Problem 4:

Problem 4:

What's the perimeter?

Problem 4:

What's the perimeter?

Problem 4:

What's the perimeter?

Problem 4:

What's the perimeter?
$2 \times(12+16)=56$

Problem 4:

What's the perimeter?

$2 \times(12+16)=56$

Problem 9:

(~)

What's the perimeter of this quadrilateral?

Problem 9:

What's the perimeter of this quadrilateral?

Problem 9:

What's the perimeter of this quadrilateral?

Problem 9:

What's the perimeter of this quadrilateral? 52

Problem 12:

$a^{2}-b^{2}=2003$

Problem 12:

$$
a^{2}-b^{2}=2003 \Longrightarrow a^{2}+b^{2}=\text { ? }
$$

Problem 12:

$$
\begin{gathered}
a^{2}-b^{2}=2003 \Longrightarrow a^{2}+b^{2}=? \\
a>0 \quad b>0
\end{gathered}
$$

Problem 12:

$$
\begin{gathered}
a^{2}-b^{2}=2003 \Longrightarrow a^{2}+b^{2}=? \\
a>b \quad b>0
\end{gathered}
$$

Problem 12:

$$
\begin{gathered}
a^{2}-b^{2}=2003 \Longrightarrow a^{2}+b^{2}=? \\
a>b \quad b>0 \\
2003=a^{2}-b^{2}
\end{gathered}
$$

Problem 12:

$$
\begin{gathered}
a^{2}-b^{2}=2003 \Longrightarrow a^{2}+b^{2}=? \\
a>b \quad b>0 \\
2003=a^{2}-b^{2}=(a-b)(a+b)
\end{gathered}
$$

Problem 12:

$$
\begin{aligned}
& a^{2}-b^{2}=2003 \Longrightarrow a^{2}+b^{2}=? \\
& \qquad a>b \quad b>0 \\
& \underbrace{2003}_{\substack{\uparrow \\
\text { prime }}}=a^{2}-b^{2}=(a-b)(a+b)
\end{aligned}
$$

Problem 12:

$$
a^{2}-b^{2}=2003 \Longrightarrow a^{2}+b^{2}=\text { ? }
$$

$$
a>b \quad b>0
$$

Problem 12:

$$
\begin{aligned}
a^{2}-b^{2}= & 2003 \Longrightarrow \\
& a^{2}+b^{2}=? \\
& a>b \quad b>0 \\
2003= & a^{2}-b^{2}=(a-b)(a+b) \\
a-b= & 1 \\
a+b= & 2003
\end{aligned}
$$

Problem 12:

$$
\begin{gathered}
a^{2}-b^{2}=2003 \Longrightarrow a^{2}+b^{2}=? \\
\begin{array}{c}
a>b
\end{array} \quad b>0 \\
2003=a^{2}-b^{2}=(a-b)(a+b) \\
\left.\begin{array}{l}
a-b=1 \\
a+b=2003
\end{array}\right\} \Longrightarrow \begin{array}{l}
a=1002 \\
b=1001
\end{array}
\end{gathered}
$$

Problem 12:

$$
\begin{gathered}
a^{2}-b^{2}=2003 \Longrightarrow a^{2}+b^{2}=2006005 \\
\begin{array}{c}
a>b
\end{array} \quad b>0 \\
2003=a^{2}-b^{2}=(a-b)(a+b) \\
\left.\begin{array}{l}
a-b=1 \\
a+b=2003
\end{array}\right\} \Longrightarrow \begin{array}{l}
a=1002 \\
b=1001
\end{array}
\end{gathered}
$$

Problem 18:

area of circle is $20 \quad$ area of $\triangle A B C$ is 8

Problem 18:

area of circle is 20 area of $\triangle A B C$ is 8
Calculate $\sin \alpha+\sin \beta+\sin \gamma$.

Problem 18:

Problem 18:

Problem 18:

$$
\text { Area }=\frac{1}{2} h b
$$

Problem 18:

$$
\text { Area }=\frac{1}{2} h b=\frac{1}{2}(a \sin \theta) b
$$

Problem 18:

$$
\text { Area }=\frac{1}{2} h b=\frac{1}{2}(a \sin \theta) b=\frac{1}{2} a b \sin \theta
$$

Problem 18:

Problem 18:

Problem 18:

Area $=\frac{1}{2} r^{2} \sin \alpha$

Problem 18:

Area $=\frac{1}{2} r^{2} \sin \alpha+\frac{1}{2} r^{2} \sin \beta$

Problem 18:

Area $=\frac{1}{2} r^{2} \sin \alpha+\frac{1}{2} r^{2} \sin \beta+\frac{1}{2} r^{2} \sin \gamma$

Problem 18:

$$
8=\frac{1}{2} r^{2} \sin \alpha+\frac{1}{2} r^{2} \sin \beta+\frac{1}{2} r^{2} \sin \gamma
$$

Problem 18:

$$
8=\frac{1}{2} r^{2} \sin \alpha+\frac{1}{2} r^{2} \sin \beta+\frac{1}{2} r^{2} \sin \gamma
$$

$\sin \alpha+\sin \beta+\sin \gamma=\frac{16}{r^{2}}$

Problem 18:

$$
8=\frac{1}{2} r^{2} \sin \alpha+\frac{1}{2} r^{2} \sin \beta+\frac{1}{2} r^{2} \sin \gamma
$$

$\sin \alpha+\sin \beta+\sin \gamma=\frac{16}{r^{2}}$

Problem 18:

$8=\frac{1}{2} r^{2} \sin \alpha+\frac{1}{2} r^{2} \sin \beta+\frac{1}{2} r^{2} \sin \gamma$
$\sin \alpha+\sin \beta+\sin \gamma=\frac{16}{r^{2}}=\frac{16 \pi}{20}$

Problem 18:

$$
8=\frac{1}{2} r^{2} \sin \alpha+\frac{1}{2} r^{2} \sin \beta+\frac{1}{2} r^{2} \sin \gamma
$$

$$
\sin \alpha+\sin \beta+\sin \gamma=\frac{16}{r^{2}}=\frac{16 \pi}{20}=\frac{4 \pi}{5}
$$

Problem 18:

$$
8=\frac{1}{2} r^{2} \sin \alpha+\frac{1}{2} r^{2} \sin \beta+\frac{1}{2} r^{2} \sin \gamma
$$

$\sin \alpha+\sin \beta+\sin \gamma=\frac{16}{r^{2}}=\frac{16 \pi}{20}=\frac{4 \pi}{5}$

Problem 19:

$$
\begin{aligned}
& a+b^{2}+2 a c=29 \\
& b+c^{2}+2 a b=18 \\
& c+a^{2}+2 b c=25
\end{aligned}
$$

Problem 19:

$$
\begin{aligned}
& a+b^{2}+2 a c=29 \\
& b+c^{2}+2 a b=18 \\
& c+a^{2}+2 b c=25
\end{aligned}
$$

What's $a+b+c$?

Problem 19:

$$
\begin{aligned}
& a+b^{2}+2 a c=29 \\
& b+c^{2}+2 a b=18 \\
& c+a^{2}+2 b c=25 \\
& a+b+c
\end{aligned}
$$

Problem 19:

$$
\begin{array}{r}
a+b^{2}+2 a c=29 \\
b+c^{2}+2 a b=18 \\
c+a^{2}+2 b c=25 \\
a+b+c+(a+b+c)^{2}
\end{array}
$$

Problem 19:

$$
\begin{gathered}
a+b^{2}+2 a c=29 \\
b+c^{2}+2 a b=18 \\
c+a^{2}+2 b c=25 \\
a+b+c+(a+b+c)^{2}=72
\end{gathered}
$$

Problem 19:

$$
\begin{gathered}
a+b^{2}+2 a c=29 \\
b+c^{2}+2 a b=18 \\
c+a^{2}+2 b c=25 \\
\\
a+b+c+(a+b+c)^{2}=72
\end{gathered}
$$

$$
a+b+c \text { is a positive root of } x^{2}+x-72=0
$$

Problem 19:

$$
\begin{gathered}
a+b^{2}+2 a c=29 \\
b+c^{2}+2 a b=18 \\
c+a^{2}+2 b c=25 \\
a+b+c+(a+b+c)^{2}=72 \\
a+b+c \text { is a positive root of } \underbrace{x^{2}+x-72=0}_{\uparrow} \\
(x-8)(x+9)=0
\end{gathered}
$$

Problem 19:

$$
\begin{gathered}
a+b^{2}+2 a c=29 \\
b+c^{2}+2 a b=18 \\
c+a^{2}+2 b c=25 \\
a+b+c+(a+b+c)^{2}=72 \\
a+b+c \text { is a positive root of } \underbrace{x^{2}+x-72=0}_{\uparrow} \\
(x-8)(x+9)=0
\end{gathered}
$$

Problem 19:

$$
\begin{aligned}
& a+b^{2}+2 a c=29 \\
& b+c^{2}+2 a b=18 \\
& c+a^{2}+2 b c=25
\end{aligned}
$$

$$
a=4 \quad b=1 \quad c=3
$$

Problem 23:

$$
(100 x+10 y+z)^{2}=(x+y+z)^{5}
$$

Problem 23:

$$
\begin{gathered}
(100 x+10 y+z)^{2}=(x+y+z)^{5} \\
x, y, \text { and } z \text { are non-zero digits }
\end{gathered}
$$

Problem 23:

$$
\begin{gathered}
(100 x+10 y+z)^{2}=(x+y+z)^{5} \\
x, y, \text { and } z \text { are non-zero digits } \\
x^{2}+y^{2}+z^{2}=?
\end{gathered}
$$

Problem 23:

$$
N=(100 x+10 y+z)^{2}=(x+y+z)^{5}
$$

Problem 23:

$$
\begin{gathered}
N=(100 x+10 y+z)^{2}=(x+y+z)^{5} \\
N \text { is both a square and a fifth power }
\end{gathered}
$$

Problem 23:

$$
\begin{gathered}
N=(100 x+10 y+z)^{2}=(x+y+z)^{5} \\
N \text { is both a square and a fifth power } \\
N \text { is a tenth power }
\end{gathered}
$$

Problem 23:

3 digit number
$N=(\overbrace{100 x+10 y+z})^{2}=(x+y+z)^{5}$
N is both a square and a fifth power
N is a tenth power

Problem 23:

$$
N=(100 x+10 y+z)^{2}=(x+y+z)^{5}
$$

\boldsymbol{N} is both a square and a fifth power \boldsymbol{N} is a tenth power
$2^{10}=32^{2}$

$$
3^{10}=243^{2}
$$

$$
4^{10}=1024^{2}
$$

Problem 23:

$$
N=(100 x+10 y+z)^{2}=(x+y+z)^{5}
$$

N is both a square and a fifth power \boldsymbol{N} is a tenth power
$2^{10}=32^{2}$
$3^{10}=243^{2}$
$4^{10}=1024^{2}$

Problem 23:

$$
N=(100 x+10 y+z)^{2}=(x+y+z)^{5}
$$

N is both a square and a fifth power
\boldsymbol{N} is a tenth power

$$
\begin{aligned}
& 2^{10}=32^{2} \quad 3^{10}=243^{2} \quad 4^{10}=1024^{2} \\
& x=2, y=4, z=3
\end{aligned}
$$

Problem 23:

$$
N=(100 x+10 y+z)^{2}=(x+y+z)^{5}
$$

N is both a square and a fifth power
\boldsymbol{N} is a tenth power

$$
\begin{gathered}
2^{10}=32^{2} \quad 3^{10}=243^{2} \quad 4^{10}=1024^{2} \\
x=2, y=4, z=3 \Longrightarrow x^{2}+y^{2}+z^{2}=29
\end{gathered}
$$

Problem 23:

$$
N=(100 x+10 y+z)^{2}=(x+y+z)^{5}
$$

N is both a square and a fifth power
\boldsymbol{N} is a tenth power

$$
\begin{gathered}
2^{10}=32^{2} \quad 3^{10}=243^{2} \quad 4^{10}=1024^{2} \\
x=2, y=4, z=3 \Longrightarrow x^{2}+y^{2}+z^{2}=29
\end{gathered}
$$

Problem 24:

N divided by 5 gives a remainder of 2 N divided by 7 gives a remainder of 3 N divided by 9 gives a remainder of 4

Problem 24:

N divided by 5 gives a remainder of 2 N divided by 7 gives a remainder of 3
N divided by 9 gives a remainder of 4
What is the smallest such N ?

Problem 24:

N divided by 5 gives a remainder of 2 N divided by 7 gives a remainder of $\mathbf{3}$
N divided by 9 gives a remainder of 4

Problem 24:

N divided by 5 gives a remainder of 2
N divided by 7 gives a remainder of $\mathbf{3}$
N divided by 9 gives a remainder of 4

$$
N=5 k+2
$$

Problem 24:

N divided by 5 gives a remainder of 2
N divided by 7 gives a remainder of $\mathbf{3}$
N divided by 9 gives a remainder of 4

$$
N=5 k+2 \Longrightarrow 2 N+1=10 k+5
$$

Problem 24:

N divided by 5 gives a remainder of 2
N divided by $\mathbf{7}$ gives a remainder of 3
N divided by 9 gives a remainder of 4

$$
\begin{aligned}
N=5 k+2 & \Longrightarrow 2 N+1=10 k+5 \\
& \Longrightarrow 2 N+1 \text { is divisible by } 5
\end{aligned}
$$

Problem 24:

N divided by $\mathbf{5}$ gives a remainder of $\mathbf{2}$
N divided by 7 gives a remainder of 3
N divided by 9 gives a remainder of 4

$$
\begin{aligned}
N=7 k+3 & \Longrightarrow 2 N+1=14 k+7 \\
& \Longrightarrow 2 N+1 \text { is divisible by } 7
\end{aligned}
$$

Problem 24:

N divided by 5 gives a remainder of 2
N divided by $\mathbf{7}$ gives a remainder of $\mathbf{3}$
N divided by 9 gives a remainder of 4

$$
\begin{aligned}
N=9 k+4 & \Longrightarrow 2 N+1=18 k+9 \\
& \Longrightarrow 2 N+1 \text { is divisible by } 9
\end{aligned}
$$

Problem 24:

N divided by 5 gives a remainder of 2 N divided by 7 gives a remainder of 3 N divided by 9 gives a remainder of 4
$2 N+1$ is divisible by 5,7 , and 9

Problem 24:

N divided by 5 gives a remainder of 2 N divided by 7 gives a remainder of 3 N divided by 9 gives a remainder of 4
$2 N+1$ is divisible by $\underbrace{5,7 \text {, and } 9}_{\uparrow}$ no common prime factors

Problem 24:

N divided by 5 gives a remainder of 2 N divided by 7 gives a remainder of 3
N divided by 9 gives a remainder of 4
$2 N+1$ is divisible by 5,7 , and 9
$2 N+1 \geq 5 \cdot 7 \cdot 9=315$

Problem 24:

N divided by 5 gives a remainder of 2
N divided by 7 gives a remainder of 3
N divided by 9 gives a remainder of 4
$2 N+1$ is divisible by 5,7 , and 9
$2 N+1 \geq 5 \cdot 7 \cdot 9=315 \Longrightarrow N \geq 157$

Problem 24:

N divided by 5 gives a remainder of 2
N divided by 7 gives a remainder of $\mathbf{3}$
N divided by 9 gives a remainder of 4

$$
2 N+1 \text { is divisible by } 5,7, \text { and } 9
$$

$2 N+1 \geq 5 \cdot 7 \cdot 9=315 \Longrightarrow N \geq 157$
$N=157$ works

Problem 24:

N divided by 5 gives a remainder of 2
N divided by 7 gives a remainder of $\mathbf{3}$
N divided by 9 gives a remainder of 4

$$
2 N+1 \text { is divisible by } 5,7, \text { and } 9
$$

$2 N+1 \geq 5 \cdot 7 \cdot 9=315 \Longrightarrow N \geq 157$
$N=157$ works, so the sum of its digits is 13

Problem 26:

What's the area of this circle?

Problem 26:

$A E \cdot B E=C E \cdot D E$

Problem 26:

$A E \cdot B E=C E \cdot D E$

Problem 26:

$A E \cdot B E=C E \cdot D E \Longrightarrow B E=2$

Problem 26:

$A E \cdot B E=C E \cdot D E \Longrightarrow B E=2$

Problem 26:

$A E \cdot B E=C E \cdot D E \Longrightarrow B E=2$

Problem 26:

$A E \cdot B E=C E \cdot D E \Longrightarrow B E=2$

Problem 26:

$A E \cdot B E=C E \cdot D E \Longrightarrow B E=2$
$0 A^{2}=1^{2}+7^{2}$

Problem 26:

$A E \cdot B E=C E \cdot D E \Longrightarrow B E=2$
$0 A^{2}=1^{2}+7^{2}=50$

Problem 26:

$A E \cdot B E=C E \cdot D E \Longrightarrow B E=2$
$0 A^{2}=1^{2}+7^{2}=50 \Longrightarrow$ Area $=50 \pi$

Problem 27:

When is $3^{n}+81$ a square?

Problem 27:

When is $3^{n}+81$ a square?

$$
n=1
$$

Problem 27:

When is $3^{n}+81$ a square?

$$
n=1 \Longrightarrow 3^{n}+81=84
$$

Problem 27:

When is $3^{n}+81$ a square?

$$
\begin{aligned}
& n=1 \Longrightarrow 3^{n}+81=84 \\
& n=2 \Longrightarrow 3^{n}+81=90
\end{aligned}
$$

Problem 27:

When is $3^{n}+81$ a square?

$$
\begin{aligned}
& n=1 \Longrightarrow 3^{n}+81=84 \\
& n=2 \Longrightarrow 3^{n}+81=90 \\
& n=3 \Longrightarrow 3^{n}+81=108
\end{aligned}
$$

When is $3^{n}+81$ a square?

$$
\begin{aligned}
& n=1 \Longrightarrow 3^{n}+81=84 \\
& n=2 \Longrightarrow 3^{n}+81=90 \\
& n=3 \Longrightarrow 3^{n}+81=108 \\
& n=4 \Longrightarrow 3^{n}+81=162
\end{aligned}
$$

Problem 27:

When is $3^{n}+81$ a square?

$$
\begin{aligned}
& n=1 \Longrightarrow 3^{n}+81=84 \\
& n=2 \Longrightarrow 3^{n}+81=90 \\
& n=3 \Longrightarrow 3^{n}+81=108 \\
& n=4 \Longrightarrow 3^{n}+81=162
\end{aligned}
$$

$n=k+4$ where \boldsymbol{k} is a positive integer

Problem 27:

When is $3^{n}+81$ a square?

$n=k+4$ where k is a positive integer

Problem 27:

When is $3^{n}+81$ a square?

$n=k+4$ where k is a positive integer
$3^{n}+81$

Problem 27:

When is $3^{n}+81$ a square?

$n=k+4$ where k is a positive integer
$3^{n}+81=3^{k+4}+81$

Problem 27:

When is $3^{n}+81$ a square?

$\boldsymbol{n}=\boldsymbol{k}+4$ where \boldsymbol{k} is a positive integer

$$
3^{n}+81=3^{k+4}+81=81\left(3^{k}+1\right)
$$

Problem 27:

When is $3^{n}+81$ a square?

$n=k+4$ where \boldsymbol{k} is a positive integer

$$
3^{n}+81=3^{k+4}+81=81\left(3^{k}+1\right)
$$

$$
3^{k}+1=x^{2}
$$

Problem 27:

When is $3^{n}+81$ a square?

$$
\begin{aligned}
& n=k+4 \text { where } k \text { is a positive integer } \\
& 3^{n}+81=3^{k+4}+81=81\left(3^{k}+1\right) \\
& 3^{k}+1=x^{2} \Longrightarrow 3^{k}=x^{2}-1
\end{aligned}
$$

Problem 27:

When is $3^{n}+81$ a square?

$\boldsymbol{n}=\boldsymbol{k}+4$ where \boldsymbol{k} is a positive integer

$$
3^{n}+81=3^{k+4}+81=81\left(3^{k}+1\right)
$$

$$
3^{k}+1=x^{2} \Longrightarrow 3^{k}=(x-1)(x+1)
$$

Problem 27:

When is $3^{n}+81$ a square?

$$
\begin{gathered}
n=k+4 \text { where } k \text { is a positive integer } \\
3^{n}+81=3^{k+4}+81=81\left(3^{k}+1\right) \\
3^{k}+1=x^{2} \Longrightarrow 3^{k}=(x-1)(x+1)
\end{gathered}
$$

When are two consecutive odd numbers powers of $\mathbf{3}$?

Problem 27:

When is $3^{n}+81$ a square ?

$$
\begin{gathered}
n=k+4 \text { where } k \text { is a positive integer } \\
3^{n}+81=3^{k+4}+81=81\left(3^{k}+1\right) \\
3^{k}+1=x^{2} \Longrightarrow 3^{k}=(x-1)(x+1)
\end{gathered}
$$

When are two consecutive odd numbers powers of $\mathbf{3}$?

$$
x=2
$$

Problem 27:

When is $3^{n}+81$ a square?

$$
\begin{gathered}
n=k+4 \text { where } k \text { is a positive integer } \\
3^{n}+81=3^{k+4}+81=81\left(3^{k}+1\right) \\
3^{k}+1=x^{2} \Longrightarrow 3^{k}=(x-1)(x+1)
\end{gathered}
$$

When are two consecutive odd numbers powers of $\mathbf{3}$?

$$
x=2 \Longrightarrow k=1
$$

Problem 27:

When is $3^{n}+81$ a square?

$$
\begin{gathered}
n=k+4 \text { where } k \text { is a positive integer } \\
3^{n}+81=3^{k+4}+81=81\left(3^{k}+1\right) \\
3^{k}+1=x^{2} \Longrightarrow 3^{k}=(x-1)(x+1)
\end{gathered}
$$

When are two consecutive odd numbers powers of $\mathbf{3}$?

$$
x=2 \Longrightarrow k=1
$$

Problem 27:

When is $3^{n}+81$ a square?

$$
\begin{gathered}
n=k+4 \text { where } k \text { is a positive integer } \\
3^{n}+81=3^{k+4}+81=81\left(3^{k}+1\right) \\
3^{k}+1=x^{2} \Longrightarrow 3^{k}=(x-1)(x+1)
\end{gathered}
$$

When are two consecutive odd numbers powers of $\mathbf{3}$?

$$
x=2 \Longrightarrow k=1 \Longrightarrow n=5
$$

Problem 27:

When is $3^{n}+81$ a square?

$$
n=5
$$

There is 1 such \boldsymbol{n}.

Problem 28:

Problem 28:

What's $a+d+g$?

Problem 28:

$a+b+c+\cdots+i$

Problem 28:

$a+b+c+\cdots+i=1+2+3+\cdots+9$

Problem 28:

$$
a+b+c+\cdots+i=1+2+3+\cdots+9=\frac{9 \cdot 10}{2}
$$

Problem 28:

$a+b+c+\cdots+i=1+2+3+\cdots+9=45$

Problem 28:

$a+b+c+\cdots+i=1+2+3+\cdots+9=45$
$S=i+a+1$

Problem 28:

$a+b+c+\cdots+i=1+2+3+\cdots+9=45$
$2 S=i+a+1+a+b+2$

Problem 28:

$a+b+c+\cdots+i=1+2+3+\cdots+9=45$
$9 S=i+a+1+a+b+2+b+c+3+\cdots$

Problem 28:

$a+b+c+\cdots+i=1+2+3+\cdots+9=45$
$9 S=2(a+b+c+\cdots+i)+1+2+3+\cdots+9$

Problem 28:

$a+b+c+\cdots+i=1+2+3+\cdots+9=45$
$9 S=2(\underbrace{a+b+c+\cdots+i}_{45})+1+2+3+\cdots+9$

Problem 28:

$a+b+c+\cdots+i=1+2+3+\cdots+9=45$

Problem 28:

$a+b+c+\cdots+i=1+2+3+\cdots+9=45$
$9 S=3 \times 45$

Problem 28:

$a+b+c+\cdots+i=1+2+3+\cdots+9=45$
$9 S=3 \times 45 \Longrightarrow S=15$

Problem 28:

$S=15$
$a+b+c+\cdots+i=1+2+3+\cdots+9=45$

Problem 28:

$S=15$
$a+b+c+\cdots+i=1+2+3+\cdots+9=45$

Problem 28:

$S=15$
$a+b+c+\cdots+i=1+2+3+\cdots+9=45$

Problem 28:

$S=15$
$a+b+c+\cdots+i=1+2+3+\cdots+9=45$

Problem 28:

$S=15$
$a+b+c+\cdots+i=1+2+3+\cdots+9=45$

Problem 28:

$S=15$
$a+b+c+\cdots+i=1+2+3+\cdots+9=45$

Problem 28:

$S=15$
$a+b+c+\cdots+i=1+2+3+\cdots+9=45$
$6 S=27+45+a+d+g$

Problem 28:

$S=15$
$a+b+c+\cdots+i=1+2+3+\cdots+9=45$
$6 S=27+45+a+d+g=72+a+d+g$

Problem 28:

$S=15$
$a+b+c+\cdots+i=1+2+3+\cdots+9=45$
$90=6 S=27+45+a+d+g=72+a+d+g$

Problem 28:

$$
a+d+g=18
$$

Problem 28:

$$
a+d+g=18
$$

Problem 29:

What is the smallest positive integer \boldsymbol{n} such that 31 divides $5^{n}+n$?

Problem 29:

What is the smallest positive integer \boldsymbol{n} such that 31 divides $5^{n}+n$?

$$
5^{3}-1
$$

Problem 29:

What is the smallest positive integer \boldsymbol{n} such that 31 divides $5^{n}+n$?

$$
5^{3}-1=(5-1)\left(5^{2}+5+1\right)
$$

Problem 29:

What is the smallest positive integer \boldsymbol{n} such that 31 divides $5^{n}+n$?

$$
5^{3}-1=(5-1)\left(5^{2}+5+1\right)=4 \cdot 31
$$

Problem 29:

What is the smallest positive integer \boldsymbol{n} such that 31 divides $5^{n}+n$?

$$
5^{3}-1=(5-1)\left(5^{2}+5+1\right)=4 \cdot 31
$$

Problem 29:

What is the smallest positive integer \boldsymbol{n} such that 31 divides $5^{n}+n$?

$$
n=3 q+r
$$

Problem 29:

What is the smallest positive integer \boldsymbol{n} such that 31 divides $5^{n}+n$?

$$
\begin{gathered}
n=\underset{\uparrow}{3 q+}+r \\
\text { quotient }
\end{gathered}
$$

Problem 29:

What is the smallest positive integer \boldsymbol{n} such that 31 divides $5^{n}+n$?

$$
\begin{gathered}
n=3 q+r \\
\uparrow \uparrow \\
\text { quotient } \\
\text { remainder }
\end{gathered}
$$

Problem 29:

What is the smallest positive integer n such that 31 divides $5^{n}+n$?

$$
n=3 q+r \quad r \in\{0,1,2\}
$$

Problem 29:

What is the smallest positive integer \boldsymbol{n} such that 31 divides $5^{n}+n$?

$$
\begin{aligned}
& \quad n=3 q+r \quad r \in\{0,1,2\} \\
& 5^{n}-5^{r}
\end{aligned}
$$

Problem 29:

What is the smallest positive integer \boldsymbol{n} such that 31 divides $5^{n}+n$?

$$
\begin{gathered}
n=3 q+r \quad r \in\{0,1,2\} \\
5^{n}-5^{r}=5^{3 q+r}-5^{r}
\end{gathered}
$$

Problem 29:

What is the smallest positive integer \boldsymbol{n} such that 31 divides $5^{n}+n$?

$$
\begin{gathered}
n=3 q+r \quad r \in\{0,1,2\} \\
5^{n}-5^{r}=5^{3 q+r}-5^{r}=5^{r}\left(5^{3 q}-1\right)
\end{gathered}
$$

Problem 29:

What is the smallest positive integer \boldsymbol{n} such that 31 divides $5^{n}+n$?

$$
\begin{gathered}
n=3 q+r \quad r \in\{0,1,2\} \\
5^{n}-5^{r}=5^{3 q+r}-5^{r}=5^{r}\left(5^{3}-1\right) k
\end{gathered}
$$

Problem 29:

What is the smallest positive integer \boldsymbol{n} such that 31 divides $5^{n}+n$?

$$
\begin{array}{cc}
n=3 q+r \quad r & \in\{0,1,2\} \\
5^{n}-5^{r}=5^{3 q+r}-5^{r}=5^{r} \cdot 4 \cdot 31 \cdot k
\end{array}
$$

Problem 29:

What is the smallest positive integer \boldsymbol{n} such that 31 divides $5^{n}+n$?

$$
\begin{gathered}
n=3 q+r \quad r \in\{0,1,2\} \\
5^{n}-5^{r}=5^{3 q+r}-5^{r}=5^{r} \cdot 4 \cdot 31 \cdot k \\
n+5^{r}=\left(5^{n}+n\right)-\left(5^{n}-5^{r}\right)
\end{gathered}
$$

Problem 29:

What is the smallest positive integer \boldsymbol{n} such that 31 divides $5^{n}+n$?

$$
\begin{gathered}
n=3 q+r \quad r \in\{0,1,2\} \\
5^{n}-5^{r}=5^{3 q+r}-5^{r}=5^{r} \cdot 4 \cdot 31 \cdot k \\
n+5^{r}=\left(5^{n}+n\right)-\left(5^{n}-5^{r}\right)=31 \cdot k^{\prime}
\end{gathered}
$$

Problem 29:

What is the smallest positive integer \boldsymbol{n} such that 31 divides $5^{n}+n$?

$$
n=3 q+r \quad r \in\{0,1,2\} \quad n+5^{r}=31 \cdot k^{\prime}
$$

Problem 29:

What is the smallest positive integer \boldsymbol{n} such that 31 divides $5^{n}+n$?

$$
\begin{aligned}
& n=3 q+r \quad r \in\{0,1,2\} \quad n+5^{r}=31 \cdot k^{\prime} \\
& \quad r=0
\end{aligned}
$$

Problem 29:

What is the smallest positive integer \boldsymbol{n} such that 31 divides $5^{n}+n$?

$$
\begin{array}{rl}
n=3 q+r & r \in\{0,1,2\} \quad n+5^{r}=31 \cdot k^{\prime} \\
r=0 \Longrightarrow & n+1=31 \cdot k^{\prime}
\end{array}
$$

Problem 29:

What is the smallest positive integer \boldsymbol{n} such that 31 divides $5^{n}+n$?

$$
\begin{array}{cl}
n=3 q+r & r \in\{0,1,2\} \quad n+5^{r}=31 \cdot k^{\prime} \\
r=0 \Longrightarrow & n+1=31 \cdot k^{\prime} \Longrightarrow n=30
\end{array}
$$

Problem 29:

What is the smallest positive integer \boldsymbol{n} such that 31 divides $5^{n}+n$?

$$
\begin{aligned}
& n=3 q+r \quad r \in\{0,1,2\} \quad n+5^{r}=31 \cdot k^{\prime} \\
& r=0 \Longrightarrow n+1=31 \cdot k^{\prime} \Longrightarrow n=30 \\
& r=1
\end{aligned}
$$

Problem 29:

What is the smallest positive integer \boldsymbol{n} such that 31 divides $5^{n}+n$?

$$
\begin{gathered}
n=3 q+r \quad r \in\{0,1,2\} \quad n+5^{r}=31 \cdot k^{\prime} \\
r=0 \Longrightarrow n+1=31 \cdot k^{\prime} \Longrightarrow n=30 \\
r=1 \Longrightarrow n+5=31 \cdot k^{\prime}
\end{gathered}
$$

Problem 29:

What is the smallest positive integer \boldsymbol{n} such that 31 divides $5^{n}+n$?

$$
\begin{gathered}
n=3 q+r \quad r \in\{0,1,2\} \quad n+5^{r}=31 \cdot k^{\prime} \\
r=0 \Longrightarrow n+1=31 \cdot k^{\prime} \Longrightarrow n=30 \\
r=1 \Longrightarrow n+5=31 \cdot k^{\prime} \Longrightarrow n=26
\end{gathered}
$$

Problem 29:

What is the smallest positive integer \boldsymbol{n} such that 31 divides $5^{n}+n$?

$$
\begin{array}{cc}
n=3 q+r & r \in\{0,1,2\} \quad n+5^{r}=31 \cdot k^{\prime} \\
r=0 \Longrightarrow & n+1=31 \cdot k^{\prime} \Longrightarrow n=30 \\
r=1 \Longrightarrow n+5=31 \cdot k^{\prime} \Longrightarrow n \neq 26
\end{array}
$$

Problem 29:

What is the smallest positive integer n such that 31 divides $5^{n}+n$?

$$
\begin{gathered}
n=3 q+r \quad r \in\{0,1,2\} \quad n+5^{r}=31 \cdot k^{\prime} \\
r=0 \Longrightarrow n+1=31 \cdot k^{\prime} \Longrightarrow n=30 \\
r=1 \Longrightarrow n+5=31 \cdot k^{\prime} \Longrightarrow n=88
\end{gathered}
$$

Problem 29:

What is the smallest positive integer \boldsymbol{n} such that 31 divides $5^{n}+n$?

$$
\begin{aligned}
& n=3 q+r \quad r \in\{0,1,2\} \quad n+5^{r}=31 \cdot k^{\prime} \\
& r=0 \Longrightarrow n+1=31 \cdot k^{\prime} \Longrightarrow n=30 \\
& r=1 \Longrightarrow n+5=31 \cdot k^{\prime} \Longrightarrow n=88 \\
& r=2
\end{aligned}
$$

Problem 29:

What is the smallest positive integer \boldsymbol{n} such that 31 divides $5^{n}+n$?

$$
\begin{aligned}
& n=3 q+r \quad r \in\{0,1,2\} \quad n+5^{r}=31 \cdot k^{\prime} \\
& r=0 \Longrightarrow n+1=31 \cdot k^{\prime} \Longrightarrow n=30 \\
& r=1 \Longrightarrow n+5=31 \cdot k^{\prime} \Longrightarrow n=88 \\
& r=2 \Longrightarrow n+25=31 \cdot k^{\prime} \Longrightarrow
\end{aligned}
$$

Problem 29:

What is the smallest positive integer \boldsymbol{n} such that 31 divides $5^{n}+n$?

$$
\begin{gathered}
n=3 q+r \quad r \in\{0,1,2\} \quad n+5^{r}=31 \cdot k^{\prime} \\
r=0 \Longrightarrow n+1=31 \cdot k^{\prime} \Longrightarrow n=30 \\
r=1 \Longrightarrow n+5=31 \cdot k^{\prime} \Longrightarrow n=88 \\
r=2 \Longrightarrow n+25=31 \cdot k^{\prime} \Longrightarrow n=68
\end{gathered}
$$

Problem 29:

What is the smallest positive integer \boldsymbol{n} such that 31 divides $5^{n}+n$?

$$
\begin{gathered}
n=3 q+r \quad r \in\{0,1,2\} \quad n+5^{r}=31 \cdot k^{\prime} \\
r=0 \Longrightarrow n+1=31 \cdot k^{\prime} \Longrightarrow n=30 \\
r=1 \Longrightarrow n+5=31 \cdot k^{\prime} \Longrightarrow n=88 \\
r=2 \Longrightarrow n+25=31 \cdot k^{\prime} \Longrightarrow n=68
\end{gathered}
$$

Problem 30:

Problem 30:

$$
B D=\frac{1}{2} A B
$$

Problem 30:

$$
B D=\frac{1}{2} A B \quad C E=\frac{1}{2} B C
$$

Problem 30:

$$
B D=\frac{1}{2} A B \quad C E=\frac{1}{2} B C \quad A F=\frac{1}{2} C A
$$

Problem 30:

$$
\begin{gathered}
B D=\frac{1}{2} A B \quad C E=\frac{1}{2} B C \quad A F=\frac{1}{2} C A \\
\frac{\text { area of } \triangle D E F}{\text { area of } \triangle A B C}=?
\end{gathered}
$$

Problem 30:

$$
\begin{gathered}
B D=\frac{1}{2} A B \quad C E=\frac{1}{2} B C \quad A F=\frac{1}{2} C A \\
\frac{\text { area of } \triangle D E F}{\text { area of } \triangle A B C}=?
\end{gathered}
$$

Problem 30:

$\triangle A X C$ is similar to $\triangle A Y F$

Problem 30:

$\triangle A X C$ is similar to $\triangle A Y F$
$\frac{F Y}{C X}=\frac{A F}{A C}$

Problem 30:

$\triangle A X C$ is similar to $\triangle A Y F$
$\frac{F Y}{C X}=\frac{A F}{A C}=\frac{1}{2}$

Problem 30:

$\triangle A X C$ is similar to $\triangle A Y F$

$$
\frac{F Y}{C X}=\frac{A F}{A C}=\frac{1}{2} \Longrightarrow F Y=\frac{1}{2} C X
$$

Problem 30:

Problem 30:

Problem 30:

Problem 30:

$A D=\frac{3}{2} A B \quad F Y=\frac{1}{2} C X$

$$
\mathcal{A}(\triangle A D F)=\frac{1}{2} \cdot A D \cdot F Y
$$

Problem 30:

$A D=\frac{3}{2} A B \quad F Y=\frac{1}{2} C X$

$$
\mathcal{A}(\triangle A D F)=\frac{1}{2} \cdot \frac{3}{2} A B \cdot F Y
$$

Problem 30:

Problem 30:

$A D=\frac{3}{2} A B \quad F Y=\frac{1}{2} C X$

$$
\mathcal{A}(\triangle A D F)=\frac{3}{4}\left(\frac{1}{2} \cdot A B \cdot C X\right)
$$

Problem 30:

$A D=\frac{3}{2} A B \quad F Y=\frac{1}{2} C X$

$$
\mathcal{A}(\triangle A D F)=\frac{3}{4} \cdot \mathcal{A}(\triangle A B C)
$$

Problem 30:

$\mathcal{A}(\triangle A D F)=(3 / 4) \mathcal{A}(\triangle A B C)$

Problem 30:

$$
\begin{aligned}
\mathcal{A}(\triangle A D F) & =(3 / 4) \mathcal{A}(\triangle A B C) \\
\mathcal{A}(\triangle B E D) & =(3 / 4) \mathcal{A}(\triangle A B C)
\end{aligned}
$$

Problem 30:

$$
\begin{aligned}
\mathcal{A}(\triangle A D F) & =(3 / 4) \mathcal{A}(\triangle A B C) \\
\mathcal{A}(\triangle B E D) & =(3 / 4) \mathcal{A}(\triangle A B C) \\
\mathcal{A}(\triangle C F E) & =(3 / 4) \mathcal{A}(\triangle A B C)
\end{aligned}
$$

Problem 30:

$\mathcal{A}(\triangle D E F)=\left(1+\frac{3}{4}+\frac{3}{4}+\frac{3}{4}\right) \mathcal{A}(\triangle A B C)$

Problem 30:

$\mathcal{A}(\triangle D E F)=\left(\frac{13}{4}\right) \mathcal{A}(\triangle A B C)$

Problem 30:

$\mathcal{A}(\triangle D E F)=\frac{13}{4} A(\triangle A B C)$

Problem 30:

$$
\mathcal{A}(\triangle D E F)=\frac{13}{4} A(\triangle A B C)
$$

