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Simple Puzzle: What two numbers can be written
as a sum with summands from

{2, 3, 3}
and also as a sum with summands from

{1, 3, 4}
and also as a sum with summands from

{2, 2, 2, 2} ?

8 0

The Newton polygon of f(x) with respect to 2

What are the possible degrees of factors of f(x)?
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Answers:

Note: p|an−jn(n−1) · · · (n−j+1) for each j ≥ k.∏
pr‖m(m+1)

p≥5

pr ≥ m0.27.
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f(x), a polynomial in Z[x] (or in Q[x])

Required Elements:

p, a prime

Terminology:

Newton polygon of f(x) (with respect to p)

Needed Background:

Newton Polygons

Needed Background:

Newton Polygons



How to Construct the Newton polygon of f(x)
Needed Background:

Newton Polygons

Write f(x) =
n∑

j=0

pkjbjx
j where p ! bj and bnb0 != 0.
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Plot the points (n − j, kj).

The lower convex hull of these points is the Newton polygon of f(x)

with respect to p.
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Now to Try an Example

f(x) = 42x8+20x7+15x6+150x4+2700x2+81000
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3·14x8+30·20x7+3·5x6+3·50x4+33·100x2+34·1000

p = 3 p = 5 p = 2
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The Newton polygon of f(x) with respect to 5



Dumas’ Theorem: The Newton polygon of g(x)h(x)
can be formed by translating the edges of the New-
ton polygons of g(x) and h(x).
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What can we say about quadratic factors of f(x)?



Dumas’ Theorem: The Newton polygon of g(x)h(x)
can be formed by translating the edges of the New-
ton polygons of g(x) and h(x).

Theorem (I. Schur): Let an, an−1, . . . , a0 denote
arbitrary integers with |an| = |a0| = 1. Then

an
xn

n!
+ an−1

xn−1

(n − 1)!
+ · · · + a2

x2

2!
+ a1x + a0

is irreducible over Q.

Note: The degree of a factor of f(x) must be the
sum of horizontal distances between consecutive
lattice points on any Newton polygon of f(x).
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is irreducible



Eisenstein’s Criterion: If f(x) =
n∑

j=0

ajx
j ∈ Z[x]

and there is a prime p such that p ! an, p|aj for
j < n, and p2 ! a0, then f is irreducible over Q[x].

Eisenstein’s Criterion Restated: If f ∈ Z[x] and
the Newton polygon of f with respect to p looks
something like

then f is irreducible over Q.



Example: Let f(x) ∈ Z[x] and k be a positive
integer. Suppose for some prime p the Newton
polygon of f(x) with respect to p looks like:

Then f(x) cannot have a factor of degree k.

≤ k−1 slope < 1/k
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If (a, b) and (c, d), with a < c, are two lattice
points on an edge with positive slope, then

1

c − a
≤ d − b

c − a
<

1

k
=⇒ c − a > k.

If (a, b) and (c, d), with a < c, are two lattice
points on an edge with positive slope, then

1

c − a
≤ d − b

c − a
<

1

k
=⇒ c − a > k.

If (a, b) and (c, d), with a < c, are two lattice
points on an edge with positive slope, then

1

c − a
≤ d − b

c − a
<

1

k
=⇒ c − a > k.

Thus, f(x) cannot have a factor of degree k as
the horizontal distances between lattice points
can’t sum to k.



Theorem (I. Schur): Let an, an−1, . . . , a0 denote
arbitrary integers with |an| = |a0| = 1. Then
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2!
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is irreducible over Q.
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sum of horizontal distances between consecutive
lattice points on any Newton polygon of f(x).
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Schur used prime ideals in number fields.
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f(x) = ±1 f(x) = ± 1f(x) = ± 1
f(x) = ± 1

Assume n! ·f(x) has a factor of degree k ∈ [1, n/2].

The coefficient of xn−j is an−jn(n−1) · · · (n−j+1).

Sylvester (1892) showed that the product of k con-
secutive integers > k has a prime factor > k.

Hence, there is a prime p ≥ k + 1 dividing

n(n − 1)(n − 2) · · · (n − k + 1).
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The coefficient of xn−j is an−jn(n−1) · · · (n−j+1).

Sylvester (1892) showed that the product of k con-
secutive integers > k has a prime factor > k.

Hence, there is a prime p ≥ k + 1 dividing

n(n − 1)(n − 2) · · · (n − k + 1).

Note: p|an−jn(n−1) · · · (n−j+1) for each j ≥ k.



Example: Suppose k is a positive integer, p is a
prime and the Newton polygon of f(x) ∈ Z[x]
looks like:

Then f(x) cannot have a factor of degree k.

≤ k − 1 slope < 1/k︸ ︷︷ ︸

Example: Suppose k is a positive integer, p is a
prime and the Newton polygon of f(x) ∈ Z[x]
looks like:
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prime and the Newton polygon of f(x) ∈ Z[x]
looks like:

Then f(x) cannot have a factor of degree k.

≤ k−1 slope < 1/k
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?

slope = max

{
νp(n!) − νp(ajn!/j!)

j

}
≤ max

{
νp(j!)

j

}
= max

{
1

j

∞∑
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[
j

pu
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≤ 1
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?
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[
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p − 1
≤ 1

k
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Two Important Properties of p:

• p|n(n−1) · · · (n−k+1) (so left part is ≤ k−1)

• p is large (so that the right slope is < 1/k)
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Theorem (F., 1996): Let an, an−1, . . . , a0 denote
arbitrary integers with |a0| = 1 and 0 < |an| < n.
Then

an
xn

n!
+ an−1

xn−1

(n − 1)!
+ · · · + a2

x2

2!
+ a1x + a0

is irreducible. over the rationals unless

(an, n) ∈ {(±5, 6), (±7, 10)}.

Comment: The result is
“best” possible.
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Lemma: Let k be an integer ∈ [2, n/2]. Then∏
pr||n(n−1)···(n−k+1)

p≥k+1

pr > n

unless one of the following holds:

n = 12 and k = 5

n = 10 and k = 5

n = 9 and k = 4

n = 18 and k = 3

n = 10 and k = 3

n = 9 and k = 3

n = 8 and k = 3

n = 6 and k = 3

n = 2! + 1 and k = 2

n = 2! and k = 2,

where ! represents an arbitrary positive integer.



Theorem (M. Allen & F., 2004): Let an, an−1, . . . ,
a0 denote arbitrary integers with a0 = ±1 and
0 < |an| < 2n − 1. Then

n∑
j=0

aj
x2j∏

1≤u≤j

(2u − 1)

is irreducible over the rationals.



Lemma: Let k be an odd integer in [3, n]. Then∏
pr‖(2n−1)(2n−3)···(2n−k)

p≥k+2

pr > 2n − 1

unless one of the following conditions hold:

k = 3 and either 2n − 1 or 2n − 3 is a power of 3

k = 5 and n ∈ {5, 14, 15}
k = 7 and n = 14

Lemma (D. H. Lehmer, 1964): Let P (m) denote
the largest prime factor of m. Ifm is an odd posi-
tive integer > 243, then

P (m(m + 2)) ≥ 11 and P (m(m + 4)) ≥ 11.
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f(x) =
n∑

j=0

(n + j)!

2j(n − j)!j!
xj

Lemma: Let n be a positive integer. Suppose that
p is a prime and that k and r are positive integers
for which:

(i) pr||n(n − 1) · · · (n − k + 1)

(ii) p ≥ 2k + 1

(iii)
log(2n)

pr log p
+

1

p − 1
≤ 1

k
Then f(x) cannot have a factor of degree k.

(Bessel polynomials)

Idea: Use similar lemmas and consider different
ranges of k ∈ [1, n/2]. The larger p is the better.
So take advantage of information concerning large
prime factors of n(n − 1) · · · (n − k + 1).
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Theorem (O. Trifonov & F., 2002): Let n denote a
positive integer, and let a0, a1, . . . , an be arbitrary
integers with |a0| = |an| = 1. Then
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is irreducible over the rationals.
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(pointed out to me by F. Hajir)



Brief History: D. Hilbert (1892) showed, using
what is now Hilbert’s Irreducibility Theorem, that
for n a positive integer, there are polynomials in
Q[x] with Galois group over Q the symmetric group
Sn and polynomials in Q[x] with Galois group over
Q the alternating group An. His proof was not con-
structive. B. L. van der Waerden (1934) showed
that almost all polynomials in Z[x] have Galois
group Sn. In the late 1920’s and early 1930’s,
I. Schur showed that

n ≡ 1 (mod 2) =⇒ L(1)
n (x) has Galois group An

n ≡ 0 (mod 4) =⇒ L(−n−1)
n (x) has Galois group An

R. Gow (1989) showed if n ≡ 2 (mod 4) and L(n)
n (x)

is irreducible, then L(n)
n (x) has Galois group An.



Theorem (T. Kidd, O. Trifonov, F.): For every
integer n > 2 with n ≡ 2 (mod 4), the polynomial
L(n)

n (x) is irreducible over Q.

Comment: In addition to lemmas similar to those
needed for the previous irreducibility results, the
following was important, in particular, to establish
that L(n)

n (x) does not have a small degree factor.

Lemma (M. Bennett, O. Trifonov, F.): Let m be
a positive integer not in the set {1, 2, 3, 8}. Then
m(m + 1) has a divisor that is relatively prime to
6 and greater than m0.27.
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Note: p|an−jn(n−1) · · · (n−j+1) for each j ≥ k.∏
pr‖m(m+1)

p≥5

pr ≥ m0.27.



A Similar (but Seemingly Hard) Diophantine Problem

“More” could be said about the irreducibility of
n∑

j=0

aj
x2j∏

1≤u≤j

(2u + 1)

with an effective version of the

Lemma: For n a sufficiently large integer,∏
pr‖(2n+1)(2n−1)(2n−3)

p≥11

pr > 2n + 1.
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