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Simple Puzzle: What two numbers can be written
as a sum with summands from

{2,3,3}

and also as a sum with summands from

{1, 3,4}

and also as a sum with summands from

{2,2,2,2}7?

Answers: 8, 0




Needed Background: Newton Polygons

Required Elements:

f(x),a polynomial in Z[x| (or in Q[x])

P, a prime

Terminology:

Newton polygon of f(x) (with respect to p)




How to Construct the Newton polygon of f(x)

Write f(x) = Zpkjbjmj where p 1 b; and b,by # 0.

j=0

Make a grid with width n = deg f & height max{k;}.
Plot the points (n — j, k;).

The lower convex hull of these points is the Newton

polygon of f(x) with respect to p.




Now to Try an Example

f(x) = 422% 4+ 202" +152°% 4+ 150x* 4+ 2700x* + 81000
p=>o
5%.422% 45 42" +5'.32%4-5%.62*+5%- 1082+ 5°-648

The Newton polygon of f(x) with respect to 5
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oo
//
Dumas’ Theorem: The Newton polygon of g(x)h(x)

can be formed by translating the edges of the New-
ton polygons of g(x) and h(x).
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oo
//
Dumas’ Theorem: The Newton polygon of g(x)h(x)

can be formed by translating the edges of the New-
ton polygons of g(x) and h(x).
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oo
//
Dumas’ Theorem: The Newton polygon of g(x)h(x)

can be formed by translating the edges of the New-
ton polygons of g(x) and h(x).

Recall: The above is the Newton polygon of f(x)
with respect to 5.

What can we say about quadratic factors of f(x)?




oo
//
Dumas’ Theorem: The Newton polygon of g(x)h(x)

can be formed by translating the edges of the New-
ton polygons of g(x) and h(x).

Note: The degree of a factor of f(x) must be the
sum of horizontal distances between consecutive
lattice points on any Newton polygon of f(x).




f(x) = 422% 4+ 202" +152°% 4+ 150x* + 2700x% + 81000
p=3

The Newton polygon of f(x) with respect to 3

N

What can we say about quadratic factors of f(x)?




f(x) = 422% 4+ 202" +152°% 4+ 150x* + 2700x% + 81000
p=2

The Newton polygon of f(x) with respect to 2
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What are the possible degrees of factors of f(x)?




Simple Puzzle: What two numbers can be written
as a sum with summands from

{2,3,3}

and also as a sum with summands from

{1, 3,4}

and also as a sum with summands from

{2,2,2,2}7

f(x) = 422% 4+ 202" 4+ 152°% 4+ 150x* + 2700x* + 81000

i1s irreducible




Eisenstein’s Criterion: If f(x) = Zajwj € Zlx]
3=0

and there is a prime p such that p 1 a,, p|la; for
j < n, and p?{ ag, then f is irreducible over Q[z].

Eisenstein’s Criterion Restated: If f € Z[x] and
the Newton polygon of f with respect to p looks

something like

then f is irreducible over Q.




Example: Let f(x) € Z|x] and k be a positive
integer. Suppose for some prime p the Newton
polygon of f(x) with respect to p looks like:

slope < 1/k
N

N

\

_J/

<k-—1

Then f(x) cannot have a factor of degree k.




slope < 1/k
N
<

If (a,b) and (c,d), with a < ¢, are two lattice
points on an edge with positive slope, then

1 d—>b 1
< <E — C—CL>IC.

c—a c—a
Thus, f(x) cannot have a factor of degree k as

the horizontal distances between lattice points
can’t sum to k.




Theorem (I. Schur): Let a,, a,_1, ...,a9 denote

arbitrary integers with |a,| = |ag| = 1. Then
" :Bn—l 5132
a,— + a,,_ Feeo+a0o— 4+ a1 + a
nn' n 1(n - 1)' I 22! 1 0

1s 1rreducible over Q.

Notes:

Schur (1929) used prime ideals in number fields but
with a “hint” of Newton polygons.

Coleman (1987): Used Newton polygons for a; = 1.

Both obtained information about the Galois groups.




wn CEn_l ZBZ

f(x) = £— +a I---—I—agg—l—alw::l

n! " n—1)!

Assume n!- f(x) has a factor of degree k € [1,n/2].
The coefficient of "7 is a,,_jn(n—1) -+ (n—j+1).

Sylvester (1892) showed that the product of k con-
secutive integers > k has a prime factor > k.

Hence, there is a prime p > k 4+ 1 dividing
nn—1)(n—2)---(n—k—+1).

Note: pla,—_jn(n—1)---(n—35+1) for each 3 > k.




?

slope < 1/k
N

N

O
<k-—1

(vp(n!) — pp(a;nl/jl) vp(J!)

slope = max < _ < max .
\ J J
(1 N[ 9 1 1

— max q — [i]}<—§—.

\J = Lp® p—1" k




slope < 1/k
N

N

@

J/

<k-—1

Two Important Properties of the Prime p:
e pln(n—1)---(n—k+1) (so left partis < k—1)

e p is large (so that the right slope is < 1/k)




Theorem (F., 1996): Let a,,a,_1,...,0a9 denote

arbitrary integers with |ag] =1 and 0 < |a,| < n.
Then
r" N ZBn_l | N CBZ N N
ap— + Qp_ oo+ ay—+ a1+ a
n! "(n— 1)1 for T ’

18 1rreducible over the rationals unless

(an,mn) € {(£5,6), (£7,10)}.

Comment: The result is “best” possible.




Lemma: Let k be an integer € [2,n/2]. Then

I »>n

p"||n(n—1)--(n—k+1)
p>k+1

unless one of the following holds:

n=12 and k=5
n=10 and k=5
n = and k=4
n=18 and k=3
n=10 and k=3

n = and k=3
n = and k=3
n = and k=3

n:2£—|—1 and k =2
n=2" and k=2,

where £ represents an arbitrary positive integer.




Theorem (M. Allen & F'., 2004): Let a,,an,_1,-..,

ay denote arbitrary integers with ag = =1 and
0 < |a,| <2n —1. Then

jz:%aj ] 2u-1)

1<u<j

2j

18 1rreducible over the rationals.




Lemma: Let k be an odd integer in [3,n]. Then

H p"->2n—1

p"||(2n—1)(2n—3)---(2n—k)
p=>k—+2

unless one of the following conditions hold:
k = 3 and either 2n — 1 or 2n — 3 is a power of 3
k=5 and n € {5,14,15}
k=T7and n =14

Lemma (D. H. Lehmer, 1964): Let P(m) denote
the largest prime factor of m. If m is an odd posi-

tive integer > 243, then
P(im(m+2)) >11 and P(m(m +4)) > 11.




(n+ j)!

( o ,'wj (Bessel polynomials)
n—7)y!

fl@) =2 3

Lemma: Let n be a positive integer. Suppose that
p s a prime and that k and r are positive integers

for whaich:
(i) p'lln(n—-1)---(n—k+1)
(i1) p>2k+1
1 2 1 1
(iii) 082 <
p'logp p-—1 k
Then f(x) cannot have a factor of degree k.




Lemma: Let n be a positive integer. Suppose that
p 18 a prime and that k and r are positive integers

for whach:
(¢) plln(n —1).--(n —k+1)
(it) p>2k+1
1 2 1 1
(iii) 082 <
ptlogp p—1"k
Then f(x) cannot have a factor of degree k.

Idea: Use similar lemmas and consider different
ranges of k € [1,n/2]. The larger p is the better.
So take advantage of information concerning large
prime factors of n(n —1):--(n — k + 1).




Theorem (O. Trifonov & F., 2002): Let n denote a
positive integer, and let ag, a4, ...,a, be arbitrary
integers with |ag| = |a,| = 1. Then

18 1rreducible over the rationals.




The Generalized Laguerre Polynomials

LO)(z) = S (nE) 1 ta) (G+1+a)(==z)

o (n —j)!5!
L V(x) = (-1)" (':: | (:i_l)! e ‘j - 1)
(i ()= SF Eaathe

(pointed out to me by F. Hajir)




Brief History: D. Hilbert (1892) showed, using
what is now Hilbert’s Irreducibility Theorem, that
for n a positive integer, there are polynomials in
Q|x] with Galois group over Q the symmetric group
S, and polynomials in Q[x] with Galois group over
Q the alternating group A,,. His proof was not con-
structive. B. L. van der Waerden (1934) showed
that almost all polynomials in Z[x] have Galois
group S,. In the late 1920’s and early 1930’s,
I. Schur showed that

=1 (mod 2) = LY(z) has Galois group A,
n =0 (mod 4) — sz_”_l)(a:) has Galois group A,

R. Gow (1989) showed if n =2 (mod 4) and L{"(zx)
is irreducible, then L{™(x) has Galois group A,.




Theorem (T. Kidd, O. Trifonov, F.): For every
integer n > 2 with n = 2 (mod 4), the polynomzial
L™ (z) is irreducible over Q.

Comment: In addition to lemmas similar to those
needed for the previous irreducibility results, the
following was important, in particular, to establish
that L{"(z) does not have a small degree factor.

Lemma (M. Bennett, O. Trifonov, F.): Let m be
a positive integer not in the set {1,2,3,8}. Then

m(m

6 and greater than m

1) has a divisor that is relatively prime to
0.27




Theorem (T. Kidd, O. Trifonov, F.): For every
integer n > 2 with n = 2 (mod 4), the polynomzial
L™ (z) is irreducible over Q.

Comment: In addition to lemmas similar to those
needed for the previous irreducibility results, the
following was important, in particular, to establish
that L{"(z) does not have a small degree factor.

Lemma (M. Bennett, O. Trifonov, F.): Let m be
a positive integer not in the set {1,2,3,8}. Then

H p'r Z m0.27.

p"||m(m+1)
pP=>5




A Similar (but Seemingly Hard) Diophantine Problem

“More” could be said about the irreducibility of

Z%

r2J

] 2u+1)

1Sus)

with an effective version of the

Lemma: For n a sufficiently large integer,

H p" > 2n + 1.

p"||(2n+1)(2n—1)(2n—3)
p=>11




