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Irreducibility:
A polynomialf(x) ∈ Q[x] is irreducibleprovided

• f(x) has degree at least1,
• f(x) does not factor as a product of two polynomials

in Q[x] each of degree≥ 1.
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85711 is prime

=⇒ 8x4 + 5x3 + 7x2 + x + 1︸ ︷︷ ︸
f(x)

is irreducible

Result (due to A. Cohn): If f(x) has digits as coeffi-
cients andf(10) is prime, thenf(x) is irreducible.

Theorem: The analogous result holds in any baseb ≥ 2.
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Theorem: Let f(x) =
n∑

j=0

ajx
j with 0 ≤ aj < 1030

andf(10) prime. Thenf(x) is irreducible.

Comment: There exist polynomialsf(x) ∈ Z[x] with
non-negative coefficients withf(10) prime and withf(x)

reducible.
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Letter from Emil Grosswald (dated 04/28/85): Noted
that he had seen the above result and asked me to consider
the conjecture that the Bessel polynomials are irreducible.

Remark: In joint work with Ognian Trifonov this conjec-
ture has now been resolved in the affirmative (to appear).
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Some Goals of the Talk:

• Give a general discussion of the irreducibility of some
classical polynomials

• Show connections to

– problems in the distribution of primes

– diophantine and transcendence results

– Galois theory

– applications to wavelets and dynamical systems

– Calvin and Hobbes
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• Hermite Polynomials

• Bessel Polynomials

Some Polynomials NOT to be Discussed:

• Cyclotomic Polynomials(too well-known)

• Chebyshev Polynomials(too easy)

• Bernoulli Polynomials(except for a special case)

• Legendre Polynomials(too hard)
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Theorem 1 (I. Schur, 1929): Let n be a positive inte-
ger, and leta0, a1, · · · , an denote arbitrary integers with
|a0| = |an| = 1. Then

an
xn

n!
+ an−1

xn−1

(n − 1)!
+ · · · + a1x + a0

is irreducible.
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Theorem (1996):Leta0, a1, . . . , an denote arbitrary in-
tegers with|a0| = 1, and let

f(x) =
n∑

j=0

ajx
j/j!.

If 0 < |an| < n, thenf(x) is irreducible unless

(an, n) ∈
{
(±5, 6), (±7, 10)

}
in which cases eitherf(x) is irreducible orf(x) is the
product of two irreducible polynomials of equal degree. If
|an| = n, then for some choice ofa1, . . . , an−1 ∈ Z
anda0 = ±1, we have thatf(x) is divisible byx ± 1.
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dn
(
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)
dxn

=
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j=0

(n + α) · · · (j + 1 + α)(−x)j

(n − j)!j!

L
(0)
n (x) = Ln(x) (the Laguerre Polynomials)
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(
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Theorem 2 (I. Schur): Let n be a positive integer, and
let a0, a1, · · · , an denote arbitrary integers with|a0| =

|an| = 1. Then

an
xn

(n + 1)!
+ an−1

xn−1

n!
+ · · · + a1

x

2
+ a0

is irreducible (over the rationals) unlessn = 2r − 1 > 1

(whenx ± 2 can be a factor) orn = 8 (when a quadratic
factor is possible).



Theorem (joint with M. Allen): For n an integer≥ 1,
define

f(x) =
n∑

j=0

aj
xj

(j + 1)!

where theaj ’s are arbitrary integers with|a0| = 1. Write

n + 1 = k′2u with k′ odd

and

(n + 1)n = k′′2v3w with gcd(k′′, 6) = 1.

If
0 < |an| < min{k′, k′′},

thenf(x) is irreducible.
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Theorem (joint with T.-Y. Lam): Let α be a rational
number which is not a negative integer. Then for all but

finitely many positive integersn, the polynomialL
(α)
n (x)

is irreducible over the rationals.
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Background:

• D. Hilbert (1892) used his now classical Hilbert’s Irre-
ducibility Theorem to show that for each integern ≥ 1,
there is a polynomialf(x) ∈ Z[x] such that the Galois
group associated withf(x) is the symmetric groupSn.
He also showed the analogous result in the case of the
alternating groupAn.

• Hilbert’s work and work of E. Noether (1918) began
what has come to be known as Inverse Galois Theory.

• Van der Waerden showed that for “almost all” polyno-
mialsf(x) ∈ Z[x], the Galois group associated with
f(x) is the symmetric groupSn.
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• Schur showedL
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• Schur showedL
(1)
n (x) has Galois groupAn (the alter-

nating group) ifn is odd.

• Schur showed
n∑

j=0

xj

j!
has Galois groupAn if 4|n.

• Schur did not find an explicit sequence of polynomials
having Galois groupAn with n ≡ 2 (mod 4).
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Theorem (R. Gow, 1989):If n > 2 is even andL
(n)
n (x)

is irreducible, then the Galois group ofL
(n)
n (x) is An.

Comment: Gow also showed thatL
(n)
n (x) is irreducible

if
•n = 2pk wherek ∈ Z+ andp > 3 is prime

•n = 4pk wherek ∈ Z+ andp > 7 is prime

Conjecture: If n > 2, thenL
(n)
n (x) is irreducible.



Theorem (joint work with R. Williams): For almost all

positive integersn the polynomialL
(n)
n (x) is irreducible

(and, hence, has Galois groupAn for almost alln ≡ 2

(mod 4)). More precisely, the number ofn ≤ t such

thatL
(n)
n (x) is reducible is

� exp

(
9 log(2t)

log log(2t)

)
.

Furthermore, for all but finitely manyn, L
(n)
n (x) is either

irreducible orL
(n)
n (x) is the product of a linear polyno-

mial times an irreducible polynomial of degreen − 1.
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O
(
exp(9 log(2t)/ log log(2t))

)
positive integersn ≤ t, the polynomial

f(x) =
n∑

j=0

aj

(
2n

n − j

)
xj

j!

is irreducible over the rationals for every choice of integers
a0, a1, . . . , an with |a0| = |an| = 1.

Comment: The number ofn ≤ t for which f(x) is
reducible for some choice ofaj as above is

� log t.
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n (x) doable for all n > 2?

The proof for almost alln is not effective. Ifn is large

enough,L
(n)
n (x) cannot have aquadratic factorbut what’s

“large enough”?

However, in joint work with O. Trifonov (and input from
R. Tijdeman, F. Beukers, and M. Bennett), the argument
can now be made effective. What’s needed is:

There exist explicit numbersα and β > 0 such
that, forn ≥ α,

n(n + 1) = 2k3`m =⇒ m > nβ.
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Application of the Same Method:

The Ramanujan-Nagell equation

x2 + 7 = 2n

has as its only solutions(±x, n) in

{(1, 3), (3, 4), (5, 5), (11, 7), (181, 15)}.

Moreover, there exist explicit numbersα and
β > 0 such that, forx ≥ α,

x2 + 7 = 2nm =⇒ m ≥ xβ.
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H2n(x) = (−1)nu2n

n∑
j=0

(−1)j
(

n

j

)
x2j

u2j

H2n+1(x) = (−1)nu2n+2x

n∑
j=0

(−1)j
(

n

j

)
x2j

u2j+2

Theorem 4 (I. Schur, 1929): For n ≥ 1 and arbitrary
integersaj with |a0| = |an| = 1, the polynomial

f(x) =
n∑

j=0

ajx
2j/u2j+2

is irreducible unless2n is of the form3u−1 with u > 1.
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Given a functionf(x), its wavelet transform consists of
the family of functionsg(2jx) ∗ f(x), where g is the
gaussian function, and j is an integer. The question was: if
we know the zeroes of the second derivatives of this fam-
ily of functions (over allj), can we recoverf? ... The
problem reduces to showing that none of these polynomi-
als [certain Hermite polynomials] has zeroes (aside from
the trivial one at the origin) which coincides with a zero of
another one. So the bottom line is that the conjecture that f
is uniquely recoverable follows from the non-overlapping
of the zeroes of the Hermite polynomials.
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E. Gutkin dealt with a billards question in Dynamical
Systems. J. Lagarias posed a related conjecture at the
West Coast Number Theory Conference in 1991:

Letn ≥ 4 and

p(x) = (n − 1)
(
xn+1 − 1

)
− (n + 1)

(
xn − x

)
.

Thenp(x) is (x − 1)3 times an irreducible
polynomial ifn is even and(x − 1)3(x + 1)
times an irreducible polynomial ifn is odd.

Joint Work With A. Borisov, T.-Y. Lam, O. Trifonov:

True for all butO(t4/5+ε) values ofn ≤ t.
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Theorem 3 (I. Schur, 1929): For n > 1 and arbitrary
integersaj with |a0| = |an| = 1, the polynomial

f(x) =
n∑

j=0

ajx
2j/u2j

is irreducible.

Theorem (joint with M. Allen): Forn > 1 and arbitrary
integersaj with |a0| = 1 and

0 < |an| < 2n − 1,

the polynomialf(x) above is irreducible for all but finitely
many pairs(an, n).
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Theorem (joint with M. Allen): For n an integer≥ 1,
define

f(x) =
n∑

j=0

aj
x2j

u2j+2

where theaj ’s are arbitrary integers with|a0| = 1. Write

2n + 1 = k′3u with 3 - k′

and

(2n+1)(2n − 1) = k′′3v5w with (k′′, 15) = 1.

If
0 < |an| < min{k′, k′′},

then f(x) is irreducible for all but finitely many pairs
(an, n).
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The Bessel Polynomials:

yn(x) =
n∑

j=0

(n + j)!

2j(n − j)!j!
xj

Brief History:

• E. Grosswald studied the irreducibility of the Bessel poly-
nomials in 1951 and conjectured their irreducibility. He
obtained a variety of special cases of irreducibility.

• In 1995, M.F. showed that all but finitely many Bessel
polynomials are irreducible.

• O. Trifonov and M.F. have now shown that all Bessel
polynomials are irreducible.
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The Bessel Polynomials:

yn(x) =
n∑

j=0

(n + j)!

2j(n − j)!j!
xj

Theorem (joint with O. Trifonov): If a0, a1, . . . , an

are arbitrary integers with|a0| = |an| = 1, then

n∑
j=0

aj
(n + j)!

2j(n − j)!j!
xj

is irreducible.
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Main Ingredients of the Proofs:

• Newton polygons are used to show that if certain condi-
tions on divisibility by primes holds, thenf(x) is irre-
ducible.

• Analysis to show that the conditions hold; usually this
involves cases to eliminate possible factors depending
on the size of their degrees.

– small gaps between primes for large degrees

– results about products of consecutive integers having
some large prime factors for intermediate degrees

– Diophantine equations for small degrees
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• Newton polygons are used to show that if certain condi-
tions on divisibility by primes holds, thenf(x) is irre-
ducible.

A result of M.G. Dumas (in 1906) eliminates pos-
sible degrees for the factors of a polynomial using
information about the divisibility of the coefficients
by a given primep (forming Newton polygons with
respect top).



• Newton polygons are used to show that if certain condi-
tions on divisibility by primes holds, thenf(x) is irre-
ducible.

“Two such factorization schemes with a common,
non-trivial factorization, will be calledcompatible.
Otherwise, we call them incompatible. It is clear
that if one can exhibit two incompatible factor-
ization schemes, one thereby will have proved the
irreducibility of the polynomial considered.”

Emil Grosswald
Bessel Polynomials
Lecture Notes Series



• Newton polygons are used to show that if certain condi-
tions on divisibility by primes holds, thenf(x) is irre-
ducible.

Idea: To consider factorization schemes using
many primes and show that they are incompatible.
For a polynomial of degreen and ak ∈ [1, n/2],
find a primep such that the Newton polygon with
respect top does not allow for a factor off(x) to
have degreek.
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• Analysis to show that the conditions hold; usually this
involves cases to eliminate possible factors depending
on the size of their degrees.

Example: For3 ≤ k ≤ n/2, show∏
pr||n(n−1)···(n−k+1)

p≥k+1

pr > n.

For n large andk large (say> n2/3), use that
there are two primes in the interval[n−k+1, n].



• Analysis to show that the conditions hold; usually this
involves cases to eliminate possible factors depending
on the size of their degrees.

Example: For3 ≤ k ≤ n/2, show∏
pr||n(n−1)···(n−k+1)

p≥k+1

pr > n.

Now considerk small.
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• Analysis to show that the conditions hold; usually this
involves cases to eliminate possible factors depending
on the size of their degrees.

k = 3 :
∏

pr||n(n−1)(n−2)
p≥4

pr > n

Problem n: 6, 8, 9, 10, 18, and that’s it!!
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• Analysis to show that the conditions hold; usually this
involves cases to eliminate possible factors depending
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• Analysis to show that the conditions hold; usually this
involves cases to eliminate possible factors depending
on the size of their degrees.

k = 5 :
∏

pr||n(n−1)(n−2)(n−3)(n−4)
p≥6

pr > n

Problem n: 10, 12, and that’s it.



• Analysis to show that the conditions hold; usually this
involves cases to eliminate possible factors depending
on the size of their degrees.

Lemma. For3 ≤ k ≤ n/2,∏
pr||n(n−1)···(n−k+1)

p≥k+1

pr > n

unless one of the following holds:
k = 3 and n = 6, 8, 9, 10, or 18
k = 4 and n = 9
k = 5 and n = 10 or 12.
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Classical Case:α = 1

J. Brillhart’s Observation (1969):

6B11(x)=x(x−1)(2x−1)(x2−x−1)

× (3x6−9x5+2x4+11x3+3x2−10x−5)
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tn
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A Special Case: α = n

Theorem (joint with A. Adelberg): A positive proportion

of the polynomialsB
(n)
n (x) are Eisenstein (and, hence,

irreducible). More precisely, if the number ofn ≤ t for

whichB
(n)
n (x) is Eisenstein isB(t), then

B(t) > t/5 for t sufficiently large.



T IME FOR QUESTIONS




