with $n(n+1)$ problem:

$$
x^{2}+7=2^{n} m
$$

$$
\begin{array}{ccc}
\left(\frac{x+\sqrt{-7}}{2}\right) \\
\uparrow & \uparrow & \left(\frac{x-\sqrt{-7}}{2}\right)= \\
\begin{array}{c}
\uparrow \\
\text { linear }
\end{array} & \left.\begin{array}{c}
1+\sqrt{-7} \\
2
\end{array}\right)^{n-2} & \left(\frac{1-\sqrt{-7}}{2}\right)^{n-2} m \\
\uparrow & \text { linear } & \text { prime }
\end{array}
$$

Theorem (Bennett, F., Trifonov): If $\boldsymbol{x}, \boldsymbol{n}$ and \boldsymbol{m} are positive integers satisfying

$$
x^{2}+7=2^{n} m \text { and } x \notin\{1,3,5,11,181\}
$$

then

$$
m \geq ? ? ?
$$

Theorem (Bennett, F., Trifonov): If $\boldsymbol{x}, \boldsymbol{n}$ and \boldsymbol{m} are positive integers satisfying

$$
x^{2}+7=2^{n} m \text { and } x \notin\{1,3,5,11,181\}
$$

then

$$
m \geq x^{1 / 2}
$$

Theorem (Bennett, F., Trifonov): If $\boldsymbol{x}, \boldsymbol{n}$ and \boldsymbol{m} are positive integers satisfying

$$
x^{2}+7=2^{n} m \text { and } x \notin\{1,3,5,11,181\}
$$

then

$$
m \geq x^{1 / 2}
$$

Comment: In the case of $x^{2}+7=2^{n} m$, the difference of the primes $(1+\sqrt{-7}) / 2$ and $(1-\sqrt{-7}) / 2$ each raised to the $13^{\text {th }}$ power has absolute value ≈ 2.65 and the powers themselves have absolute value ≈ 90.51.

k-free numbers in short intervals:

k-free numbers in short intervals:

Problem: Find $\theta=\theta(\boldsymbol{k})$ as small as possible such that, for x sufficiently large, the interval $\left(x, x+x^{\theta}\right]$ contains a \boldsymbol{k}-free number.

k-free numbers in short intervals:

Problem: Find $\boldsymbol{\theta}=\boldsymbol{\theta}(\boldsymbol{k})$ as small as possible such that, for \boldsymbol{x} sufficiently large, the interval $\left(x, x+x^{\theta}\right]$ contains a \boldsymbol{k}-free number.

Main Idea: Show that there are integers in $\left(x, x+x^{\theta}\right]$ not divisible by the $\boldsymbol{k}^{\text {th }}$ power of a prime. Consider primes in different size ranges. Deal with small primes and large primes separately.

Problem: Find $\boldsymbol{\theta}=\boldsymbol{\theta}(\boldsymbol{k})$ as small as possible such that, for \boldsymbol{x} sufficiently large, the interval $\left(x, x+x^{\theta}\right]$ contains a \boldsymbol{k}-free number.

Problem: Find $\boldsymbol{\theta}=\boldsymbol{\theta}(\boldsymbol{k})$ as small as possible such that, for \boldsymbol{x} sufficiently large, the interval $\left(x, x+x^{\theta}\right]$ contains a \boldsymbol{k}-free number.

Small Primes: $p \leq z$

Problem: Find $\boldsymbol{\theta}=\boldsymbol{\theta}(\boldsymbol{k})$ as small as possible such that, for \boldsymbol{x} sufficiently large, the interval $\left(x, x+x^{\theta}\right]$ contains a \boldsymbol{k}-free number.

Small Primes: $p \leq z$ where $z=x^{\theta} \sqrt{\log x}$

Problem: Find $\boldsymbol{\theta}=\boldsymbol{\theta}(\boldsymbol{k})$ as small as possible such that, for x sufficiently large, the interval $\left(x, x+x^{\theta}\right]$ contains a \boldsymbol{k}-free number.

Small Primes: $p \leq z$ where $z=x^{\theta} \sqrt{\log x}$
The number of integers $n \in\left(x, x+x^{\theta}\right]$ divisible by such a \boldsymbol{p}^{k} is bounded by

Problem: Find $\boldsymbol{\theta}=\boldsymbol{\theta}(\boldsymbol{k})$ as small as possible such that, for \boldsymbol{x} sufficiently large, the interval $\left(x, x+x^{\theta}\right]$ contains a \boldsymbol{k}-free number.

Small Primes: $p \leq z$ where $z=x^{\theta} \sqrt{\log x}$
The number of integers $n \in\left(x, x+x^{\theta}\right]$ divisible by such a \boldsymbol{p}^{k} is bounded by

$$
\sum_{p \leq z}\left(\frac{x^{\theta}}{p^{k}}+1\right)
$$

Problem: Find $\boldsymbol{\theta}=\boldsymbol{\theta}(\boldsymbol{k})$ as small as possible such that, for \boldsymbol{x} sufficiently large, the interval $\left(x, x+x^{\theta}\right]$ contains a \boldsymbol{k}-free number.

Small Primes: $p \leq z$ where $z=x^{\theta} \sqrt{\log x}$
The number of integers $n \in\left(x, x+x^{\theta}\right]$ divisible by such a \boldsymbol{p}^{k} is bounded by

$$
\sum_{p \leq z}\left(\frac{x^{\theta}}{p^{k}}+1\right) \leq\left(\sum_{p \text { prime }} \frac{x^{\theta}}{p^{2}}\right)+\pi(z)
$$

Problem: Find $\boldsymbol{\theta}=\boldsymbol{\theta}(\boldsymbol{k})$ as small as possible such that, for \boldsymbol{x} sufficiently large, the interval $\left(x, x+x^{\theta}\right]$ contains a \boldsymbol{k}-free number.

Small Primes: $p \leq z$ where $z=x^{\theta} \sqrt{\log x}$
The number of integers $n \in\left(x, x+x^{\theta}\right]$ divisible by such a \boldsymbol{p}^{k} is bounded by

$$
\begin{aligned}
\sum_{p \leq z}\left(\frac{x^{\theta}}{p^{k}}+1\right) & \leq\left(\sum_{p \text { prime }} \frac{x^{\theta}}{p^{2}}\right)+\pi(z) \\
& \leq\left(\frac{\pi^{2}}{6}-1\right) x^{\theta}
\end{aligned}
$$

Problem: Find $\boldsymbol{\theta}=\boldsymbol{\theta}(\boldsymbol{k})$ as small as possible such that, for \boldsymbol{x} sufficiently large, the interval $\left(x, x+x^{\theta}\right]$ contains a \boldsymbol{k}-free number.

Small Primes: $p \leq z$ where $z=x^{\theta} \sqrt{\log x}$
The number of integers $n \in\left(x, x+x^{\theta}\right]$ divisible by such a \boldsymbol{p}^{k} is bounded by

$$
\begin{aligned}
\sum_{p \leq z}\left(\frac{x^{\theta}}{p^{k}}+1\right) & \leq\left(\sum_{p \text { prime }} \frac{x^{\theta}}{p^{2}}\right)+\pi(z) \\
& \leq\left(\frac{\pi^{2}}{6}-1\right) x^{\theta}<\frac{2}{3} x^{\theta}
\end{aligned}
$$

Large Primes: $p \in(N, 2 N], N \geq z=x^{\theta} \sqrt{\log x}$

Large Primes: $p \in(N, 2 N], N \geq z=x^{\theta} \sqrt{\log x}$

$$
x<p^{k} \boldsymbol{m} \leq x+x^{\theta}
$$

Large Primes: $p \in(N, 2 N], N \geq z=x^{\theta} \sqrt{\log x}$

$$
x<p^{k} m \leq x+x^{\theta} \Longrightarrow \frac{x}{p^{k}}<m \leq \frac{x}{p^{k}}+\frac{x^{\theta}}{p^{k}}
$$

Large Primes: $p \in(N, 2 N], N \geq z=x^{\theta} \sqrt{\log x}$

$$
\begin{aligned}
x<p^{k} m \leq x+x^{\theta} & \Longrightarrow \frac{x}{p^{k}}<m \leq \frac{x}{p^{k}}+\frac{x^{\theta}}{p^{k}} \\
& \Longrightarrow\left\|\frac{x}{p^{k}}\right\|<\frac{x^{\theta}}{N^{k}}
\end{aligned}
$$

Large Primes: $p \in(N, 2 N], N \geq z=x^{\theta} \sqrt{\log x}$

$$
\begin{aligned}
x<p^{k} m \leq x+x^{\theta} & \Longrightarrow \frac{x}{p^{k}}<m \leq \frac{x}{p^{k}}+\frac{x^{\theta}}{p^{k}} \\
& \Longrightarrow\left\|\frac{x}{p^{k}}\right\|<\frac{x^{\theta}}{N^{k}}
\end{aligned}
$$

where $\|t\|=\min \{|t-\ell|: \ell \in \mathbb{Z}\}$

Large Primes: $p \in(N, 2 N], N \geq z=x^{\theta} \sqrt{\log x}$

$$
\Longrightarrow\left\|\frac{x}{p^{k}}\right\|<\frac{x^{\theta}}{N^{k}}
$$

where $\|t\|=\min \{|t-\ell|: \ell \in \mathbb{Z}\}$

Idea: Show that there are few primes $p \in(N, 2 N]$ with x / p^{k} that close to an integer.

Large Primes: $p \in(N, 2 N], N \geq z=x^{\theta} \sqrt{\log x}$

$$
\Longrightarrow\left\|\frac{x}{p^{k}}\right\|<\frac{x^{\theta}}{N^{k}}
$$

where $\|t\|=\min \{|t-\ell|: \ell \in \mathbb{Z}\}$

Idea: Show that there are few integers $p \in(N, 2 N]$ with x / p^{k} that close to an integer.

Large Primes: $p \in(N, 2 N], N \geq z=x^{\theta} \sqrt{\log x}$

$$
\Longrightarrow\left\|\frac{x}{p^{k}}\right\|<\frac{x^{\theta}}{N^{k}}
$$

where $\|t\|=\min \{|t-\ell|: \ell \in \mathbb{Z}\}$

Idea: Show that there are few integers $u \in(N, 2 N]$ with x / u^{k} that close to an integer.

$$
\left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad u \in(N, 2 N], \quad N \geq x^{\theta} \sqrt{\log x}
$$

$$
\left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad u \in(N, 2 N], \quad N \geq x^{\theta} \sqrt{\log x}
$$

Exponential Sums:

$$
\left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad u \in(N, 2 N], \quad N \geq x^{\theta} \sqrt{\log x}
$$

Exponential Sums: Let $\delta \in(0,1 / 2)$. Let $\boldsymbol{f}: \mathbb{R} \rightarrow \mathbb{R}$ be any function. Let S be a set of positive integers. Then for any positive integer $J \leq 1 /(4 \delta)$, we get

$$
\begin{aligned}
& |\{u \in S:\|f(u)\|<\delta\}| \\
& \leq \frac{\pi^{2}}{2(J+1)} \sum_{1 \leq j \leq J}\left|\sum_{u \in S} e^{2 \pi \mathrm{i} j f(u)}\right| \\
& \quad+\frac{\pi^{2}}{4(J+1)}|S| .
\end{aligned}
$$

$$
\left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad u \in(N, 2 N], \quad N \geq x^{\theta} \sqrt{\log x}
$$

$\left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad u \in(N, 2 N], \quad N \geq x^{\theta} \sqrt{\log x}$

Differences:

$\left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad u \in(N, 2 N], \quad N \geq x^{\theta} \sqrt{\log x}$

Differences:

$$
\left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad\left\|\frac{x}{(u+a)^{k}}\right\|<\frac{x^{\theta}}{N^{k}}
$$

$\left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad u \in(N, 2 N], \quad N \geq x^{\theta} \sqrt{\log x}$

Differences:

$$
\begin{aligned}
& \left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad\left\|\frac{x}{(u+a)^{k}}\right\|<\frac{x^{\theta}}{N^{k}} \\
& \frac{x}{u^{k}}-\frac{x}{(u+a)^{k}}
\end{aligned}
$$

$\left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad u \in(N, 2 N], \quad N \geq x^{\theta} \sqrt{\log x}$

Differences:

$$
\begin{aligned}
& \left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}},\left\|\frac{x}{(u+a)^{k}}\right\|<\frac{x^{\theta}}{N^{k}} \\
& \frac{x}{u^{k}}-\frac{x}{(u+a)^{k}} \asymp \frac{a x}{u^{k+1}}
\end{aligned}
$$

$\left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad u \in(N, 2 N], \quad N \geq x^{\theta} \sqrt{\log x}$

Differences:

$$
\begin{aligned}
& \left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}},\left\|\frac{x}{(u+a)^{k}}\right\|<\frac{x^{\theta}}{N^{k}} \\
& \frac{x}{u^{k}}-\frac{x}{(u+a)^{k}} \asymp \frac{a x}{u^{k+1}} \asymp \frac{a x}{N^{k+1}}
\end{aligned}
$$

$\left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad u \in(N, 2 N], \quad N \geq x^{\theta} \sqrt{\log x}$

Differences:

$$
\begin{aligned}
& \left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad\left\|\frac{x}{(u+a)^{k}}\right\|<\frac{x^{\theta}}{N^{k}} \\
& \frac{x}{u^{k}}-\frac{x}{(u+a)^{k}} \asymp \frac{a x}{u^{k+1}} \asymp \frac{a x}{N^{k+1}}
\end{aligned}
$$

$\left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad u \in(N, 2 N], \quad N \geq x^{\theta} \sqrt{\log x}$

Differences:

$$
\begin{aligned}
& \left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad\left\|\frac{x}{(u+a)^{k}}\right\|<\frac{x^{\theta}}{N^{k}} \\
& \frac{x}{u^{k}}-\frac{x}{(u+a)^{k}} \asymp \frac{a x}{u^{k+1}} \asymp \frac{a x}{N^{k+1}}
\end{aligned}
$$

consider $N=x^{1 / k}$
$\left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad u \in(N, 2 N], \quad N \geq x^{\theta} \sqrt{\log x}$

Differences:

$$
\begin{aligned}
& \left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad\left\|\frac{x}{(u+a)^{k}}\right\|<\frac{x^{\theta}}{N^{k}} \\
& \frac{x}{u^{k}}-\frac{x}{(u+a)^{k}} \asymp \frac{a x}{u^{k+1}} \asymp \frac{a}{x^{1 / k}}
\end{aligned}
$$

consider $N=x^{1 / k}$
$\left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad u \in(N, 2 N], \quad N \geq x^{\theta} \sqrt{\log x}$

Differences:

$$
\begin{aligned}
& \left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad\left\|\frac{x}{(u+a)^{k}}\right\|<\frac{x^{\theta}}{N^{k}} \\
& \frac{x}{u^{k}}-\frac{x}{(u+a)^{k}} \asymp \frac{a x}{u^{k+1}} \asymp \frac{a}{x^{1 / k}}
\end{aligned}
$$

consider $N=x^{1 / k}, a<x^{1 /(2 k)}$
$\left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad u \in(N, 2 N], \quad N \geq x^{\theta} \sqrt{\log x}$

Differences:

$$
\begin{aligned}
& \left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad\left\|\frac{x}{(u+a)^{k}}\right\|<\frac{x^{\theta}}{N^{k}} \\
& \frac{x}{u^{k}}-\frac{x}{(u+a)^{k}} \asymp \frac{a x}{u^{k+1}} \asymp \frac{a}{x^{1 / k}}
\end{aligned}
$$

consider $N=x^{1 / k}, a<x^{1 /(2 k)}, \theta \approx 1 / k$
$\left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad u \in(N, 2 N], \quad N \geq x^{\theta} \sqrt{\log x}$

Differences:

$$
\begin{aligned}
& \left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad\left\|\frac{x}{(u+a)^{k}}\right\|<\frac{x^{\theta}}{N^{k}} \\
& \frac{x}{u^{k}}-\frac{x}{(u+a)^{k}} \asymp \frac{a x}{u^{k+1}} \asymp \frac{a}{x^{1 / k}}
\end{aligned}
$$

$$
\text { consider } N=x^{1 / k}, a<x^{1 /(2 k)}, \theta \approx 1 / k
$$ LHS small compared to RHS

$$
\left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad u \in(N, 2 N], \quad N \geq x^{\theta} \sqrt{\log x}
$$

"'Modified" Differences:

$\left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad u \in(N, 2 N], \quad N \geq x^{\theta} \sqrt{\log x}$
"'Modified" Differences:

$$
\left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad\left\|\frac{x}{(u+a)^{k}}\right\|<\frac{x^{\theta}}{N^{k}}
$$

$$
\left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad u \in(N, 2 N], \quad N \geq x^{\theta} \sqrt{\log x}
$$

$$
\left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad\left\|\frac{x}{(u+a)^{k}}\right\|<\frac{x^{\theta}}{N^{k}}
$$

$$
\frac{x}{u^{k}} P-\frac{x}{(u+a)^{k}} Q \quad \text { small }
$$

$$
\left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad u \in(N, 2 N], \quad N \geq x^{\theta} \sqrt{\log x}
$$

$$
\left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad\left\|\frac{x}{(u+a)^{k}}\right\|<\frac{x^{\theta}}{N^{k}}
$$

$$
\frac{x}{u^{k}} P-\frac{x}{(u+a)^{k}} Q \quad \text { small (but not too small) }
$$

$$
\left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad u \in(N, 2 N], \quad N \geq x^{\theta} \sqrt{\log x}
$$

$$
\left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad\left\|\frac{x}{(u+a)^{k}}\right\|<\frac{x^{\theta}}{N^{k}}
$$

$\frac{x}{u^{k}} P-\frac{x}{(u+a)^{k}} Q \quad$ small (but not too small)
$(u+a)^{k} P-u^{k} Q \quad$ small (but not too small)

$$
\left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad u \in(N, 2 N], \quad N \geq x^{\theta} \sqrt{\log x}
$$

"'Modified" Differences:

$$
\left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad\left\|\frac{x}{(u+a)^{k}}\right\|<\frac{x^{\theta}}{N^{k}}
$$

$\frac{\boldsymbol{x}}{\boldsymbol{u}^{k}} \boldsymbol{P}-\frac{\boldsymbol{x}}{(u+\boldsymbol{a})^{k}} \boldsymbol{Q} \quad$ small (but not too small)
$(u+a)^{k} \boldsymbol{P}-u^{k} Q \quad$ small (but not too small)
consider $\quad P_{r}(z)-(1-z)^{k} Q_{r}(z) \quad$ with $z=\frac{a}{u+a}$
$\left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad u \in(N, 2 N], \quad N \geq x^{\theta} \sqrt{\log x}$

"'Modified" Differences:

Theorem (Halberstam \& Roth):
$\left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad u \in(N, 2 N], \quad N \geq x^{\theta} \sqrt{\log x}$ "'Modified" Differences:

Theorem (Halberstam \& Roth \& Nair):

$$
\left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad u \in(N, 2 N], \quad N \geq x^{\theta} \sqrt{\log x}
$$

"'Modified" Differences:

Theorem (Halberstam \& Roth \& Nair):
For \boldsymbol{x} sufficiently large, there is a \boldsymbol{k}-free number in the interval $\left(x, x+x^{1 /(2 k)}\right]$.
$\left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad u \in(N, 2 N], \quad N \geq x^{\theta} \sqrt{\log x}$

Modified Differences plus Divided Differences:

$\left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad u \in(N, 2 N], \quad N \geq x^{\theta} \sqrt{\log x}$

Modified Differences plus Divided Differences:

Theorem (F. \& Trifonov): For \boldsymbol{x} sufficiently large, there is a squarefree number in $\left(x, x+c x^{1 / 5} \log x\right]$.
$\left\|\frac{x}{u^{k}}\right\|<\frac{x^{\theta}}{N^{k}}, \quad u \in(N, 2 N], \quad N \geq x^{\theta} \sqrt{\log x}$

Modified Differences plus Divided Differences:

Theorem (F. \& Trifonov): For x sufficiently large, there is a squarefree number in $\left(x, x+c x^{1 / 5} \log x\right]$.

Theorem (Trifonov): For x sufficiently large, there is a k-free number in $\left(x, x+c x^{1 /(2 k+1)} \log x\right]$.

More General Theorem (F. \& Trifonov): Let \boldsymbol{k} be an inleger ≥ 2, and let
$s \in \mathbb{Q}-\{-(k-1),-(k-2), \ldots, k-2, k-1\}$.
Let $\boldsymbol{f}(\boldsymbol{u})=\boldsymbol{X} / \boldsymbol{u}^{s}$. Suppose that

$$
\boldsymbol{N}^{s} \leq \boldsymbol{X} \quad \text { and } \quad \delta \leq c \boldsymbol{N}^{-(k-1)}
$$

where $c>0$ is small. Set

$$
S=\{u \in \mathbb{Z} \cap(N, 2 N]:\|f(u)\|<\delta\}
$$

Then
$|S| \lll k, s X^{1 /(2 k+1)} N^{(k-s) /(2 k+1)}$

$$
+\delta X^{1 /(6 k+3)} N^{\left(6 k^{2}+2 k-s-1\right) /(6 k+3)}
$$

More General Theorem (F. \& Trifonov): Let \boldsymbol{k} be an inleger ≥ 2, and let
$s \in \mathbb{Q}-\{-(k-1),-(k-2), \ldots, k-2, k-1\}$.
Let $\boldsymbol{f}(\boldsymbol{u})=\boldsymbol{X} / \boldsymbol{u}^{s}$. Suppose that

$$
\boldsymbol{N}^{s} \leq \boldsymbol{X} \quad \text { and } \quad \delta \leq c N^{-(k-1)}
$$

where $c>0$ is small. Set

$$
S=\{u \in \mathbb{Z} \cap(N, 2 N]:\|f(u)\|<\delta\}
$$

Then
$|S| \lll k, s X^{1 /(2 k+1)} N^{(k-s) /(2 k+1)}$

$$
+\delta X^{1 /(6 k+3)} N^{\left(6 k^{2}+2 k-s-1\right) /(6 k+3)}
$$

More General Theorem (F. \& Trifonov): Let \boldsymbol{k} be an integer ≥ 2, and let
$s \in \mathbb{Q}-\{-(k-1),-(k-2), \ldots, k-2, k-1\}$.
Let $f(u)=X / u^{s}$. Suppose that

$$
\boldsymbol{N}^{s} \leq \boldsymbol{X} \quad \text { and } \quad \delta \leq c N^{-(k-1)}
$$

where $c>0$ is small. Set

$$
S=\{u \in \mathbb{Z} \cap(N, 2 N]:\|f(u)\|<\delta\}
$$

Then
$|S| \lll k, s X^{1 /(2 k+1)} N^{(k-s) /(2 k+1)}$

$$
+\delta X^{1 /(6 k+3)} N^{\left(6 k^{2}+2 k-s-1\right) /(6 k+3)}
$$

More General Theorem (F. \& Trifonov): Let \boldsymbol{k} be an integer ≥ 2, and let
$s \in \mathbb{Q}-\{-(k-1),-(k-2), \ldots, k-2, k-1\}$.
Let $f(u)=X / u^{s}$. Suppose that

$$
\boldsymbol{N}^{s} \leq \boldsymbol{X} \quad \text { and } \quad \delta \leq c N^{-(k-1)}
$$

where $c>0$ is small. Set

$$
S=\{u \in \mathbb{Z} \cap(N, 2 N]:\|f(u)\|<\delta\}
$$

Then
$|S| \lll k, s X^{1 /(2 k+1)} N^{(k-s) /(2 k+1)}$

$$
+\delta X^{1 /(6 k+3)} N^{\left(6 k^{2}+2 k-s-1\right) /(6 k+3)}
$$

k-free values of polynomials and binary forms:

k-free values of polynomials and binary forms:

The method for obtaining results about gaps between \boldsymbol{k} free numbers generalizes to \boldsymbol{k}-free values of polynomials.

k-free values of polynomials and binary forms:

The method for obtaining results about gaps between \boldsymbol{k} free numbers generalizes to \boldsymbol{k}-free values of polynomials. Suppose $f(\boldsymbol{x}) \in \mathbb{Z}[\boldsymbol{x}]$ is irreducible and $\operatorname{deg} \boldsymbol{f}=\boldsymbol{n}$.

k-free values of polynomials and binary forms:

The method for obtaining results about gaps between \boldsymbol{k} free numbers generalizes to \boldsymbol{k}-free values of polynomials. Suppose $f(x) \in \mathbb{Z}[\boldsymbol{x}]$ is irreducible and $\operatorname{deg} f=\boldsymbol{n}$. In what follows, we suppose further that f has no fixed $\boldsymbol{k}^{\text {th }}$ power divisors.

k-free values of polynomials and binary forms:

The method for obtaining results about gaps between \boldsymbol{k} free numbers generalizes to \boldsymbol{k}-free values of polynomials. Suppose $f(x) \in \mathbb{Z}[\boldsymbol{x}]$ is irreducible and $\operatorname{deg} f=\boldsymbol{n}$. In what follows, we suppose further that f has no fixed $\boldsymbol{k}^{\text {th }}$ power divisors.

Theorem (Nair): Let $\boldsymbol{k} \geq \boldsymbol{n}+1$. For \boldsymbol{x} sufficiently large, there is an integer \boldsymbol{m} such that $\boldsymbol{f}(\boldsymbol{m})$ is \boldsymbol{k}-free with

$$
x<m \leq x+c x^{\frac{n}{2 k-n+1}}
$$

Theorem (Nair): Let $\boldsymbol{k} \geq \boldsymbol{n}+1$. For \boldsymbol{x} sufficiently large, there is an integer \boldsymbol{m} such that $\boldsymbol{f}(\boldsymbol{m})$ is \boldsymbol{k}-free with

$$
x<m \leq x+c x^{\frac{n}{2 k-n+1}}
$$

Theorem (Nair): Let $\boldsymbol{k} \geq \boldsymbol{n}+1$. For \boldsymbol{x} sufficiently large, there is an integer \boldsymbol{m} such that $\boldsymbol{f}(\boldsymbol{m})$ is \boldsymbol{k}-free with

$$
x<m \leq x+c x^{\frac{n}{2 k-n+1}}
$$

Theorem: Let $\boldsymbol{k} \geq \boldsymbol{n}+1$. For \boldsymbol{x} sufficiently large, there is an integer \boldsymbol{m} such that $\boldsymbol{f}(\boldsymbol{m})$ is \boldsymbol{k}-free with

$$
x<m \leq x+c x^{\frac{n}{2 k-n+r}}
$$

where $r=$

Theorem (Nair): Let $\boldsymbol{k} \geq \boldsymbol{n}+1$. For \boldsymbol{x} sufficiently large, there is an integer \boldsymbol{m} such that $\boldsymbol{f}(\boldsymbol{m})$ is \boldsymbol{k}-free with

$$
x<m \leq x+c x^{\frac{n}{2 k-n+1}}
$$

Theorem: Let $\boldsymbol{k} \geq \boldsymbol{n}+1$. For \boldsymbol{x} sufficiently large, there is an integer \boldsymbol{m} such that $\boldsymbol{f}(\boldsymbol{m})$ is \boldsymbol{k}-free with

$$
x<m \leq x+c x^{\frac{n}{2 k-n+r}}
$$

where $r=\sqrt{2 n}-\frac{1}{2}$.

Basic Idea: One works in a number field where $f(x)$ has a linear factor. As in the case $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{x}$, one wants to show certain \boldsymbol{u} (in the ring of algebraic integers in the field) are not close by considering

$$
(u+a)^{k} P-u^{k} Q
$$

arising from Padé approximations. One uses that this expression is an integer and, hence, either 0 or ≥ 1.

Basic Idea: One works in a number field where $f(x)$ has a linear factor. As in the case $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{x}$, one wants to show certain \boldsymbol{u} (in the ring of algebraic integers in the field) are not close by considering

$$
(u+a)^{k} P-u^{k} Q
$$

arising from Padé approximations. One uses that this expression is an integer and, hence, either 0 or ≥ 1.

Difficulty: An "integer" in this context can be small without being 0 .

Basic Idea: One works in a number field where $f(x)$ has a linear factor. As in the case $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{x}$, one wants to show certain \boldsymbol{u} (in the ring of algebraic integers in the field) are not close by considering

$$
(u+a)^{k} P-u^{k} Q
$$

arising from Padé approximations. One uses that this expression is an integer and, hence, either 0 or ≥ 1.

Difficulty: An "integer" in this context can be small without being 0 .

Solution: If it's small, work with a conjugate instead.

Comment: In the case that $\boldsymbol{k} \leq \boldsymbol{n}$, one can try the same methods.

Comment: In the case that $\boldsymbol{k} \leq \boldsymbol{n}$, one can try the same methods. The gap size becomes "bad" in the sense that one obtains $\boldsymbol{m} \in(\boldsymbol{x}, \boldsymbol{x}+\boldsymbol{h}]$ where $\boldsymbol{f}(\boldsymbol{m})$ is \boldsymbol{k}-free but \boldsymbol{h} increases as \boldsymbol{k} decreases.

Comment: In the case that $\boldsymbol{k} \leq \boldsymbol{n}$, one can try the same methods. The gap size becomes "bad" in the sense that one obtains $\boldsymbol{m} \in(\boldsymbol{x}, \boldsymbol{x}+\boldsymbol{h}]$ where $\boldsymbol{f}(\boldsymbol{m})$ is \boldsymbol{k}-free but \boldsymbol{h} increases as \boldsymbol{k} decreases. There is a point where \boldsymbol{h} exceeds \boldsymbol{x} itself and the method fails (the size of $\boldsymbol{f}(\boldsymbol{m})$ is no longer of order x^{n}).

Comment: In the case that $\boldsymbol{k} \leq \boldsymbol{n}$, one can try the same methods. The gap size becomes "bad" in the sense that one obtains $\boldsymbol{m} \in(\boldsymbol{x}, \boldsymbol{x}+\boldsymbol{h}]$ where $\boldsymbol{f}(\boldsymbol{m})$ is \boldsymbol{k}-free but \boldsymbol{h} increases as \boldsymbol{k} decreases. There is a point where \boldsymbol{h} exceeds \boldsymbol{x} itself and the method fails (the size of $\boldsymbol{f}(\boldsymbol{m})$ is no longer of order $\boldsymbol{x}^{\boldsymbol{n}}$). Nair took the limit of what can be done with $\boldsymbol{k} \leq \boldsymbol{n}$ and obtained

Comment: In the case that $\boldsymbol{k} \leq \boldsymbol{n}$, one can try the same methods. The gap size becomes "bad" in the sense that one obtains $\boldsymbol{m} \in(\boldsymbol{x}, \boldsymbol{x}+\boldsymbol{h}]$ where $\boldsymbol{f}(\boldsymbol{m})$ is \boldsymbol{k}-free but \boldsymbol{h} increases as \boldsymbol{k} decreases. There is a point where \boldsymbol{h} exceeds \boldsymbol{x} itself and the method fails (the size of $\boldsymbol{f}(\boldsymbol{m})$ is no longer of order $\boldsymbol{x}^{\boldsymbol{n}}$). Nair took the limit of what can be done with $\boldsymbol{k} \leq \boldsymbol{n}$ and obtained

Theorem (Nair): If $\boldsymbol{f}(\boldsymbol{x})$ is an irreducible polynomial of degree n and $k \geq(2 \sqrt{2}-1) n / 2$, then there are infinitely many integers \boldsymbol{m} for which $\boldsymbol{f}(\boldsymbol{m})$ is \boldsymbol{k}-free.

Theorem (Nair): If $\boldsymbol{f}(\boldsymbol{x})$ is an irreducible polynomial of degree n and $k \geq(2 \sqrt{2}-1) n / 2$, then there are infinitely many integers \boldsymbol{m} for which $\boldsymbol{f}(\boldsymbol{m})$ is \boldsymbol{k}-free.

Theorem (Nair): If $\boldsymbol{f}(\boldsymbol{x})$ is an irreducible polynomial of degree n and $k \geq(2 \sqrt{2}-1) n / 2$, then there are infinitely many integers \boldsymbol{m} for which $\boldsymbol{f}(\boldsymbol{m})$ is \boldsymbol{k}-free.

Theorem: If $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})$ is an irreducible binary form of degree n and $k \geq(2 \sqrt{2}-1) n / 4$, then there are infinitely many integer pairs (a, b) for which $f(a, b)$ is \boldsymbol{k}-free.

The $a b c$-conjecture:

The $a b c$-conjecture:

Notation: $Q(n)=\prod p$ $p \mid n$

The $a b c$-conjecture:

Notation: $Q(n)=\prod_{p \mid n} p$
The $\boldsymbol{a} \boldsymbol{b} \boldsymbol{c}$-Conjecture: For \boldsymbol{a} and \boldsymbol{b} in \mathbb{Z}^{+}, define

$$
L_{a, b}=\frac{\log (a+b)}{\log Q(a b(a+b))}
$$

and

$$
\mathcal{L}=\left\{L_{a, b}: a \geq 1, b \geq 1, \operatorname{gcd}(a, b)=1\right\}
$$

The set of limit points of \mathcal{L} is the interval $[1 / 3,1]$.

$$
\begin{gathered}
L_{a, b}=\frac{\log (a+b)}{\log Q(a b(a+b))} \\
\mathcal{L}=\left\{L_{a, b}: a \geq 1, b \geq 1, \operatorname{gcd}(a, b)=1\right\}
\end{gathered}
$$

$$
\begin{gathered}
L_{a, b}=\frac{\log (a+b)}{\log Q(a b(a+b))} \\
\mathcal{L}=\left\{L_{a, b}: a \geq 1, b \geq 1, \operatorname{gcd}(a, b)=1\right\}
\end{gathered}
$$

Theorem: The set of limit points of \mathcal{L} includes the interval $[1 / 3,36 / 37]$.

$$
\begin{gathered}
L_{a, b}=\frac{\log (a+b)}{\log Q(a b(a+b))} \\
\mathcal{L}=\left\{L_{a, b}: a \geq 1, b \geq 1, \operatorname{gcd}(a, b)=1\right\}
\end{gathered}
$$

Theorem: The set of limit points of \mathcal{L} includes the inter$\operatorname{val}[1 / 3,36 / 37]$.
(work of Browkin, Greaves, F., Nitaj, Schinzel)

Approach: Makes use of a preliminary result about squarefree values of binary forms.

Approach: Makes use of a preliminary result about squarefree values of binary forms. In particular, for

$$
\begin{aligned}
f(x, y)=x y & (x+y)(x-y)\left(x^{2}+y^{2}\right)\left(2 x^{2}+y^{2}\right)\left(x^{2}+2 y^{2}\right) \\
& \times\left(x^{4}-x^{2} y^{2}+y^{4}\right)\left(3 x^{4}+3 x^{2} y^{2}+y^{4}\right)\left(x^{4}+3 x^{2} y^{2}+3 y^{4}\right)
\end{aligned}
$$

the number $f(x, y) / 6$ takes on the right proportion of squarefree values for

$$
X<x \leq 2 X, \quad Y<y \leq 2 Y, \quad X=Y^{\alpha}
$$

where $\alpha \in(1,3)$.

Polynomial Identity:

Polynomial Identity:

$$
P_{3}(z)-(1-z)^{7} Q_{3}(z)=z^{7} E_{3}(z)
$$

where

$$
\begin{gathered}
P_{3}(z)=(2 z-1)\left(3 z^{2}-3 z+1\right) \\
Q_{3}(z)=-(z+1)\left(z^{2}+z+1\right)
\end{gathered}
$$

and

$$
E_{3}(z)=-(z-2)\left(z^{2}-3 z+3\right)
$$

Polynomial Identity:

$$
P_{3}(z)-(1-z)^{7} Q_{3}(z)=z^{7} E_{3}(z)
$$

Polynomial Identity:

$$
\begin{aligned}
& P_{3}(z)-(1-z)^{7} Q_{3}(z)=z^{7} E_{3}(z) \\
& z=\frac{x}{x+y} \Longrightarrow
\end{aligned}
$$

Polynomial Identity:

$$
\begin{gathered}
P_{3}(z)-(1-z)^{7} Q_{3}(z)=z^{7} E_{3}(z) \\
z=\frac{x}{x+y} \Longrightarrow\left\{\begin{array}{c}
(x+y)^{7}(x-y)\left(x^{2}-x y+y^{2}\right) \\
+y^{7}(2 x+y)\left(3 x^{2}+3 x y+y^{2}\right) \\
=x^{7}(x+2 y)\left(x^{2}+3 x y+3 y^{2}\right)
\end{array}\right.
\end{gathered}
$$

$$
\begin{aligned}
& (x+y)^{7}(x-y)\left(x^{2}-x y+y^{2}\right) \\
& \quad+y^{7}(2 x+y)\left(3 x^{2}+3 x y+y^{2}\right) \\
& =x^{7}(x+2 y)\left(x^{2}+3 x y+3 y^{2}\right)
\end{aligned}
$$

$$
\begin{gathered}
(x+y)^{7}(x-y)\left(x^{2}-x y+y^{2}\right) \\
\quad+y^{7}(2 x+y)\left(3 x^{2}+3 x y+y^{2}\right) \\
=x^{7}(x+2 y)\left(x^{2}+3 x y+3 y^{2}\right) \\
\left(x^{2}+y^{2}\right)^{7}\left(x^{2}-y^{2}\right)\left(x^{4}-x^{2} y^{2}+y^{4}\right) \\
\quad+y^{14}\left(2 x^{2}+y^{2}\right)\left(3 x^{4}+3 x^{2} y^{2}+y^{4}\right) \\
= \\
x^{14}\left(x^{2}+2 y^{2}\right)\left(x^{4}+3 x^{2} y^{2}+3 y^{4}\right)
\end{gathered}
$$

$$
\begin{gathered}
(x+y)^{7}(x-y)\left(x^{2}-x y+y^{2}\right) \\
+y^{7}(2 x+y)\left(3 x^{2}+3 x y+y^{2}\right) \\
=x^{7}(x+2 y)\left(x^{2}+3 x y+3 y^{2}\right) \\
\left(x^{2}+y^{2}\right)^{7}\left(x^{2}-y^{2}\right)\left(x^{4}-x^{2} y^{2}+y^{4}\right) \\
+y^{14}\left(2 x^{2}+y^{2}\right)\left(3 x^{4}+3 x^{2} y^{2}+y^{4}\right) \\
=x^{14}\left(x^{2}+2 y^{2}\right)\left(x^{4}+3 x^{2} y^{2}+3 y^{4}\right) \\
f(x, y)=x y(x+y)(x-y)\left(x^{2}+y^{2}\right)\left(2 x^{2}+y^{2}\right)\left(x^{2}+2 y^{2}\right) \\
\quad \times\left(x^{4}-x^{2} y^{2}+y^{4}\right)\left(3 x^{4}+3 x^{2} y^{2}+y^{4}\right)\left(x^{4}+3 x^{2} y^{2}+3 y^{4}\right)
\end{gathered}
$$

$$
\begin{gathered}
(x+y)^{7}(x-y)\left(x^{2}-x y+y^{2}\right) \\
+y^{7}(2 x+y)\left(3 x^{2}+3 x y+y^{2}\right) \\
=x^{7}(x+2 y)\left(x^{2}+3 x y+3 y^{2}\right) \\
\left(x^{2}+y^{2}\right)^{7}\left(x^{2}-y^{2}\right)\left(x^{4}-x^{2} y^{2}+y^{4}\right) \\
+y^{14}\left(2 x^{2}+y^{2}\right)\left(3 x^{4}+3 x^{2} y^{2}+y^{4}\right) \\
= \\
x^{14}\left(x^{2}+2 y^{2}\right)\left(x^{4}+3 x^{2} y^{2}+3 y^{4}\right) \\
f(x, y)= \\
x y(x+y)(x-y)\left(x^{2}+y^{2}\right)\left(2 x^{2}+y^{2}\right)\left(x^{2}+2 y^{2}\right) \\
\\
\times\left(x^{4}-x^{2} y^{2}+y^{4}\right)\left(3 x^{4}+3 x^{2} y^{2}+y^{4}\right)\left(x^{4}+3 x^{2} y^{2}+3 y^{4}\right)
\end{gathered}
$$

$$
\begin{gathered}
(x+y)^{7}(x-y)\left(x^{2}-x y+y^{2}\right) \\
+y^{7}(2 x+y)\left(3 x^{2}+3 x y+y^{2}\right) \\
=x^{7}(x+2 y)\left(x^{2}+3 x y+3 y^{2}\right) \\
\left(x^{2}+y^{2}\right)^{7}\left(x^{2}-y^{2}\right)\left(x^{4}-x^{2} y^{2}+y^{4}\right) \\
+y^{14}\left(2 x^{2}+y^{2}\right)\left(3 x^{4}+3 x^{2} y^{2}+y^{4}\right) \\
= \\
x^{14}\left(x^{2}+2 y^{2}\right)\left(x^{4}+3 x^{2} y^{2}+3 y^{4}\right) \\
f(x, y)=x y(x+y)(x-y)\left(x^{2}+y^{2}\right)\left(2 x^{2}+y^{2}\right)\left(x^{2}+2 y^{2}\right) \\
\\
\times\left(x^{4}-x^{2} y^{2}+y^{4}\right)\left(3 x^{4}+3 x^{2} y^{2}+y^{4}\right)\left(x^{4}+3 x^{2} y^{2}+3 y^{4}\right)
\end{gathered}
$$

$$
\begin{gathered}
a=\left(x^{2}+y^{2}\right)^{7}\left(x^{2}-y^{2}\right)\left(x^{4}-x^{2} y^{2}+y^{4}\right) \\
b=y^{14}\left(2 x^{2}+y^{2}\right)\left(3 x^{4}+3 x^{2} y^{2}+y^{4}\right) \\
X=Y^{\alpha}, \quad 1<\alpha<3 \\
a+b=x^{14}\left(x^{2}+2 y^{2}\right)\left(x^{4}+3 x^{2} y^{2}+3 y^{4}\right)
\end{gathered}
$$

$$
\begin{gathered}
a=\left(x^{2}+y^{2}\right)^{7}\left(x^{2}-y^{2}\right)\left(x^{4}-x^{2} y^{2}+y^{4}\right) \\
b=y^{14}\left(2 x^{2}+y^{2}\right)\left(3 x^{4}+3 x^{2} y^{2}+y^{4}\right) \\
X=Y^{\alpha}, \quad 1<\alpha<3 \\
a+b=x^{14}\left(x^{2}+2 y^{2}\right)\left(x^{4}+3 x^{2} y^{2}+3 y^{4}\right)
\end{gathered}
$$

$$
\begin{aligned}
f(x, y)=x y & (x+y)(x-y)\left(x^{2}+y^{2}\right)\left(2 x^{2}+y^{2}\right)\left(x^{2}+2 y^{2}\right) \\
& \times\left(x^{4}-x^{2} y^{2}+y^{4}\right)\left(3 x^{4}+3 x^{2} y^{2}+y^{4}\right)\left(x^{4}+3 x^{2} y^{2}+3 y^{4}\right)
\end{aligned}
$$

$$
\begin{gathered}
a=\left(x^{2}+y^{2}\right)^{7}\left(x^{2}-y^{2}\right)\left(x^{4}-x^{2} y^{2}+y^{4}\right) \\
b=y^{14}\left(2 x^{2}+y^{2}\right)\left(3 x^{4}+3 x^{2} y^{2}+y^{4}\right) \\
X=Y^{\alpha}, \quad 1<\alpha<3 \\
a+b=x^{14}\left(x^{2}+2 y^{2}\right)\left(x^{4}+3 x^{2} y^{2}+3 y^{4}\right) \\
\begin{array}{c}
f(x, y)=x y(x+y)(x-y)\left(x^{2}+y^{2}\right)\left(2 x^{2}+y^{2}\right)\left(x^{2}+2 y^{2}\right) \\
\times\left(x^{4}-x^{2} y^{2}+y^{4}\right)\left(3 x^{4}+3 x^{2} y^{2}+y^{4}\right)\left(x^{4}+3 x^{2} y^{2}+3 y^{4}\right)
\end{array} \\
L_{a, b}=\frac{\log (a+b)}{\log Q(a b(a+b))}
\end{gathered}
$$

$$
a=\left(x^{2}+y^{2}\right)^{7}\left(x^{2}-y^{2}\right)\left(x^{4}-x^{2} y^{2}+y^{4}\right)
$$

$$
b=y^{14}\left(2 x^{2}+y^{2}\right)\left(3 x^{4}+3 x^{2} y^{2}+y^{4}\right)
$$

$$
X=Y^{\alpha}, \quad 1<\alpha<3
$$

$$
a+b=x^{14}\left(x^{2}+2 y^{2}\right)\left(x^{4}+3 x^{2} y^{2}+3 y^{4}\right)
$$

$$
\begin{aligned}
f(x, y)=x y & (x+y)(x-y)\left(x^{2}+y^{2}\right)\left(2 x^{2}+y^{2}\right)\left(x^{2}+2 y^{2}\right) \\
& \times\left(x^{4}-x^{2} y^{2}+y^{4}\right)\left(3 x^{4}+3 x^{2} y^{2}+y^{4}\right)\left(x^{4}+3 x^{2} y^{2}+3 y^{4}\right)
\end{aligned}
$$

$$
L_{a, b}=\frac{\log (a+b)}{\log Q(a b(a+b))}
$$

$$
\begin{gathered}
a=\left(x^{2}+y^{2}\right)^{7}\left(x^{2}-y^{2}\right)\left(x^{4}-x^{2} y^{2}+y^{4}\right) \\
b=y^{14}\left(2 x^{2}+y^{2}\right)\left(3 x^{4}+3 x^{2} y^{2}+y^{4}\right) \\
X=Y^{\alpha}, \quad 1<\alpha<3 \\
a+b=x^{14}\left(x^{2}+2 y^{2}\right)\left(x^{4}+3 x^{2} y^{2}+3 y^{4}\right) \\
\begin{array}{c}
f(x, y)=x y(x+y)(x-y)\left(x^{2}+y^{2}\right)\left(2 x^{2}+y^{2}\right)\left(x^{2}+2 y^{2}\right) \\
\times\left(x^{4}-x^{2} y^{2}+y^{4}\right)\left(3 x^{4}+3 x^{2} y^{2}+y^{4}\right)\left(x^{4}+3 x^{2} y^{2}+3 y^{4}\right)
\end{array} \\
L_{a, b}=\frac{\log (a+b)}{\log Q(a b(a+b))} \approx \frac{20 \alpha \log Y}{}
\end{gathered}
$$

$$
a=\left(x^{2}+y^{2}\right)^{7}\left(x^{2}-y^{2}\right)\left(x^{4}-x^{2} y^{2}+y^{4}\right)
$$

$$
b=y^{14}\left(2 x^{2}+y^{2}\right)\left(3 x^{4}+3 x^{2} y^{2}+y^{4}\right)
$$

$$
X=Y^{\alpha}, \quad 1<\alpha<3
$$

$$
a+b=x^{14}\left(x^{2}+2 y^{2}\right)\left(x^{4}+3 x^{2} y^{2}+3 y^{4}\right)
$$

$$
\begin{aligned}
& f(x, y)=x y(x+y)(x-y)\left(x^{2}+y^{2}\right)\left(2 x^{2}+y^{2}\right)\left(x^{2}+2 y^{2}\right) \\
& \quad \times\left(x^{4}-x^{2} y^{2}+y^{4}\right)\left(3 x^{4}+3 x^{2} y^{2}+y^{4}\right)\left(x^{4}+3 x^{2} y^{2}+3 y^{4}\right)
\end{aligned}
$$

$$
L_{a, b}=\frac{\log (a+b)}{\log Q(a b(a+b))} \approx \underline{20 \alpha \log Y}
$$

$$
\begin{gathered}
a=\left(x^{2}+y^{2}\right)^{7}\left(x^{2}-y^{2}\right)\left(x^{4}-x^{2} y^{2}+y^{4}\right) \\
b=y^{14}\left(2 x^{2}+y^{2}\right)\left(3 x^{4}+3 x^{2} y^{2}+y^{4}\right) \\
X=Y^{\alpha}, \quad 1<\alpha<3 \\
a+b=x^{14}\left(x^{2}+2 y^{2}\right)\left(x^{4}+3 x^{2} y^{2}+3 y^{4}\right) \\
\begin{array}{c}
f(x, y)=x y(x+y)(x-y)\left(x^{2}+y^{2}\right)\left(2 x^{2}+y^{2}\right)\left(x^{2}+2 y^{2}\right) \\
\times\left(x^{4}-x^{2} y^{2}+y^{4}\right)\left(3 x^{4}+3 x^{2} y^{2}+y^{4}\right)\left(x^{4}+3 x^{2} y^{2}+3 y^{4}\right) \\
L_{a, b}= \\
\log Q(a b(a+b))
\end{array} \frac{\log (a+b)}{(21 \alpha+1) \log Y}
\end{gathered}
$$

$$
\begin{gathered}
a=\left(x^{2}+y^{2}\right)^{7}\left(x^{2}-y^{2}\right)\left(x^{4}-x^{2} y^{2}+y^{4}\right) \\
b=y^{14}\left(2 x^{2}+y^{2}\right)\left(3 x^{4}+3 x^{2} y^{2}+y^{4}\right) \\
X=Y^{\alpha}, \quad 1<\alpha<3 \\
a+b=x^{14}\left(x^{2}+2 y^{2}\right)\left(x^{4}+3 x^{2} y^{2}+3 y^{4}\right) \\
\begin{array}{c}
f(x, y)=x y(x+y)(x-y)\left(x^{2}+y^{2}\right)\left(2 x^{2}+y^{2}\right)\left(x^{2}+2 y^{2}\right) \\
\times\left(x^{4}-x^{2} y^{2}+y^{4}\right)\left(3 x^{4}+3 x^{2} y^{2}+y^{4}\right)\left(x^{4}+3 x^{2} y^{2}+3 y^{4}\right) \\
L_{a, b}= \\
\log Q(a b(a+b))
\end{array} \frac{\log (a+b)}{21 \alpha+1}
\end{gathered}
$$

$$
L_{a, b}=\frac{\log (a+b)}{\log Q(a b(a+b))} \approx \frac{20 \alpha}{21 \alpha+1}
$$

$$
\begin{aligned}
& L_{a, b}=\frac{\log (a+b)}{\log Q(a b(a+b))} \approx \frac{20 \alpha}{21 \alpha+1} \\
& \\
& 1<\alpha<3 \Longrightarrow
\end{aligned}
$$

$$
\begin{gathered}
L_{a, b}=\frac{\log (a+b)}{\log Q(a b(a+b))} \approx \frac{20 \alpha}{21 \alpha+1} \\
1<\alpha<3 \Longrightarrow ? ?<L_{a, b}<? ?
\end{gathered}
$$

$$
\begin{gathered}
L_{a, b}=\frac{\log (a+b)}{\log Q(a b(a+b))} \approx \frac{20 \alpha}{21 \alpha+1} \\
1<\alpha<3 \Longrightarrow \frac{10}{11}<L_{a, b}<\frac{15}{16}
\end{gathered}
$$

$$
\begin{gathered}
L_{a, b}=\frac{\log (a+b)}{\log Q(a b(a+b))} \approx \frac{20 \alpha}{21 \alpha+1} \\
1<\alpha<3 \Longrightarrow \frac{10}{11}<L_{a, b}<\frac{15}{16}
\end{gathered}
$$

Comment: This shows $[10 / 11,15 / 16]$ is contained in the set of limit points of $\boldsymbol{L}_{a, b}$. A similar argument is given for other subintervals of $[1 / 3,36 / 37]$ (not all involving Padé approximations).

