Different Uses of Diophantine Analysis in
 the Theory of Irreducibility

Michael Filaseta
University of South Carolina

Simple Puzzle: What two numbers can be written as a sum with summands from

$$
\{2,3,3\}
$$

and also as a sum with summands from

$$
\{1,3,4\}
$$

and also as a sum with summands from

$$
\{2,2,2,2\} ?
$$

Answers: 8, 0

Needed Background: Newton Polygons

Required Elements:

$$
\begin{aligned}
& f(x) \text {, a polynomial in } \mathbb{Z}[x] \text { (or in } \mathbb{Q}[x]) \\
& \quad p, \text { a prime }
\end{aligned}
$$

Terminology:
Newton polygon of $f(x)$ (with respect to p)

How to Construct the Newton polygon of $f(x)$

Write $f(x)=\sum_{j=0}^{n} p^{k_{j}} b_{j} x^{j}$ where $p \nmid b_{j}$ and $b_{n} b_{0} \neq 0$.
Make a grid with width $n=\operatorname{deg} f \&$ height $\max \left\{k_{j}\right\}$.
Plot the points $\left(n-j, k_{j}\right)$.
The lower convex hull of these points is the Newton polygon of $f(x)$ with respect to p.

Now to Try an Example $f(x)=42 x^{8}+20 x^{7}+15 x^{6}+150 x^{4}+2700 x^{2}+81000$ $p=5$
$5^{0} \cdot 42 x^{8}+5^{1} \cdot 4 x^{7}+5^{1} \cdot 3 x^{6}+5^{2} \cdot 6 x^{4}+5^{2} \cdot 108 x^{2}+5^{3} \cdot 648$

The Newton polygon of $f(x)$ with respect to 5

Dumas' Theorem: The Newton polygon of $g(x) h(x)$ can be formed by translating the edges of the Newton polygons of $g(x)$ and $h(x)$.

Dumas' Theorem: The Newton polygon of $g(x) h(x)$ can be formed by translating the edges of the Newton polygons of $g(x)$ and $h(x)$.

Dumas' Theorem: The Newton polygon of $g(x) h(x)$ can be formed by translating the edges of the Newton polygons of $g(x)$ and $h(x)$.

Recall: The above is the Newton polygon of $f(x)$ with respect to 5 .

What can we say about quadratic factors of $f(x)$?

Dumas' Theorem: The Newton polygon of $g(x) h(x)$ can be formed by translating the edges of the Newton polygons of $g(x)$ and $h(x)$.

Note: The degree of a factor of $f(x)$ must be the sum of horizontal distances between consecutive lattice points on any Newton polygon of $f(x)$.

$$
f(x)=42 x^{8}+20 x^{7}+15 x^{6}+150 x^{4}+2700 x^{2}+81000
$$

$$
p=3
$$

The Newton polygon of $f(x)$ with respect to 3

What can we say about quadratic factors of $f(x)$?

$$
f(x)=42 x^{8}+20 x^{7}+15 x^{6}+150 x^{4}+2700 x^{2}+81000
$$

$$
p=2
$$

The Newton polygon of $f(x)$ with respect to 2

What are the possible degrees of factors of $f(x)$?

Simple Puzzle: What two numbers can be written as a sum with summands from

$$
\{2,3,3\}
$$

and also as a sum with summands from

$$
\{1,3,4\}
$$

and also as a sum with summands from

$$
\{2,2,2,2\} ?
$$

$$
\begin{gathered}
f(x)=42 x^{8}+20 x^{7}+15 x^{6}+150 x^{4}+2700 x^{2}+81000 \\
\text { is irreducible }
\end{gathered}
$$

Eisenstein's Criterion: If $f(x)=\sum_{j=0}^{n} a_{j} x^{j} \in \mathbb{Z}[x]$ and there is a prime p such that $p \nmid a_{n}, p \mid a_{j}$ for $j<n$, and $p^{2} \nmid a_{0}$, then f is irreducible over $\mathbb{Q}[x]$.

Eisenstein's Criterion Restated: If $f \in \mathbb{Z}[x]$ and the Newton polygon of f with respect to p looks something like

then f is irreducible over \mathbb{Q}.

Example: Let $f(x) \in \mathbb{Z}[x]$ and k be a positive integer. Suppose for some prime p the Newton polygon of $f(x)$ with respect to p looks like:

Then $f(x)$ cannot have a factor of degree k.

If (a, b) and (c, d), with $a<c$, are two lattice points on an edge with positive slope, then

$$
\frac{1}{c-a} \leq \frac{d-b}{c-a}<\frac{1}{k} \quad \Longrightarrow \quad c-a>k
$$

Thus, $f(x)$ cannot have a factor of degree k as the horizontal distances between lattice points can't sum to k.

Theorem (I. Schur): Let $a_{n}, a_{n-1}, \ldots, a_{0}$ denote arbitrary integers with $\left|a_{n}\right|=\left|a_{0}\right|=1$. Then

$$
a_{n} \frac{x^{n}}{n!}+a_{n-1} \frac{x^{n-1}}{(n-1)!}+\cdots+a_{2} \frac{x^{2}}{2!}+a_{1} x+a_{0}
$$

is irreducible over \mathbb{Q}.

Notes:
Schur (1929) used prime ideals in number fields but with a "hint" of Newton polygons.

Coleman (1987): Used Newton polygons for $a_{j}=1$.
Both obtained information about the Galois groups.

$$
f(x)= \pm \frac{x^{n}}{n!}+a_{n-1} \frac{x^{n-1}}{(n-1)!}+\cdots+a_{2} \frac{x^{2}}{2!}+a_{1} x \pm 1
$$

Assume $n!\cdot f(x)$ has a factor of degree $k \in[1, n / 2]$. The coefficient of x^{n-j} is $a_{n-j} n(n-1) \cdots(n-j+1)$.

Sylvester (1892) showed that the product of k consecutive integers $>k$ has a prime factor $>k$.

Hence, there is a prime $p \geq k+1$ dividing

$$
n(n-1)(n-2) \cdots(n-k+1)
$$

Note: $p \mid a_{n-j} n(n-1) \cdots(n-j+1)$ for each $j \geq k$.

slope $=\max \left\{\frac{\nu_{p}(n!)-\nu_{p}\left(a_{j} n!/ j!\right)}{j}\right\} \leq \max \left\{\frac{\nu_{p}(j!)}{j}\right\}$

$$
=\max \left\{\frac{1}{j} \sum_{u=1}^{\infty}\left[\frac{j}{p^{u}}\right]\right\}<\frac{1}{p-1} \leq \frac{1}{k} \square
$$

Two Important Properties of the Prime p :

- $p \mid n(n-1) \cdots(n-k+1) \quad$ (so left part is $\leq k-1)$
- p is large (so that the right slope is $<1 / k$)

Theorem (F., 1996): Let $a_{n}, a_{n-1}, \ldots, a_{0}$ denote arbitrary integers with $\left|a_{0}\right|=1$ and $0<\left|a_{n}\right|<n$. Then

$$
a_{n} \frac{x^{n}}{n!}+a_{n-1} \frac{x^{n-1}}{(n-1)!}+\cdots+a_{2} \frac{x^{2}}{2!}+a_{1} x+a_{0}
$$

is irreducible over the rationals unless

$$
\left(a_{n}, n\right) \in\{(\pm 5,6),(\pm 7,10)\}
$$

Comment: The result is "best" possible.

Lemma: Let k be an integer $\in[2, n / 2]$. Then

$$
\prod_{\substack{p^{r}| | n(n-1) \cdots(n-k+1) \\ p \geq k+1}} p^{r}>n
$$

unless one of the following holds:

$$
\begin{array}{rll}
n=12 & \text { and } & k=5 \\
n=10 & \text { and } & k=5 \\
n=9 & \text { and } & k=4 \\
n=18 & \text { and } & k=3 \\
n=10 & \text { and } & k=3 \\
n=9 & \text { and } & k=3 \\
n=8 & \text { and } & k=3 \\
n=6 & \text { and } & k=3 \\
n=2^{\ell}+1 & \text { and } & k=2 \\
n=2^{\ell} & \text { and } & k=2,
\end{array}
$$

where ℓ represents an arbitrary positive integer.

Theorem (M. Allen \& F., 2004): Let a_{n}, a_{n-1}, \ldots, a_{0} denote arbitrary integers with $a_{0}= \pm 1$ and $0<\left|a_{n}\right|<2 n-1$. Then

$$
\sum_{j=0}^{n} a_{j} \frac{x^{2 j}}{\prod_{1 \leq u \leq j}(2 u-1)}
$$

is irreducible over the rationals.

Lemma: Let k be an odd integer in $[3, n]$. Then

$$
\prod_{p^{r} \|(2 n-1)(2 n-3) \cdots(2 n-k)} p^{r}>k+2 n-1
$$

unless one of the following conditions hold:
$k=3$ and either $2 n-1$ or $2 n-3$ is a power of 3

$$
\begin{aligned}
& k=5 \text { and } n \in\{5,14,15\} \\
& k=7 \text { and } n=14
\end{aligned}
$$

Lemma (D. H. Lehmer, 1964): Let $P(m)$ denote the largest prime factor of m. If m is an odd positive integer >243, then

$$
P(m(m+2)) \geq 11 \quad \text { and } \quad P(m(m+4)) \geq 11
$$

$$
f(x)=\sum_{j=0}^{n} \frac{(n+j)!}{2^{j}(n-j)!j!} x^{j}
$$

(Bessel polynomials)

Lemma: Let n be a positive integer. Suppose that p is a prime and that k and r are positive integers for which:
(i) $p^{r}| | n(n-1) \cdots(n-k+1)$
(ii) $p \geq 2 k+1$
(iii) $\frac{\log (2 n)}{p^{r} \log p}+\frac{1}{p-1} \leq \frac{1}{k}$

Then $f(x)$ cannot have a factor of degree k.

Lemma: Let n be a positive integer. Suppose that p is a prime and that k and r are positive integers for which:
(i) $p^{r}| | n(n-1) \cdots(n-k+1)$
(ii) $p \geq 2 k+1$
(iii) $\frac{\log (2 n)}{p^{r} \log p}+\frac{1}{p-1} \leq \frac{1}{k}$

Then $f(x)$ cannot have a factor of degree k.

Idea: Use similar lemmas and consider different ranges of $k \in[1, n / 2]$. The larger p is the better. So take advantage of information concerning large prime factors of $n(n-1) \cdots(n-k+1)$.

Theorem (O. Trifonov \& F., 2002): Let n denote a positive integer, and let $a_{0}, a_{1}, \ldots, a_{n}$ be arbitrary integers with $\left|a_{0}\right|=\left|a_{n}\right|=1$. Then

$$
\sum_{j=0}^{n} a_{j} \frac{(n+j)!}{2^{j}(n-j)!j!} x^{j}
$$

is irreducible over the rationals.

The Generalized Laguerre Polynomials

$$
\begin{gathered}
L_{n}^{(\alpha)}(x)=\sum_{j=0}^{n} \frac{(n+\alpha)(n-1+\alpha) \cdots(j+1+\alpha)(-x)^{j}}{(n-j)!j!} \\
L_{n}^{(-n-1)}(x)=(-1)^{n}\left(\frac{x^{n}}{n!}+\frac{x^{n-1}}{(n-1)!}+\cdots+\frac{x^{2}}{2!}+x+1\right) \\
\quad\left(\frac{x}{2}\right)^{n} L_{n}^{(-2 n-1)}\left(\frac{2}{x}\right)=\frac{(-1)^{n}}{n!} \cdot \sum_{j=0}^{n} \frac{(n+j)!}{2^{j}(n-j)!j!} x^{j}
\end{gathered}
$$

(pointed out to me by F. Hajir)

Brief History: D. Hilbert (1892) showed, using what is now Hilbert's Irreducibility Theorem, that for n a positive integer, there are polynomials in $Q[x]$ with Galois group over \mathbb{Q} the symmetric group S_{n} and polynomials in $Q[x]$ with Galois group over \mathbb{Q} the alternating group A_{n}. His proof was not constructive. B. L. van der Waerden (1934) showed that almost all polynomials in $\mathbb{Z}[x]$ have Galois group S_{n}. In the late 1920's and early 1930's, I. Schur showed that
$n \equiv 1(\bmod 2) \Longrightarrow L_{n}^{(1)}(x)$ has Galois group A_{n} $n \equiv 0(\bmod 4) \Longrightarrow L_{n}^{(-n-1)}(x)$ has Galois group A_{n}
R. Gow (1989) showed if $n \equiv 2(\bmod 4)$ and $L_{n}^{(n)}(x)$ is irreducible, then $L_{n}^{(n)}(x)$ has Galois group A_{n}.

Theorem (T. Kidd, O. Trifonov, F.): For every integer $n>2$ with $n \equiv 2(\bmod 4)$, the polynomial $L_{n}^{(n)}(x)$ is irreducible over \mathbb{Q}.

Comment: In addition to lemmas similar to those needed for the previous irreducibility results, the following was important, in particular, to establish that $L_{n}^{(n)}(x)$ does not have a small degree factor.

Lemma (M. Bennett, O. Trifonov, F.): Let m be a positive integer not in the set $\{1,2,3,8\}$. Then $m(m+1)$ has a divisor that is relatively prime to 6 and greater than $m^{0.27}$.

Theorem (T. Kidd, O. Trifonov, F.): For every integer $n>2$ with $n \equiv 2(\bmod 4)$, the polynomial $L_{n}^{(n)}(x)$ is irreducible over \mathbb{Q}.

Comment: In addition to lemmas similar to those needed for the previous irreducibility results, the following was important, in particular, to establish that $L_{n}^{(n)}(x)$ does not have a small degree factor.

Lemma (M. Bennett, O. Trifonov, F.): Let m be a positive integer not in the set $\{1,2,3,8\}$. Then

$$
\prod_{\substack{r(m+1)}} p^{r \geq m^{0.27}}
$$

A Similar (but Seemingly Hard) Diophantine Problem

"More" could be said about the irreducibility of

$$
\sum_{j=0}^{n} a_{j} \frac{x^{2 j}}{\prod_{1 \leq u \leq j}(2 u+1)}
$$

with an effective version of the

Lemma: For n a sufficiently large integer,

$$
\prod_{\substack{p^{r} \|(2 n+1)(2 n-1)(2 n-3) \\ p \geq 11}} p^{r}>2 n+1 .
$$

