APPLICATIONS OF PADÉ APPROXIMATIONS OF $(1-z)^k$ to Number Theory

by Michael Filaseta University of South Carolina

• irrationality measures

- irrationality measures
- diophantine equations

- irrationality measures
- diophantine equations
- Waring's problem

- irrationality measures
- diophantine equations
- Waring's problem
- the factorization of n(n+1)

- irrationality measures
- diophantine equations
- Waring's problem
- the factorization of n(n+1)
- Galois groups associated with classical polynomials

- irrationality measures
- diophantine equations
- Waring's problem
- the factorization of n(n+1)
- Galois groups associated with classical polynomials
- the Ramanujan-Nagell equation

- irrationality measures
- diophantine equations
- Waring's problem
- the factorization of n(n+1)
- Galois groups associated with classical polynomials
- the Ramanujan-Nagell equation
- *k*-free numbers in short intervals

- irrationality measures
- diophantine equations
- Waring's problem
- the factorization of n(n+1)
- Galois groups associated with classical polynomials
- the Ramanujan-Nagell equation
- *k*-free numbers in short intervals
- *k*-free values of polynomials and binary forms

- irrationality measures
- diophantine equations
- Waring's problem
- the factorization of n(n+1)
- Galois groups associated with classical polynomials
- the Ramanujan-Nagell equation
- *k*-free numbers in short intervals
- k-free values of polynomials and binary forms
- the *abc*-conjecture

Answer: Rational functions that give good approximations to $(1-z)^k$ near the origin.

Answer: Rational functions that give good approximations to $(1-z)^k$ near the origin.

What are the Padé approximations of e^{z} ?

Answer: Rational functions that give good approximations to e^z near the origin.

Answer: Rational functions that give good approximations to $(1-z)^k$ near the origin.

Answer: Rational functions that give good approximations to $(1-z)^k$ near the origin.

Answer: Rational functions that give good approximations to $(1-z)^k$ near the origin.

Answer: Rational functions that give good approximations to $(1-z)^k$ near the origin.

$$P-(1-z)^k Q = z^m E$$

Answer: Rational functions that give good approximations to $(1-z)^k$ near the origin.

$$P_r - (1-z)^k Q_r = z^m E_r$$

Answer: Rational functions that give good approximations to $(1-z)^k$ near the origin.

$$P_r - (1-z)^k Q_r = z^{2r+1} E_r$$

Answer: Rational functions that give good approximations to $(1-z)^k$ near the origin.

$$P_r - (1-z)^k Q_r = z^{2r+1} E_r$$

Answer: Rational functions that give good approximations to $(1-z)^k$ near the origin.

$$P_r - (1-z)^k Q_r = z^{2r+1} E_r$$

Answer: Rational functions that give good approximations to $(1-z)^k$ near the origin.

Important Equation:

$$P_r - (1-z)^k Q_r = z^{2r+1} E_r$$

 $\deg P_r = \deg Q_r = r < k, \quad \deg E_r = k - r - 1$

Some Properties of the Polynomials:

(i)
$$P_r(z), (-z)^k Q_r(z)$$
, and $z^{2r+1} E_r(z)$ satisfy
 $z(z-1)y'' + (2r(1-z)-(k-1)z)y' + r(k+r)y = 0.$

(ii)
$$Q_r(z) = \sum_{j=0}^r {\binom{2r-j}{r} \binom{k-r+j-1}{j} z^j}$$

(iii)
$$Q_r(x) = \frac{(k+r)!}{(k-r-1)! r! r!} \int_0^1 (1-t)^r t^{k-r-1} (1-t+xt)^r dt$$

(iv) $P_r(x)Q_{r+1}(x) - Q_r(x)P_{r+1}(x) = cx^{2r+1}$

 $P_r - (1-z)^k Q_r = z^{2r+1} E_r$

 $P_r - (1-z)^k Q_r = z^{2r+1} E_r$

WARNING: In the applications you are about to see, this identity is used to get a result of the type wanted. Typically, a closer analysis of these polynomials or even a variant of the polynomials is needed to obtain the currently best known results in these applications.

Theorem (Liouville): Fix $\alpha \in \mathbb{R} - \mathbb{Q}$ with α algebraic and of degree n. Then there is a constant $C = C(\alpha) > 0$ such that

$$\left| lpha - rac{a}{b}
ight| > rac{C}{b^n}$$

where a and b with b > 0 are arbitrary integers.

Theorem (Liouville): Fix $\alpha \in \mathbb{R} - \mathbb{Q}$ with α algebraic and of degree n. Then there is a constant $C = C(\alpha) > 0$ such that

$$\left| lpha - rac{a}{b}
ight| > rac{C}{b^n}$$

where a and b with b > 0 are arbitrary integers.

Theorem (Roth): Fix $\varepsilon > 0$ and $\alpha \in \mathbb{R} - \mathbb{Q}$ with α algebraic. Then there is a constant $C = C(\alpha, \varepsilon) > 0$ such that

$$\left| lpha - rac{a}{b}
ight| > rac{C}{b^{2+arepsilon}}$$

where a and b with b > 0 are arbitrary integers.

Theorem (Roth): Fix $\varepsilon > 0$ and $\alpha \in \mathbb{R} - \mathbb{Q}$ with α algebraic. Then there is a constant $C = C(\alpha, \varepsilon) > 0$ such that

$$\left| lpha - rac{a}{b}
ight| > rac{C}{b^{2 + arepsilon}}$$

where a and b with b > 0 are arbitrary integers.

Comment: Liouville's result is effective; Roth's is not.

Theorem (Baker): For a and b integers with b > 0,

$$\left|\sqrt[3]{2}-rac{a}{b}
ight|>rac{C}{b^{2.955}}$$

where $C = 10^{-6}$.

Theorem (Baker): For a and b integers with b > 0, $\left|\sqrt[3]{2} - \frac{a}{b}\right| > \frac{1}{10^6 b^{2.955}}$.

Theorem (Chudnovsky): For a and b integers with b > 0,

$$\left|\sqrt[3]{2}-\frac{a}{b}\right| > \frac{1}{c \cdot b^{2.43}}.$$

Theorem (**Bennett**): For a and b integers with b > 0,

$$\left|\sqrt[3]{2}-\frac{a}{b}\right| > \frac{1}{c \cdot b^{2.47}}.$$

Irrationality measures:

Theorem (**Bennett**): For a and b integers with b > 0,

$$\left|\sqrt[3]{2} - \frac{a}{b}\right| > \frac{1}{4 \cdot b^{2.47}}.$$

Irrationality measures:

Theorem (**Bennett**): For a and b integers with b > 0,

$$\left|\sqrt[3]{2} - \frac{a}{b}\right| > \frac{1}{4 \cdot b^{2.47}}.$$

Comment: Similar explicit estimates have also been made for certain other cube roots.

$$P_r - (1-z)^k Q_r = z^{2r+1}E_r$$

$$P_r - (1-z)^{1/3}Q_r = z^{2r+1}E_r$$

$$P_r - (\begin{array}{cc} 1-z \end{array})^{1/3} Q_r = z^{2r+1} E_r \ \uparrow \ 3/128$$

$$P_r - (125/128)^{1/3}Q_r = z^{2r+1}E_r$$

$$P_r - (125/128)^{1/3}Q_r = z^{2r+1}E_r$$

Rearrange and Normalize to Integers

$$P_r - (125/128)^{1/3}Q_r = z^{2r+1}E_r$$

Rearrange and Normalize to Integers

 $\sqrt[3]{2} b_r - a_r = ext{small}$

$$P_r - (125/128)^{1/3}Q_r = z^{2r+1}E_r$$

Rearrange and Normalize to Integers

 $\sqrt[3]{2} b_r - a_r = \mathrm{small}_r$

$$P_r - (125/128)^{1/3} Q_r = z^{2r+1} E_r$$

Rearrange and Normalize to Integers

$$\sqrt[3]{2} b_r - a_r = \mathrm{small}_r$$

$$\left|\sqrt[3]{2} - \frac{1}{b_r}\right| = \operatorname{small}_r$$

$$P_r - (125/128)^{1/3} Q_r = z^{2r+1} E_r$$

Rearrange and Normalize to Integers

$$\sqrt[3]{2} b_r - a_r = ext{small}_r$$

$$\left|\sqrt[3]{2}-rac{1}{b_r}
ight|= ext{small}_r$$

$$P_r - (125/128)^{1/3} Q_r = z^{2r+1} E_r$$

Rearrange and Normalize to Integers

$$\sqrt[3]{2} b_r - a_r = \mathrm{small}_r$$

$$\left|\sqrt[3]{2}-rac{a_r}{b_r}
ight|= ext{small}_r$$

Wait!!

$$P_r - (125/128)^{1/3} Q_r = z^{2r+1} E_r$$

Rearrange and Normalize to Integers

$$\sqrt[3]{2} b_r - a_r = \mathrm{small}_r$$

$$\left|\sqrt[3]{2}-rac{a_r}{b_r}
ight|= ext{small}_r$$

Wait!! I thought we wanted that LARGE!!

$$\left|\sqrt[3]{2}-rac{a_r}{b_r}
ight|= ext{small}_r$$

$$\left| \sqrt[3]{2} - \frac{a_r}{b_r} \right| = \operatorname{small}_r$$

What's small_r?

$$\left|\sqrt[3]{2} - \frac{a_r}{b_r}\right| = \mathrm{small}_r$$

What's $small_r$? Let **b** be a positive integer.

$$\left|\sqrt[3]{2} - \frac{a_r}{b_r}\right| = \operatorname{small}_r$$

small
$$r < rac{1}{2b b_r}$$
 and $b_r < cb^{1.47}$.

$$\left| \sqrt[3]{2} - \frac{a_r}{b_r} \right| = \operatorname{small}_r$$

What's small_r? Let b be a positive integer. By choosing r right, one can obtain

small
$$r < rac{1}{2b \, b_r}$$
 and $b_r < cb^{1.47}$.

 $\left|\sqrt[3]{2}-rac{a}{b}
ight|\geq$

$$\left| \sqrt[3]{2} - \frac{a_r}{b_r} \right| = \operatorname{small}_r$$

$$\operatorname{small}_{r} < \frac{1}{2b \, b_{r}} \quad \text{and} \quad b_{r} < cb^{1.47}.$$

$$\sqrt[3]{2} - \frac{a}{b} \ge \left| \frac{a_{r}}{b_{r}} - \frac{a}{b} \right| - \left| \sqrt[3]{2} - \frac{a_{r}}{b_{r}} \right| >$$

$$\left|\sqrt[3]{2} - \frac{a_r}{b_r}\right| = \operatorname{small}_r$$

$$\operatorname{small}_{r} < \frac{1}{2b \, b_{r}} \quad \text{and} \quad b_{r} < cb^{1.47}.$$

$$\sqrt[3]{2} - \frac{a}{b} \ge \left| \frac{a_{r}}{b_{r}} - \frac{a}{b} \right| - \left| \sqrt[3]{2} - \frac{a_{r}}{b_{r}} \right| >$$

$$\left|\sqrt[3]{2} - \frac{a_r}{b_r}\right| = \operatorname{small}_r$$

$$\operatorname{small}_{r} < \frac{1}{2b \, b_{r}} \quad \text{and} \quad b_{r} < cb^{1.47}.$$

$$\sqrt[3]{2} - \frac{a}{b} \Big| \ge \Big| \frac{a_{r}}{b_{r}} - \frac{a}{b} \Big| - \Big| \sqrt[3]{2} - \frac{a_{r}}{b_{r}} \Big| > \frac{1}{b \, b_{r}}$$

$$\left| \sqrt[3]{2} - \frac{a_r}{b_r} \right| = \operatorname{small}_r$$

$$\operatorname{small}_{r} < \frac{1}{2b \, b_{r}} \quad \text{and} \quad b_{r} < cb^{1.47}.$$

$$\sqrt[3]{2} - \frac{a}{b} \Big| \ge \Big| \frac{a_{r}}{b_{r}} - \frac{a}{b} \Big| - \Big| \sqrt[3]{2} - \frac{a_{r}}{b_{r}} \Big| > \frac{1}{b \, b_{r}}$$

$$\left| \sqrt[3]{2} - \frac{a_r}{b_r} \right| = \operatorname{small}_r$$

small_r <
$$\frac{1}{2b \, b_r}$$
 and $b_r < cb^{1.47}$.
 $\sqrt[3]{2} - \frac{a}{b} \Big| \ge \Big| \frac{a_r}{b_r} - \frac{a}{b} \Big| - \Big| \sqrt[3]{2} - \frac{a_r}{b_r} \Big| > \frac{1}{b \, b_r}$

$$\left|\sqrt[3]{2} - \frac{a_r}{b_r}\right| = \mathrm{small}_r$$

$$\operatorname{small}_{r} < \frac{1}{2b \, b_{r}} \quad \text{and} \quad b_{r} < cb^{1.47}.$$

$$\sqrt[3]{2} - \frac{a}{b} \ge \left| \frac{a_{r}}{b_{r}} - \frac{a}{b} \right| - \left| \sqrt[3]{2} - \frac{a_{r}}{b_{r}} \right| > \frac{1}{b \, b_{r}}$$

$$\left|\sqrt[3]{2} - \frac{a_r}{b_r}\right| = \mathrm{small}_r$$

$$\operatorname{small}_{r} < \frac{1}{2b \, b_{r}} \quad \text{and} \quad b_{r} < cb^{1.47}.$$

$$\sqrt[3]{2} - \frac{a}{b} \ge \left| \frac{a_{r}}{b_{r}} - \frac{a}{b} \right| - \left| \sqrt[3]{2} - \frac{a_{r}}{b_{r}} \right| > \frac{1}{b \, b_{r}} - \frac{1}{b \, b_{r}}$$

$$\left|\sqrt[3]{2} - \frac{a_r}{b_r}\right| = \operatorname{small}_r$$

$$\operatorname{small}_{r} < \frac{1}{2b \, b_{r}} \quad \text{and} \quad b_{r} < cb^{1.47}.$$

$$\sqrt[3]{2} - \frac{a}{b} \Big| \ge \Big| \frac{a_{r}}{b_{r}} - \frac{a}{b} \Big| - \Big| \sqrt[3]{2} - \frac{a_{r}}{b_{r}} \Big| > \frac{1}{b \, b_{r}} - \frac{1}{2b \, b_{r}}$$

$$\left| \sqrt[3]{2} - \frac{a_r}{b_r} \right| = \operatorname{small}_r$$

$$\operatorname{small}_{r} < \frac{1}{2b \, b_{r}} \quad \text{and} \quad b_{r} < cb^{1.47}.$$

$$\sqrt[3]{2} - \frac{a}{b} \ge \left| \frac{a_{r}}{b_{r}} - \frac{a}{b} \right| - \left| \sqrt[3]{2} - \frac{a_{r}}{b_{r}} \right| > \frac{1}{2b \, b_{r}}$$

$$\left| \sqrt[3]{2} - \frac{a_r}{b_r} \right| = \operatorname{small}_r$$

$$\operatorname{small}_{r} < \frac{1}{2b \, b_{r}} \quad \text{and} \quad b_{r} < cb^{1.47}.$$

$$\sqrt[3]{2} - \frac{a}{b} \ge \left| \frac{a_{r}}{b_{r}} - \frac{a}{b} \right| - \left| \sqrt[3]{2} - \frac{a_{r}}{b_{r}} \right| > \frac{1}{2b \, b_{r}}$$

$$\left|\sqrt[3]{2} - \frac{a_r}{b_r}\right| = \operatorname{small}_r$$

$$\operatorname{small}_{r} < \frac{1}{2b \, b_{r}} \quad \text{and} \quad b_{r} < cb^{1.47}.$$
$$\sqrt[3]{2} - \frac{a}{b} \Big| \ge \Big| \frac{a_{r}}{b_{r}} - \frac{a}{b} \Big| - \Big| \sqrt[3]{2} - \frac{a_{r}}{b_{r}} \Big| > \frac{1}{2cb^{2.47}}$$

$$\left|\sqrt[3]{2} - \frac{a_r}{b_r}\right| = \operatorname{small}_r$$

small_r <
$$\frac{1}{2b b_r}$$
 and $b_r < cb^{1.47}$.
 $\sqrt[3]{2} - \frac{a}{b} \ge \left| \frac{a_r}{b_r} - \frac{a}{b} \right| - \left| \sqrt[3]{2} - \frac{a_r}{b_r} \right| > \frac{1}{4 \cdot b^{2.47}}$

Theorem (Bennett): For a and b integers with b > 0,

$$\left|\sqrt[3]{2}-rac{a}{b}
ight|>rac{1}{4\cdot b^{2.47}}.$$

Theorem (Bennett): For a and b integers with $b \neq 0$,

$$\left|\sqrt[3]{2}-rac{a}{b}
ight|>rac{1}{4\cdot b^{2.47}}.$$

Theorem (Bennett): For a and b integers with $b \neq 0$,

$$\left|\sqrt[3]{2}-rac{a}{b}
ight|>rac{1}{4\cdot|b|^{2.47}}.$$

Theorem (Bennett): For a and b integers with $b \neq 0$,

$$\left|\sqrt[3]{2}-rac{a}{b}
ight|>rac{1}{4\cdot|b|^{2.5}}.$$

$$\left|\sqrt[3]{2} - rac{a}{b}
ight| > rac{1}{4 \cdot |b|^{2.5}}.$$

$$x^3 - 2y^3 = n$$

$$\left|\sqrt[3]{2}-rac{a}{b}
ight|>rac{1}{4\cdot|b|^{2.5}}.$$

$$x^3-2y^3=n, \quad y
eq 0$$

$$\left|\sqrt[3]{2}-rac{a}{b}
ight|>rac{1}{4\cdot|b|^{2.5}}.$$

$$x^3 - 2y^3 = n, \quad y
eq 0$$

 $\left|\sqrt[3]{2} - rac{x}{y}
ight| \left|\sqrt[3]{2}e^{2\pi \mathrm{i}/3} - rac{x}{y}
ight| \left|\sqrt[3]{2}e^{4\pi \mathrm{i}/3} - rac{x}{y}
ight| = rac{|n|}{|y|^3}$

$$\left|\sqrt[3]{2}-rac{a}{b}
ight|>rac{1}{4\cdot|b|^{2.5}}.$$

$$x^3 - 2y^3 = n, \quad y \neq 0$$

 $\left|\sqrt[3]{2} - \frac{x}{y}\right| \left|\sqrt[3]{2}e^{2\pi \mathrm{i}/3} - \frac{x}{y}\right| \left|\sqrt[3]{2}e^{4\pi \mathrm{i}/3} - \frac{x}{y}\right| = \frac{|n|}{|y|^3}$

$$\left|\sqrt[3]{2}-rac{a}{b}
ight|>rac{1}{4\cdot|b|^{2.5}}.$$

$$\begin{split} x^3 - 2y^3 &= n, \quad y \neq 0\\ \left|\sqrt[3]{2} - \frac{x}{y}\right| \left|\sqrt[3]{2}e^{2\pi \mathrm{i}/3} - \frac{x}{y}\right| \left|\sqrt[3]{2}e^{4\pi \mathrm{i}/3} - \frac{x}{y}\right| &= \frac{|n|}{|y|^3}\\ \left|\sqrt[3]{2} - \frac{x}{y}\right| < \frac{|n|}{|y|^3} \end{split}$$

$$\left|\sqrt[3]{2}-rac{a}{b}
ight|>rac{1}{4\cdot|b|^{2.5}}.$$

$$\begin{aligned} x^3 - 2y^3 &= n, \quad y \neq 0\\ \left|\sqrt[3]{2} - \frac{x}{y}\right| \left|\sqrt[3]{2}e^{2\pi \mathrm{i}/3} - \frac{x}{y}\right| \left|\sqrt[3]{2}e^{4\pi \mathrm{i}/3} - \frac{x}{y}\right| &= \frac{|n|}{|y|^3}\\ \frac{1}{4|y|^{2.5}} < \left|\sqrt[3]{2} - \frac{x}{y}\right| < \frac{|n|}{|y|^3}\end{aligned}$$

$$\begin{aligned} x^3 - 2y^3 &= n, \quad y \neq 0\\ \left|\sqrt[3]{2} - \frac{x}{y}\right| \left|\sqrt[3]{2}e^{2\pi i/3} - \frac{x}{y}\right| \left|\sqrt[3]{2}e^{4\pi i/3} - \frac{x}{y}\right| &= \frac{|n|}{|y|^3}\\ \frac{1}{4|y|^{2.5}} < \left|\sqrt[3]{2} - \frac{x}{y}\right| < \frac{|n|}{|y|^3}\end{aligned}$$

$$\begin{split} x^3 - 2y^3 &= n, \quad y \neq 0\\ \left|\sqrt[3]{2} - \frac{x}{y}\right| \left|\sqrt[3]{2}e^{2\pi i/3} - \frac{x}{y}\right| \left|\sqrt[3]{2}e^{4\pi i/3} - \frac{x}{y}\right| &= \frac{|n|}{|y|^3}\\ \frac{1}{4|y|^{2.5}} < \left|\sqrt[3]{2} - \frac{x}{y}\right| < \frac{|n|}{|y|^3}\\ |y|^{1/2} < 4|n| \end{split}$$

$$\begin{split} x^3 - 2y^3 &= n, \quad y \neq 0\\ \left|\sqrt[3]{2} - \frac{x}{y}\right| \left|\sqrt[3]{2}e^{2\pi i/3} - \frac{x}{y}\right| \left|\sqrt[3]{2}e^{4\pi i/3} - \frac{x}{y}\right| = \frac{|n|}{|y|^3}\\ &\frac{1}{4|y|^{2.5}} < \left|\sqrt[3]{2} - \frac{x}{y}\right| < \frac{|n|}{|y|^3}\\ &|y|^{1/2} < 4|n| \implies |y| < 16n^2 \end{split}$$

$$\begin{aligned} x^3 - 2y^3 &= n, \quad y \neq 0 \\ \left| \sqrt[3]{2} - \frac{x}{y} \right| \left| \sqrt[3]{2}e^{2\pi i/3} - \frac{x}{y} \right| \left| \sqrt[3]{2}e^{4\pi i/3} - \frac{x}{y} \right| &= \frac{|n|}{|y|^3} \\ \frac{1}{4 |y|^{2.5}} < \left| \sqrt[3]{2} - \frac{x}{y} \right| < \frac{|n|}{|y|^3} \\ |y|^{1/2} < 4|n| \implies |y| < 16n^2 \end{aligned}$$

Theorem: Let n be a non-zero integer. If x and y are integers satisfying $x^3 - 2y^3 = n$, then $|y| < 16n^2$.

Theorem (Bennett): If a, b, and n are integers with $ab \neq 0$ and $n \geq 3$, then the equation

 $|ax^n + by^n| = 1$

has at most one solution in positive integers x and y.

Waring's Problem: Let k be an integer ≥ 2 . Then there exists a number s such that every natural number is a sum of $s k^{\text{th}}$ powers.

Waring's Problem: Let k be an integer ≥ 2 . Then there exists a number s such that every natural number is a sum of $s k^{\text{th}}$ powers. If g(k) is the least such s, what is g(k)?

Waring's Problem: Let k be an integer ≥ 2 . Then there exists a number s such that every natural number is a sum of $s k^{\text{th}}$ powers. If g(k) is the least such s, what is g(k)?

Known: (i)
$$g(k) = 2^k + \left[\left(\frac{3}{2} \right)^k \right] - 2$$

Waring's Problem: Let k be an integer ≥ 2 . Then there exists a number s such that every natural number is a sum of $s k^{\text{th}}$ powers. If g(k) is the least such s, what is g(k)?

Known: (i)
$$g(k) = 2^k + \left[\left(\frac{3}{2} \right)^k \right] - 2$$

(ii) no one knows how to prove (i)

Waring's Problem: Let k be an integer ≥ 2 . Then there exists a number s such that every natural number is a sum of $s k^{\text{th}}$ powers. If g(k) is the least such s, what is g(k)?

Known: (i)
$$g(k) = 2^k + \left[\left(\frac{3}{2}\right)^k \right] - 2$$

(ii) no one knows how to prove (i)
(iii) (i) holds if $\left\| \left(\frac{3}{2}\right)^k \right\| > 0.75^k$

Waring's Problem: Let k be an integer ≥ 2 . Then there exists a number s such that every natural number is a sum of $s k^{\text{th}}$ powers. If g(k) is the least such s, what is g(k)?

Known: (i)
$$g(k) = 2^k + \left[\left(\frac{3}{2}\right)^k \right] - 2$$

(ii) no one knows how to prove (i)
(iii) (i) holds if $\left\| \left(\frac{3}{2}\right)^k \right\| > 0.75^k$
(iv) (iii) holds if and only if $k > 8$

Waring's Problem: Let k be an integer ≥ 2 . Then there exists a number s such that every natural number is a sum of $s k^{\text{th}}$ powers. If g(k) is the least such s, what is g(k)?

Known: (i) $g(k) = 2^k + \left[\left(\frac{3}{2}\right)^k \right] - 2$ (ii) no one knows how to prove (i) (iii) (i) holds if $\left\| \left(\frac{3}{2}\right)^k \right\| > 0.75^k$ (iv) (iii) holds if and only if k > 8(v) no one knows how to prove (iv)

Known: (i) $g(k) = 2^k + \left[\left(\frac{3}{2}\right)^k \right] - 2$ (ii) No one knows how to prove (i). (iii) (i) holds if $\left\| \left(\frac{3}{2}\right)^k \right\| > 0.75^k$

Known: (i) $g(k) = 2^k + \left[\left(\frac{3}{2}\right)^k \right] - 2$ (ii) No one knows how to prove (i). (iii) (i) holds if $\left\| \left(\frac{3}{2}\right)^k \right\| > 0.75^k$

Theorem (Beukers): If k > 4, then $\left\| \left(\frac{3}{2}\right)^k \right\| > 0.5358^k.$

Known: (i) $g(k) = 2^k + \left[\left(\frac{3}{2}\right)^k \right] - 2$ (ii) No one knows how to prove (i). (iii) (i) holds if $\left\| \left(\frac{3}{2}\right)^k \right\| > 0.75^k$

Theorem (Dubitskas): If k > 4, then $\left\| \left(\frac{3}{2}\right)^k \right\| > 0.5767^k.$

The factorization of n(n + 1):

The factorization of n(n + 1):

Well-Known: The largest prime factor of n(n+1) tends to infinity with n.

The factorization of n(n + 1):

Well-Known: The largest prime factor of n(n+1) tends to infinity with n.

Let p_1, p_2, \ldots, p_r be primes. There is an N such that if $n \geq N$ and

$$n(n+1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

$$n(n+1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

$$n(n+1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

for some integer m, then m > 1.

Lehmer: Gave some explicit estimates:

$$n(n+1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

for some integer m, then m > 1.

Lehmer: Gave some explicit estimates:

n(n+1) divisible only by primes $\leq 11 \Longrightarrow n \leq 11$

$$n(n+1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

for some integer m, then m > 1.

Lehmer: Gave some explicit estimates:

n(n+1) divisible only by primes $\leq 11 \Longrightarrow n \leq$... only by primes $\leq 41 \Longrightarrow n \leq$

$$n(n+1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

for some integer m, then m > 1.

Lehmer: Gave some explicit estimates:

n(n+1) divisible only by primes $\leq 11 \Longrightarrow n \leq 9800$... only by primes $\leq 41 \Longrightarrow n \leq 100$

$$n(n+1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

for some integer m, then m > 1.

Lehmer: Gave some explicit estimates:

n(n+1) divisible only by primes $\leq 11 \Longrightarrow n \leq 9800$... only by primes $\leq 41 \Longrightarrow n \leq 63927525375$

$$n(n+1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

for some integer m, then $m > n^{\theta}$.

$$n(n+1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

for some integer m, then $m > n^{\theta}$.

$$n(n+1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

for some integer m, then $m > n^{\theta}$.

abc-conjecture $\implies \theta =$

$$n(n+1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

for some integer m, then $m > n^{\theta}$.

abc-conjecture $\implies \theta = 1 - \varepsilon$

$$n(n+1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

for some integer m, then $m > n^{\theta}$.

abc-conjecture
$$\implies \theta = 1 - \varepsilon$$

unconditionally one can obtain $\theta =$

$$n(n+1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

for some integer m, then $m > n^{\theta}$.

abc-conjecture
$$\implies \theta = 1 - \varepsilon$$

unconditionally one can obtain $\theta = 1 - \varepsilon$

$$n(n+1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

for some integer m, then $m > n^{\theta}$.

abc-conjecture
$$\implies \theta = 1 - \varepsilon$$

unconditionally one can obtain $\theta = 1 - \varepsilon$ (ineffective)

$$n(n+1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

for some integer m, then $m > n^{\theta}$.

Effective Approach:

$$n(n+1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

for some integer m, then $m > n^{\theta}$.

Effective Approach: (Linear Forms of Logarithms)

$$n(n+1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

for some integer m, then $m > n^{\theta}$.

Effective Approach: (Linear Forms of Logarithms)

$$heta = rac{c}{\log\log n}$$

$$n(n+1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

for some integer m, then $m > n^{\theta}$.

Effective Approach: (Linear Forms of Logarithms)

$$heta = rac{c}{\log\log n}$$

Problem: Can we narrow the gap between these ineffective and effective results?

$$n(n+1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

for some integer m, then $m > n^{\theta}$.

$$n(n+1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

for some integer m, then $m > n^{\theta}$.

Theorem (Bennett, F., Trifonov): If $n \ge 9$ and

$$n(n+1) = 2^k 3^\ell m,$$

then

 $m \geq$

$$n(n+1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

for some integer m, then $m > n^{\theta}$.

Theorem (Bennett, F., Trifonov): If $n \ge 9$ and

$$n(n+1) = 2^k 3^\ell m,$$

then

$$m \ge n^{1/4}.$$

Conjecture: For n > 512,

$$n(n+1) = 2^u 3^v m \implies m > \sqrt{n}.$$

Conjecture: For n > 512,

$$n(n+1) = 2^u 3^v m \implies m > \sqrt{n}.$$

Comment: The conjecture has been verified for $512 < n \leq$

Conjecture: For n > 512,

$$n(n+1) = 2^u 3^v m \implies m > \sqrt{n}.$$

Comment: The conjecture has been verified for $512 < n \le 10^{1000}$.

$$n(n+1) = 3^k 2^\ell m$$

$$n(n+1) = 3^k 2^\ell m$$

 $3^k m_1 - 2^\ell m_2 = \pm 1$

$$n(n+1) = 3^k 2^\ell m$$
 $3^k m_1 - 2^\ell m_2 = \pm 1$

Main Idea: Find "small" integers P, Q, and E such that $3^k P - 2^\ell Q = E$.

$$n(n+1) = 3^k 2^\ell m$$
 $3^k m_1 - 2^\ell m_2 = \pm 1$

Main Idea: Find "small" integers P, Q, and E such that $3^k P - 2^\ell Q = E$.

Then

$$3^k \left(Qm_1 - Pm_2
ight) = \pm Q - Em_2.$$

$$n(n+1) = 3^k 2^\ell m$$

 $3^k m_1 - 2^\ell m_2 = \pm 1$

Main Idea: Find "small" integers P, Q, and E such that $3^k P - 2^\ell Q = E$.

Then

$$3^k\left(Qm_1-Pm_2
ight)=\pm Q-Em_2.$$

Main Idea: Find "small" integers P, Q, and E such that $3^k P - 2^\ell Q = E$

and

$$Qm_1 - Pm_2 \neq 0.$$

Then

$$3^k\left(Qm_1-Pm_2
ight)=\pm Q-Em_2.$$

Main Idea: Find "small" integers P, Q, and E such that $3^k P - 2^\ell Q = E$

and

$$Qm_1 - Pm_2 \neq 0.$$

Then

$$3^k \left(Qm_1 - Pm_2
ight) = \pm Q - Em_2.$$

Obtain an upper bound on 3^k .

Main Idea: Find "small" integers P, Q, and E such that $3^k P - 2^\ell Q = E$

and

$$Qm_1 - Pm_2 \neq 0.$$

Then

$$3^k \left(Qm_1 - Pm_2
ight) = \pm Q - Em_2.$$

Obtain an upper bound on 3^k . Since $3^k m_1 \ge n$, it follows that m_1 and, hence, $m = m_1 m_2$ are not small.

The "small" integers P, Q, and E are obtained through the use of Padé approximations for $(1 - x)^k$.

The "small" integers P, Q, and E are obtained through the use of Padé approximations for $(1 - x)^k$.

More precisely, one takes z = 1/9 in the equation

$$P_r(x) - (1-x)^k Q_r(x) = x^{2r+1} E_r(x).$$

What's Needed for the Method to Work:

What's Needed for the Method to Work:

One largely needs to be dealing with two primes (like 2 and 3) with a difference of powers of these primes being small (like $3^2 - 2^3 = 1$).

D. Hilbert (1892) used his now classical Hilbert's Irreducibility Theorem to show that for each integer n ≥ 1, there is polynomial f(x) ∈ Z[x] such that the Galois group associated with f(x) is the symmetric group S_n.

D. Hilbert (1892) used his now classical Hilbert's Irreducibility Theorem to show that for each integer n ≥ 1, there is polynomial f(x) ∈ Z[x] such that the Galois group associated with f(x) is the symmetric group S_n. He also showed the analogous result in the case of the alternating group A_n.

- D. Hilbert (1892) used his now classical Hilbert's Irreducibility Theorem to show that for each integer n ≥ 1, there is polynomial f(x) ∈ Z[x] such that the Galois group associated with f(x) is the symmetric group S_n. He also showed the analogous result in the case of the alternating group A_n.
- Hilbert's work and work of E. Noether (1918) began what has come to be known as Inverse Galois Theory.

- D. Hilbert (1892) used his now classical Hilbert's Irreducibility Theorem to show that for each integer n ≥ 1, there is polynomial f(x) ∈ Z[x] such that the Galois group associated with f(x) is the symmetric group S_n. He also showed the analogous result in the case of the alternating group A_n.
- Hilbert's work and work of E. Noether (1918) began what has come to be known as Inverse Galois Theory.
- Van der Waerden showed that for "almost all" polynomials $f(x) \in \mathbb{Z}[x]$, the Galois group associated with f(x) is the symmetric group S_n .

• Schur showed $L_n^{(0)}(x)$ has Galois group S_n .

- Schur showed $L_n^{(0)}(x)$ has Galois group S_n .
- Schur showed $L_n^{(1)}(x)$ has Galois group A_n (the alternating group) if n is odd.

- Schur showed $L_n^{(0)}(x)$ has Galois group S_n .
- Schur showed $L_n^{(1)}(x)$ has Galois group A_n (the alternating group) if n is odd.

• Schur showed
$$\sum_{j=0}^n \frac{x^j}{j!}$$
 has Galois group A_n if $4|n$.

- Schur showed $L_n^{(0)}(x)$ has Galois group S_n .
- Schur showed $L_n^{(1)}(x)$ has Galois group A_n (the alternating group) if n is odd.

• Schur showed
$$\sum_{j=0}^n \frac{x^j}{j!}$$
 has Galois group A_n if $4|n$.

• Schur did not find an explicit sequence of polynomials having Galois group A_n with $n \equiv 2 \pmod{4}$.

Theorem (R. Gow, 1989): If n > 2 is even and

$$L_n^{(n)}(x)=\sum_{j=0}^n {2n \choose n-j}rac{(-x)^j}{j!}$$

is irreducible, then the Galois group of $L_n^{(n)}(x)$ is A_n .

Theorem (R. Gow, 1989): If n > 2 is even and

$$L_n^{(n)}(x)=\sum_{j=0}^n {2n \choose n-j}rac{(-x)^j}{j!}$$

is irreducible, then the Galois group of $L_n^{(n)}(x)$ is A_n .

Theorem (joint work with R. Williams): For almost all positive integers n the polynomial $L_n^{(n)}(x)$ is irreducible (and, hence, has Galois group A_n for almost all even n).

Theorem (joint work with R. Williams): For almost all positive integers n the polynomial $L_n^{(n)}(x)$ is irreducible (and, hence, has Galois group A_n for almost all even n).

Theorem (joint work with R. Williams): For almost all positive integers n the polynomial $L_n^{(n)}(x)$ is irreducible (and, hence, has Galois group A_n for almost all even n).

Comment: The method had an ineffective component to it. We could show that if n is sufficiently large and $L_n^{(n)}(x)$ is reducible, then $L_n^{(n)}(x)$ has a linear factor. But we didn't know what sufficiently large was.

Theorem (joint work with R. Williams): For almost all positive integers n the polynomial $L_n^{(n)}(x)$ is irreducible (and, hence, has Galois group A_n for almost all even n).

Comment: The method had an ineffective component to it. We could show that if n is sufficiently large and $L_n^{(n)}(x)$ is reducible, then $L_n^{(n)}(x)$ has a linear factor. But we didn't know what sufficiently large was.

Work in Progress with Trifonov: There is an effetive bound N such that if $n \ge N$ and $n \equiv 2 \pmod{4}$, then $L_n^{(n)}(x)$ is irreducible.

Theorem (joint work with R. Williams): For almost all positive integers n the polynomial $L_n^{(n)}(x)$ is irreducible (and, hence, has Galois group A_n for almost all even n).

Comment: The method had an ineffective component to it. We could show that if n is sufficiently large and $L_n^{(n)}(x)$ is reducible, then $L_n^{(n)}(x)$ has a linear factor. But we didn't know what sufficiently large was.

Work in Progress with Trifonov: There is an effetive bound N such that if $n \ge N$ and $n \equiv 2 \pmod{4}$, then $L_n^{(n)}(x)$ has Galois group A_n .

Classical Ramanujan-Nagell Theorem: If x and n are integers satisfying

$$x^2 + 7 = 2^n,$$

then

$$x \in \{1, 3, 5, 11, 181\}.$$

Some Background: Beukers used a method "similar" to the approach for finding irrationality measures to show that $\sqrt{2}$ cannot be approximated too well by rationals a/bwith b a power of 2. This implies bounds for solutions to the Diophantine equation $x^2 + D = 2^n$ with D fixed. This led to him showing that if $D \neq 7$, then the equation has at most 4 solutions. Related independent work by Apéry, Beukers, and Bennett establishes that for odd primes p not dividing D, the equation $x^2 + D = p^n$ has at most 3 solutions. All of these are in some sense best possible (though more can and has been said).

Classical Ramanujan-Nagell Theorem: If x and n are integers satisfying

$$x^2 + 7 = 2^n,$$

then

$$x \in \{1, 3, 5, 11, 181\}.$$

Classical Ramanujan-Nagell Theorem: If x and n are integers satisfying

$$x^2 + 7 = 2^n,$$

then

$$x \in \{1, 3, 5, 11, 181\}.$$

Problem: If $x^2 + 7 = 2^n m$ and x is not in the set above, then can we say that m must be large?

Connection with n(n + 1) **problem:**

 $x^2 + 7 = 2^n m$

$$x^2 + 7 = 2^n m$$

$$igg(rac{x\!+\!\sqrt{-7}}{2}igg)\!igg(rac{x\!-\!\sqrt{-7}}{2}igg) = igg(rac{1\!+\!\sqrt{-7}}{2}igg)^{n-2}\!igg(rac{1\!-\!\sqrt{-7}}{2}igg)^{n-2}m$$

$$x^2 + 7 = 2^n m$$

$$x^2 + 7 = 2^n m$$

Theorem (Bennett, F., Trifonov): If *x*, *n* and *m* are positive integers satisfying

 $x^2 + 7 = 2^n m$ and $x \not\in \{1, 3, 5, 11, 181\},$ then

$$m \geq ???$$

Theorem (Bennett, F., Trifonov): If *x*, *n* and *m* are positive integers satisfying

 $x^2 + 7 = 2^n m$ and $x \not\in \{1, 3, 5, 11, 181\},$ then

$$m \ge x^{1/2}$$
.

Theorem (Bennett, F., Trifonov): If *x*, *n* and *m* are positive integers satisfying

 $x^2 + 7 = 2^n m$ and $x \not\in \{1, 3, 5, 11, 181\},$ then

$$m \ge x^{1/2}$$
.

Comment: In the case of $x^2 + 7 = 2^n m$, the difference of the primes $(1 + \sqrt{-7})/2$ and $(1 - \sqrt{-7})/2$ each raised to the 13th power has absolute value ≈ 2.65 and the powers themselves have absolute value ≈ 90.51 .

k-free numbers in short intervals:

k-free numbers in short intervals:

Problem: Find $\theta = \theta(k)$ as small as possible such that, for x sufficiently large, the interval $(x, x + x^{\theta}]$ contains a k-free number.

k-free numbers in short intervals:

Problem: Find $\theta = \theta(k)$ as small as possible such that, for x sufficiently large, the interval $(x, x + x^{\theta}]$ contains a k-free number.

Main Idea: Show that there are integers in $(x, x + x^{\theta}]$ not divisible by the k^{th} power of a prime. Consider primes in different size ranges. Deal with small primes and large primes separately.

Small Primes: $p \leq z$

Small Primes: $p \le z$ where $z = x^{\theta} \sqrt{\log x}$

Small Primes: $p \leq z$ where $z = x^{\theta} \sqrt{\log x}$

The number of integers $n \in (x, x + x^{ heta}]$ divisible by such a p^k is bounded by

Small Primes: $p \leq z$ where $z = x^{\theta} \sqrt{\log x}$

The number of integers $n \in (x, x + x^{\theta}]$ divisible by such a p^k is bounded by

$$\sum_{p\leq z}\left(rac{x^{ heta}}{p^k}+1
ight)$$

Small Primes: $p \leq z$ where $z = x^{\theta} \sqrt{\log x}$

The number of integers $n \in (x, x + x^{ heta}]$ divisible by such a p^k is bounded by

$$\sum_{p \leq z} \left(\frac{x^{\theta}}{p^k} + 1 \right) \leq \left(\sum_{p \text{ prime}} \frac{x^{\theta}}{p^2} \right) + \pi(z)$$

Small Primes: $p \leq z$ where $z = x^{\theta} \sqrt{\log x}$

The number of integers $n \in (x, x + x^{ heta}]$ divisible by such a p^k is bounded by

$$egin{split} \sum\limits_{p\leq z}\left(rac{x^{ heta}}{p^k}+1
ight)&\leq\left(\sum\limits_{p ext{ prime}}rac{x^{ heta}}{p^2}
ight)+\pi(z)\ &\leq \Big(rac{\pi^2}{6}-1\Big)x^{ heta} \end{split}$$

Small Primes: $p \leq z$ where $z = x^{\theta} \sqrt{\log x}$

The number of integers $n \in (x, x + x^{\theta}]$ divisible by such a p^k is bounded by

$$egin{aligned} &\sum\limits_{p\leq z}\left(rac{x^{ heta}}{p^k}+1
ight)\leq\left(\sum\limits_{p ext{ prime}}rac{x^{ heta}}{p^2}
ight)+\pi(z)\ &\leq \Big(rac{\pi^2}{6}-1\Big)x^{ heta}<rac{2}{3}x^{ heta}. \end{aligned}$$

Large Primes: $p \in (N, 2N], N \ge z = x^{\theta} \sqrt{\log x}$

Large Primes: $p \in (N, 2N], \ N \ge z = x^{\theta} \sqrt{\log x}$

 $x < p^k m \le x + x^{ heta}$

Large Primes: $p \in (N, 2N], N \ge z = x^{\theta} \sqrt{\log x}$

 $x < p^k m \leq x + x^{ heta} \implies rac{x}{p^k} < m \leq rac{x}{p^k} + rac{x^{ heta}}{p^k}$

Large Primes: $p \in (N, 2N], N \ge z = x^{\theta} \sqrt{\log x}$

 $x < p^k m \leq x + x^{ heta} \implies rac{x}{p^k} < m \leq rac{x}{p^k} + rac{x^{ heta}}{p^k}$ $\implies \left\|\frac{x}{p^k}\right\| < \frac{x^{ heta}}{N^k}$

$$egin{aligned} x < p^k m &\leq x + x^{ heta} \implies rac{x}{p^k} < m \leq rac{x}{p^k} + rac{x^{ heta}}{p^k} \ & \Longrightarrow \ \left\|rac{x}{p^k}\right\| < rac{x^{ heta}}{N^k} \end{aligned}$$

where $||t|| = \min\{|t - \ell| : \ell \in \mathbb{Z}\}$

$$egin{aligned} x < p^k m &\leq x + x^{ heta} \implies rac{x}{p^k} < m \leq rac{x}{p^k} + rac{x^{ heta}}{p^k} \ & \Longrightarrow \ \left\|rac{x}{p^k}\right\| < rac{x^{ heta}}{N^k} \end{aligned}$$

0

where $||t|| = \min\{|t - \ell| : \ell \in \mathbb{Z}\}$

Idea: Show that there are few primes $p \in (N, 2N]$ with x/p^k that close to an integer.

$$egin{aligned} x < p^k m &\leq x + x^{ heta} \implies rac{x}{p^k} < m \leq rac{x}{p^k} + rac{x^{ heta}}{p^k} \ & \Longrightarrow \ \left\|rac{x}{p^k}\right\| < rac{x^{ heta}}{N^k} \end{aligned}$$

0

where $||t|| = \min\{|t - \ell| : \ell \in \mathbb{Z}\}$

Idea: Show that there are few integers $p \in (N, 2N]$ with x/p^k that close to an integer.

$$egin{aligned} x < p^k m &\leq x + x^{ heta} \implies rac{x}{p^k} < m \leq rac{x}{p^k} + rac{x^{ heta}}{p^k} \ & \Longrightarrow \ \left\|rac{x}{p^k}\right\| < rac{x^{ heta}}{N^k} \end{aligned}$$

0

where $||t|| = \min\{|t - \ell| : \ell \in \mathbb{Z}\}$

Idea: Show that there are few integers $u \in (N, 2N]$ with x/u^k that close to an integer.

Exponential Sums:

$$\left\|rac{x}{u^k}
ight\| < rac{x^ heta}{N^k}, \quad u \in (N, 2N], \quad N \geq x^ heta \sqrt{\log x}$$

Exponential Sums: Let $\delta \in (0, 1/2)$. Let $f : \mathbb{R} \to \mathbb{R}$ be any function. Let S be a set of positive integers. Then for any positive integer $J \leq 1/(4\delta)$, we get

$$egin{aligned} &|\{u\in S: \|f(u)\|<\delta\}|\ &\leq rac{\pi^2}{2(J+1)}\sum_{1\leq j\leq J}\Big|\sum_{u\in S}e^{2\pi\mathrm{i} jf(u)}\Big|\ &+rac{\pi^2}{4(J+1)}|S|. \end{aligned}$$

 $\left\|rac{x}{u^k}
ight\| < rac{x^ heta}{N^k}, \quad u \in (N, 2N], \quad N \geq x^ heta \sqrt{\log x}$

$$\left\| \left\| rac{x}{u^k}
ight\| < rac{x^{ heta}}{N^k}, \quad \left\| rac{x}{(u+a)^k}
ight\| < rac{x^{ heta}}{N^k}$$

$$ig\|rac{x}{u^k}ig\|<rac{x^ heta}{N^k}, \quad \Big\|rac{x}{(u+a)^k}\Big\|<rac{x^ heta}{N^k} \ rac{x}{u^k}-rac{x}{(u+a)^k} ig\|$$

$$ig\|rac{x}{u^k}ig\|<rac{x^ heta}{N^k}, \quad \Big\|rac{x}{(u+a)^k}\Big\|<rac{x^ heta}{N^k} \ rac{x}{u^k}-rac{x}{(u+a)^k} timesrac{ax}{u^{k+1}}$$

$$ig\|rac{x}{u^k}ig\|<rac{x^ heta}{N^k}, \quad \Big\|rac{x}{(u+a)^k}\Big\|<rac{x^ heta}{N^k} \ rac{x}{u^k}-rac{x}{(u+a)^k} timesrac{xax}{u^{k+1}} timesrac{ax}{N^{k+1}}$$

$$ig\|rac{x}{u^k}ig\|<rac{x^ heta}{N^k}, \quad \Big\|rac{x}{(u+a)^k}\Big\|<rac{x^ heta}{N^k} \ rac{x}{u^k}-rac{x}{(u+a)^k} timesrac{xax}{u^{k+1}} timesrac{ax}{N^{k+1}}$$

$$\left\|rac{x}{u^k}
ight\| < rac{x^ heta}{N^k}, \quad u \in (N, 2N], \quad N \geq x^ heta \sqrt{\log x}$$

$$ig\|rac{x}{u^k}ig\|<rac{x^ heta}{N^k}, \quad \Big\|rac{x}{(u+a)^k}\Big\|<rac{x^ heta}{N^k} \ rac{x}{u^k}-rac{x}{(u+a)^k} timesrac{ax}{u^{k+1}} timesrac{ax}{N^{k+1}}$$

consider $N = x^{1/k}$

$$\left\|rac{x}{u^k}
ight\| < rac{x^ heta}{N^k}, \quad u \in (N, 2N], \quad N \geq x^ heta \sqrt{\log x}$$

$$ig\|rac{x}{u^k}ig\|<rac{x^ heta}{N^k}, \quad \Big\|rac{x}{(u+a)^k}\Big\|<rac{x^ heta}{N^k} \ rac{x}{u^k}-rac{x}{(u+a)^k} timesrac{ax}{u^{k+1}} timesrac{ax}{x^{1/k}}$$

consider $N = x^{1/k}$

$$\left\|rac{x}{u^k}
ight\| < rac{x^ heta}{N^k}, \quad u \in (N, 2N], \quad N \geq x^ heta \sqrt{\log x}$$

$$ig\|rac{x}{u^k}ig\|<rac{x^ heta}{N^k}, \quad \Big\|rac{x}{(u+a)^k}\Big\|<rac{x^ heta}{N^k} \ rac{x}{u^k}-rac{x}{(u+a)^k} timesrac{xa}{u^{k+1}} timesrac{ax}{x^{1/k}}$$

consider $N = x^{1/k}, \ a < x^{1/(2k)}$

$$\left\|rac{x}{u^k}
ight\| < rac{x^ heta}{N^k}, \quad u \in (N, 2N], \quad N \geq x^ heta \sqrt{\log x}$$

$$ig\|rac{x}{u^k}ig\|<rac{x^ heta}{N^k}, \quad \Big\|rac{x}{(u+a)^k}\Big\|<rac{x^ heta}{N^k} \ rac{x}{u^k}-rac{x}{(u+a)^k} timesrac{ax}{u^{k+1}} timesrac{ax}{x^{1/k}}$$

consider $N = x^{1/k}, \ a < x^{1/(2k)}, \ \theta pprox 1/k$

$$\left\|rac{x}{u^k}
ight\| < rac{x^ heta}{N^k}, \quad u \in (N, 2N], \quad N \geq x^ heta \sqrt{\log x}$$

$$ig\|rac{x}{u^k}ig\|<rac{x^ heta}{N^k}, \hspace{1em} \Big\|rac{x}{(u+a)^k}\Big\|<rac{x^ heta}{N^k} \ rac{x}{u^k}-rac{x}{(u+a)^k} timesrac{xax}{u^{k+1}} timesrac{ax}{x^{1/k}}$$

consider $N = x^{1/k}, \ a < x^{1/(2k)}, \ \theta \approx 1/k$ LHS small compared to RHS

$$\left\|rac{x}{u^k}
ight\| < rac{x^ heta}{N^k}, \quad u \in (N, 2N], \quad N \geq x^ heta \sqrt{\log x}$$

$$\left\| rac{x}{u^k}
ight\| < rac{x^ heta}{N^k}, \quad \left\| rac{x}{(u+a)^k}
ight\| < rac{x^ heta}{N^k}$$

$$\left\| rac{x}{u^k}
ight\| < rac{x^ heta}{N^k}, \quad u \in (N, 2N], \quad N \geq x^ heta \sqrt{\log x}$$

$$\left\| rac{x}{u^k}
ight\| < rac{x^ heta}{N^k}, \quad u \in (N, 2N], \quad N \geq x^ heta \sqrt{\log x}$$

$$\left\|rac{x}{u^k}
ight\| < rac{x^ heta}{N^k}, \quad \left\|rac{x}{(u+a)^k}
ight\| < rac{x^ heta}{N^k}$$

 $rac{x}{u^k}P-rac{x}{(u+a)^k}Q$ small (but not too small)

$$\left\| rac{x}{u^k}
ight\| < rac{x^ heta}{N^k}, \quad u \in (N, 2N], \quad N \geq x^ heta \sqrt{\log x}$$

$$\left\|rac{x}{u^k}
ight\| < rac{x^ heta}{N^k}, \quad \left\|rac{x}{(u+a)^k}
ight\| < rac{x^ heta}{N^k}$$

 $rac{x}{u^k}P-rac{x}{(u+a)^k}Q$ small (but not too small) $(u+a)^kP-u^kQ$ small (but not too small)

$\left\ \frac{x}{k}\right\ < \frac{x^{ heta}}{N^k},$	$u\in (N,2N],$	$N \geq x^{ heta} \sqrt{\log x}$
$\ u^k \ \ge N^{k^{\gamma}}$		

$$\left\|rac{x}{u^k}
ight\|<rac{x^ heta}{N^k}, \quad \left\|rac{x}{(u+a)^k}
ight\|<rac{x^ heta}{N^k}$$

 $\frac{x}{u^k}P - \frac{x}{(u+a)^k}Q$ small (but not too small)

 $(u+a)^k P - u^k Q$ small (but not too small)

consider $P_r(z) - (1-z)^k Q_r(z)$ with $z = rac{a}{u+a}$

Theorem (Halberstam & Roth):

Theorem (Halberstam & Roth & Nair):

$$\left\|rac{x}{u^k}
ight\| < rac{x^ heta}{N^k}, \quad u \in (N, 2N], \quad N \geq x^ heta \sqrt{\log x}$$

Theorem (Halberstam & Roth & Nair):

For x sufficiently large, there is a k-free number in the interval $(x, x + x^{1/(2k)}]$.

Modified Differences plus Divided Differences:

Modified Differences plus Divided Differences:

Theorem (F. & Trifonov): For x sufficiently large, there is a squarefree number in $(x, x + cx^{1/5} \log x]$.

$$\left\|rac{x}{u^k}
ight\| < rac{x^ heta}{N^k}, \quad u \in (N, 2N], \quad N \geq x^ heta \sqrt{\log x}$$

Modified Differences plus Divided Differences:

Theorem (F. & Trifonov): For x sufficiently large, there is a squarefree number in $(x, x + cx^{1/5} \log x]$.

Theorem (Trifonov): For x sufficiently large, there is a k-free number in $(x, x + cx^{1/(2k+1)} \log x]$.

 $s \in \mathbb{Q} - \{-(k-1), -(k-2), \dots, k-2, k-1\}.$ Let $f(u) = X/u^s$. Suppose that

 $N^s \leq X$ and $\delta \leq c N^{-(k-1)}$,

where c > 0 is small. Set

 $S = \{u \in \mathbb{Z} \cap (N, 2N] : \|f(u)\| < \delta\}.$

Then

$$egin{aligned} |S| \ll_{k,s} X^{1/(2k+1)} N^{(k-s)/(2k+1)} \ &+ \delta X^{1/(6k+3)} N^{(6k^2+2k-s-1)/(6k+3)}. \end{aligned}$$

 $s \in \mathbb{Q} - \{-(k-1), -(k-2), \dots, k-2, k-1\}.$ Let $f(u) = X/u^s$. Suppose that

 $N^s \leq X$ and $\delta \leq c N^{-(k-1)}$,

where c > 0 is small. Set

 $S = \{u \in \mathbb{Z} \cap (N,2N]: \|f(u)\| < \delta\}.$

Then

 $egin{aligned} |S| \ll_{k,s} X^{1/(2k+1)} N^{(k-s)/(2k+1)} \ &+ \delta X^{1/(6k+3)} N^{(6k^2+2k-s-1)/(6k+3)}. \end{aligned}$

 $s \in \mathbb{Q} - \{-(k-1), -(k-2), \dots, k-2, k-1\}.$ Let $f(u) = X/u^s$. Suppose that

 $N^s \leq X$ and $\delta \leq c N^{-(k-1)}$,

where c > 0 is small. Set

 $S = \{u \in \mathbb{Z} \cap (N, 2N] : \|f(u)\| < \delta\}.$

Then

 $egin{aligned} |S| \ll_{k,s} X^{1/(2k+1)} N^{(k-s)/(2k+1)} \ &+ \delta X^{1/(6k+3)} N^{(6k^2+2k-s-1)/(6k+3)}. \end{aligned}$

 $s \in \mathbb{Q} - \{-(k-1), -(k-2), \dots, k-2, k-1\}.$ Let $f(u) = X/u^s$. Suppose that

 $N^s \leq X$ and $\delta \leq c N^{-(k-1)}$,

where c > 0 is small. Set

 $S = \{u \in \mathbb{Z} \cap (N, 2N] : \|f(u)\| < \delta\}.$

Then

 $egin{aligned} |S| \ll_{k,s} X^{1/(2k+1)} N^{(k-s)/(2k+1)} \ &+ \delta X^{1/(6k+3)} N^{(6k^2+2k-s-1)/(6k+3)}. \end{aligned}$

k-free values of polynomials and binary forms:

The method for obtaining results about gaps between k-free numbers generalizes to k-free values of polynomials.

The method for obtaining results about gaps between k-free numbers generalizes to k-free values of polynomials. Suppose $f(x) \in \mathbb{Z}[x]$ is irreducible and deg f = n.

The method for obtaining results about gaps between k-free numbers generalizes to k-free values of polynomials. Suppose $f(x) \in \mathbb{Z}[x]$ is irreducible and deg f = n. In what follows, we suppose further that f has no fixed k^{th} power divisors.

The method for obtaining results about gaps between k-free numbers generalizes to k-free values of polynomials. Suppose $f(x) \in \mathbb{Z}[x]$ is irreducible and deg f = n. In what follows, we suppose further that f has no fixed k^{th} power divisors.

Theorem (Nair): Let $k \ge n+1$. For x sufficiently large, there is an integer m such that f(m) is k-free with n

 $x < m \leq x + cx^{rac{n}{2k-n+1}}.$

Theorem (Nair): Let $k \ge n+1$. For x sufficiently large, there is an integer m such that f(m) is k-free with $x < m \le x + cx^{\frac{n}{2k-n+1}}$. Theorem (Nair): Let $k \ge n+1$. For x sufficiently large, there is an integer m such that f(m) is k-free with $x < m \le x + cx^{\frac{n}{2k-n+1}}$.

Theorem: Let $k \ge n + 1$. For x sufficiently large, there is an integer m such that f(m) is k-free with

$$x < m \leq x + cx^{rac{n}{2k-n+r}},$$

where r =

Theorem (Nair): Let $k \ge n+1$. For x sufficiently large, there is an integer m such that f(m) is k-free with $x < m \le x + cx^{\frac{n}{2k-n+1}}$.

Theorem: Let $k \ge n + 1$. For x sufficiently large, there is an integer m such that f(m) is k-free with

 $x < m \leq x + c x^{rac{n}{2k-n+r}},$ where $r = \sqrt{2n} - rac{1}{2}.$

Basic Idea: One works in a number field where f(x) has a linear factor. As in the case f(x) = x, one wants to show certain u (in the ring of algebraic integers in the field) are not close by considering

$$(u+a)^k P - u^k Q$$

arising from Padé approximations. One uses that this expression is an integer and, hence, either 0 or ≥ 1 .

Basic Idea: One works in a number field where f(x) has a linear factor. As in the case f(x) = x, one wants to show certain u (in the ring of algebraic integers in the field) are not close by considering

$$(u+a)^k P - u^k Q$$

arising from Padé approximations. One uses that this expression is an integer and, hence, either 0 or ≥ 1 .

Difficulty: An "integer" in this context can be small without being **0**.

Basic Idea: One works in a number field where f(x) has a linear factor. As in the case f(x) = x, one wants to show certain u (in the ring of algebraic integers in the field) are not close by considering

$$(u+a)^k P - u^k Q$$

arising from Padé approximations. One uses that this expression is an integer and, hence, either 0 or ≥ 1 .

Difficulty: An "integer" in this context can be small without being **0**.

Solution: If it's small, work with a conjugate instead.

Comment: In the case that $k \leq n$, one can *try* the same methods.

Comment: In the case that $k \leq n$, one can *try* the same methods. The gap size becomes "bad" in the sense that one obtains $m \in (x, x + h]$ where f(m) is k-free but h increases as k decreases.

Comment: In the case that $k \leq n$, one can *try* the same methods. The gap size becomes "bad" in the sense that one obtains $m \in (x, x + h]$ where f(m) is k-free but h increases as k decreases. There is a point where h exceeds x itself and the method fails (the size of f(m) is no longer of order x^n).

Comment: In the case that $k \leq n$, one can *try* the same methods. The gap size becomes "bad" in the sense that one obtains $m \in (x, x + h]$ where f(m) is *k*-free but *h* increases as *k* decreases. There is a point where *h* exceeds *x* itself and the method fails (the size of f(m) is no longer of order x^n). Nair took the limit of what can be done with $k \leq n$ and obtained

Comment: In the case that $k \leq n$, one can *try* the same methods. The gap size becomes "bad" in the sense that one obtains $m \in (x, x + h]$ where f(m) is *k*-free but *h* increases as *k* decreases. There is a point where *h* exceeds *x* itself and the method fails (the size of f(m) is no longer of order x^n). Nair took the limit of what can be done with $k \leq n$ and obtained

Theorem (Nair): If f(x) is an irreducible polynomial of degree n and $k \ge (2\sqrt{2} - 1)n/2$, then there are infinitely many integers m for which f(m) is k-free.

Theorem (Nair): If f(x) is an irreducible polynomial of degree n and $k \ge (2\sqrt{2} - 1)n/2$, then there are infinitely many integers m for which f(m) is k-free.

- **Theorem (Nair):** If f(x) is an irreducible polynomial of degree n and $k \ge (2\sqrt{2} 1)n/2$, then there are infinitely many integers m for which f(m) is k-free.
- **Theorem:** If f(x, y) is an irreducible binary form of degree n and $k \ge (2\sqrt{2} 1)n/4$, then there are infinitely many integer pairs (a, b) for which f(a, b) is k-free.

The *abc*-conjecture:

The *abc*-conjecture:

Notation: $Q(n) = \prod_{p|n} p$

The *abc*-conjecture:

Notation: $Q(n) = \prod_{p|n} p$

The *abc*-Conjecture: For *a* and *b* in \mathbb{Z}^+ , define $L_{a,b} = \frac{\log(a+b)}{\log Q(ab(a+b))}$

and

 $\mathcal{L} = \{L_{a,b} : a \ge 1, b \ge 1, \gcd(a, b) = 1\}.$ The set of limit points of \mathcal{L} is the interval [1/3, 1].

$$L_{a,b} = rac{\log(a+b)}{\log Q(ab(a+b))}$$

 $\mathcal{L} = \{L_{a,b}: a \geq 1, b \geq 1, \gcd(a,b) = 1\}$

$$L_{a,b} = rac{\log(a+b)}{\log Q(ab(a+b))}$$

 $\mathcal{L} = \{L_{a,b}: a \geq 1, b \geq 1, \gcd(a,b) = 1\}$

Theorem: The set of limit points of \mathcal{L} includes the interval [1/3, 36/37].

$$L_{a,b} = rac{\log(a+b)}{\log Q(ab(a+b))}$$

 $\mathcal{L} = \{L_{a,b}: a \geq 1, b \geq 1, \gcd(a,b) = 1\}$

Theorem: The set of limit points of \mathcal{L} includes the interval [1/3, 36/37].

(work of Browkin, Greaves, F., Nitaj, Schinzel)

Approach: Makes use of a preliminary result about square-free values of binary forms.

Approach: Makes use of a preliminary result about squarefree values of binary forms. In particular, for

$$egin{aligned} f(x,y) &= xy(x+y)(x-y)(x^2+y^2)(2x^2+y^2)(x^2+2y^2)\ & imes (x^4-x^2y^2+y^4)(3x^4+3x^2y^2+y^4)(x^4+3x^2y^2+3y^4) \end{aligned}$$

the number f(x, y)/6 takes on the right proportion of squarefree values for

 $X < x \leq 2X, \hspace{1em} Y < y \leq 2Y, \hspace{1em} X = Y^lpha,$ where $lpha \in (1,3).$

$$P_3(z) - (1-z)^7 Q_3(z) = z^7 E_3(z)$$

where

$$egin{aligned} P_3(z) &= (2z-1)(3z^2-3z+1), \ Q_3(z) &= -(z+1)(z^2+z+1), \end{aligned}$$

and

$$E_3(z) = -(z-2)(z^2-3z+3)$$

 $P_3(z) - (1-z)^7 Q_3(z) = z^7 E_3(z)$

 $P_3(z) - (1-z)^7 Q_3(z) = z^7 E_3(z)$

$$P_3(z) - (1-z)^7 Q_3(z) = z^7 E_3(z)$$

$$egin{aligned} m{z} = & m{x} \ x + m{y} & \Longrightarrow iggl\{ egin{aligned} & (x + m{y})^7 (x - m{y}) (x^2 - x m{y} + m{y}^2) \ & + m{y}^7 (2 x + m{y}) (3 x^2 + 3 x m{y} + m{y}^2) \ & = x^7 (x + 2 m{y}) (x^2 + 3 x m{y} + 3 m{y}^2) \end{aligned}$$

$$egin{aligned} &(x+y)^7(x-y)(x^2-xy+y^2)\ &+y^7(2x+y)(3x^2+3xy+y^2)\ &=x^7(x+2y)(x^2+3xy+3y^2) \end{aligned}$$

$$egin{aligned} &(x+y)^7(x-y)(x^2-xy+y^2)\ &+y^7(2x+y)(3x^2+3xy+y^2)\ &=x^7(x+2y)(x^2+3xy+3y^2) \end{aligned}$$

$$egin{aligned} &(x^2+y^2)^7(x^2-y^2)(x^4-x^2y^2+y^4)\ &+y^{14}(2x^2+y^2)(3x^4+3x^2y^2+y^4)\ &=x^{14}(x^2+2y^2)(x^4+3x^2y^2+3y^4) \end{aligned}$$

$$egin{aligned} &(x+y)^7(x-y)(x^2-xy+y^2)\ &+y^7(2x+y)(3x^2+3xy+y^2)\ &=x^7(x+2y)(x^2+3xy+3y^2) \end{aligned}$$

$$egin{aligned} &(x^2+y^2)^7(x^2-y^2)(x^4-x^2y^2+y^4)\ &+y^{14}(2x^2+y^2)(3x^4+3x^2y^2+y^4)\ &=x^{14}(x^2+2y^2)(x^4+3x^2y^2+3y^4) \end{aligned}$$

$$egin{aligned} f(x,y) &= xy(x+y)(x-y)(x^2+y^2)(2x^2+y^2)(x^2+2y^2) \ & imes (x^4-x^2y^2+y^4)(3x^4+3x^2y^2+y^4)(x^4+3x^2y^2+3y^4) \end{aligned}$$

$$egin{aligned} &(x+y)^7(x-y)(x^2-xy+y^2)\ &+y^7(2x+y)(3x^2+3xy+y^2)\ &=x^7(x+2y)(x^2+3xy+3y^2) \end{aligned}$$

$$egin{aligned} &(x^2+y^2)^7(x^2-y^2)(x^4-x^2y^2+y^4)\ &+y^{14}(2x^2+y^2)(3x^4+3x^2y^2+y^4)\ &=x^{14}(x^2+2y^2)(x^4+3x^2y^2+3y^4) \end{aligned}$$

$$egin{aligned} f(x,y) &= xy(x+y)(x-y)(x^2+y^2)(2x^2+y^2)(x^2+2y^2) \ & imes (x^4-x^2y^2+y^4)(3x^4+3x^2y^2+y^4)(x^4+3x^2y^2+3y^4) \end{aligned}$$

$$egin{aligned} &(x+y)^7(x-y)(x^2-xy+y^2)\ &+y^7(2x+y)(3x^2+3xy+y^2)\ &=x^7(x+2y)(x^2+3xy+3y^2) \end{aligned}$$

$$egin{aligned} &(x^2+y^2)^7(x^2-y^2)(x^4-x^2y^2+y^4)\ &+y^{14}(2x^2+y^2)(3x^4+3x^2y^2+y^4)\ &=x^{14}(x^2+2y^2)(x^4+3x^2y^2+3y^4) \end{aligned}$$

$$egin{aligned} f(x,y) &= xy(x+y)(x-y)(x^2+y^2)(2x^2+y^2)(x^2+2y^2)\ & imes (x^4-x^2y^2+y^4)(3x^4+3x^2y^2+y^4)(x^4+3x^2y^2+3y^4) \end{aligned}$$

 $egin{aligned} a &= (x^2+y^2)^7 (x^2-y^2) (x^4-x^2y^2+y^4) \ b &= y^{14} (2x^2+y^2) (3x^4+3x^2y^2+y^4) \ X &= Y^lpha, \ 1 < lpha < 3 \ a+b &= x^{14} (x^2+2y^2) (x^4+3x^2y^2+3y^4) \end{aligned}$

 $egin{aligned} a &= (x^2+y^2)^7 (x^2-y^2) (x^4-x^2y^2+y^4) \ b &= y^{14} (2x^2+y^2) (3x^4+3x^2y^2+y^4) \ X &= Y^lpha, \ 1 < lpha < 3 \ a+b &= x^{14} (x^2+2y^2) (x^4+3x^2y^2+3y^4) \end{aligned}$

 $egin{aligned} f(x,y) &= xy(x+y)(x-y)(x^2+y^2)(2x^2+y^2)(x^2+2y^2) \ & imes (x^4-x^2y^2+y^4)(3x^4+3x^2y^2+y^4)(x^4+3x^2y^2+3y^4) \end{aligned}$

$$egin{aligned} a &= (x^2+y^2)^7 (x^2-y^2) (x^4-x^2y^2+y^4) \ b &= y^{14} (2x^2+y^2) (3x^4+3x^2y^2+y^4) \ X &= Y^lpha, \ 1 &< lpha < 3 \ a+b &= x^{14} (x^2+2y^2) (x^4+3x^2y^2+3y^4) \end{aligned}$$

$$egin{aligned} f(x,y) &= xy(x+y)(x-y)(x^2+y^2)(2x^2+y^2)(x^2+2y^2) \ & imes (x^4-x^2y^2+y^4)(3x^4+3x^2y^2+y^4)(x^4+3x^2y^2+3y^4) \end{aligned}$$

$$L_{a,b} = rac{\log(a+b)}{\log Q(ab(a+b))}$$

$$egin{aligned} a &= (x^2+y^2)^7 (x^2-y^2) (x^4-x^2y^2+y^4) \ b &= y^{14} (2x^2+y^2) (3x^4+3x^2y^2+y^4) \ X &= Y^lpha, \ 1 < lpha < 3 \ a+b &= x^{14} (x^2+2y^2) (x^4+3x^2y^2+3y^4) \end{aligned}$$

$$egin{aligned} f(x,y) &= xy(x+y)(x-y)(x^2+y^2)(2x^2+y^2)(x^2+2y^2) \ & imes (x^4-x^2y^2+y^4)(3x^4+3x^2y^2+y^4)(x^4+3x^2y^2+3y^4) \end{aligned}$$

$$L_{a,b} = \frac{\log(a+b)}{\log Q(ab(a+b))}$$

$$egin{aligned} a &= (x^2+y^2)^7 (x^2-y^2) (x^4-x^2y^2+y^4) \ b &= y^{14} (2x^2+y^2) (3x^4+3x^2y^2+y^4) \ X &= Y^lpha, \ 1 < lpha < 3 \ a+b &= x^{14} (x^2+2y^2) (x^4+3x^2y^2+3y^4) \end{aligned}$$

$$egin{aligned} f(x,y) &= xy(x+y)(x-y)(x^2+y^2)(2x^2+y^2)(x^2+2y^2)\ & imes (x^4-x^2y^2+y^4)(3x^4+3x^2y^2+y^4)(x^4+3x^2y^2+3y^4) \end{aligned}$$

$$L_{a,b} = rac{\log(a+b)}{\log Q(ab(a+b))} pprox rac{20lpha \log Y}{}$$

$$egin{aligned} a &= (x^2+y^2)^7 (x^2-y^2) (x^4-x^2y^2+y^4) \ b &= y^{14} (2x^2+y^2) (3x^4+3x^2y^2+y^4) \ X &= Y^lpha, \ 1 < lpha < 3 \ a+b &= x^{14} (x^2+2y^2) (x^4+3x^2y^2+3y^4) \end{aligned}$$

$$\begin{aligned} \boldsymbol{f(x,y)} &= xy(x+y)(x-y)(x^2+y^2)(2x^2+y^2)(x^2+2y^2) \\ &\times (x^4-x^2y^2+y^4)(3x^4+3x^2y^2+y^4)(x^4+3x^2y^2+3y^4) \end{aligned}$$

$$L_{a,b} = rac{\log(a+b)}{\log Q(ab(a+b))} pprox rac{20lpha \log Y}{20lpha \log Y}$$

$$egin{aligned} a &= (x^2+y^2)^7 (x^2-y^2) (x^4-x^2y^2+y^4) \ b &= y^{14} (2x^2+y^2) (3x^4+3x^2y^2+y^4) \ X &= Y^lpha, \ 1 < lpha < 3 \ a+b &= x^{14} (x^2+2y^2) (x^4+3x^2y^2+3y^4) \end{aligned}$$

$$egin{aligned} f(x,y) &= xy(x+y)(x-y)(x^2+y^2)(2x^2+y^2)(x^2+2y^2)\ & imes (x^4-x^2y^2+y^4)(3x^4+3x^2y^2+y^4)(x^4+3x^2y^2+3y^4) \end{aligned}$$

$$L_{a,b} = rac{\log(a+b)}{\log Q(ab(a+b))} pprox rac{20lpha \log Y}{(21lpha+1)\log Y}$$

$$egin{aligned} a &= (x^2+y^2)^7 (x^2-y^2) (x^4-x^2y^2+y^4) \ b &= y^{14} (2x^2+y^2) (3x^4+3x^2y^2+y^4) \ X &= Y^lpha, \ 1 < lpha < 3 \ a+b &= x^{14} (x^2+2y^2) (x^4+3x^2y^2+3y^4) \end{aligned}$$

$$egin{aligned} f(x,y) &= xy(x+y)(x-y)(x^2+y^2)(2x^2+y^2)(x^2+2y^2) \ & imes (x^4-x^2y^2+y^4)(3x^4+3x^2y^2+y^4)(x^4+3x^2y^2+3y^4) \end{aligned}$$

$$L_{a,b} = rac{\log(a+b)}{\log Q(ab(a+b))} pprox rac{20lpha}{21lpha+1}$$

 $1 < \alpha < 3 \implies$

 $1 < \alpha < 3 \implies ?? < L_{a,b} < ??$

$$egin{aligned} L_{a,b} &= rac{\log(a+b)}{\log Qig(ab(a+b)ig)} pprox rac{20lpha}{21lpha+1} \ 1 &< lpha < 3 \implies rac{10}{11} < L_{a,b} < rac{15}{16} \end{aligned}$$

Comment: This shows [10/11, 15/16] is contained in the set of limit points of $L_{a,b}$. A similar argument is given for other subintervals of [1/3, 36/37] (not all involving Padé approximations).