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n > N and
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for some integem, thenm > 1.

Lehmer: Gave some explicit estimates:

n(n—+1) divisible only by primes< 11 =— n < 9800
... only by primes< 41 —> n < 63927525375
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C

B log logn

Problem: Can we narrow the gap between these
Ineffective and effective results?
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Theorem (R. Gow, 1989):f n > 2 is even and
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s irreducible, then the Galois group 4™ () is A,

Theorem (joint work with R. Williams): For almost all
positive integers: the ponnomialsz")(a:) IS irreducible
(and, hence, has Galois grod, for almost all evem).

Work in Progress with Trifonov: We're attempting to
show the irreducibility ofL..™ (z) for all n > 2.
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Theorem: If n > 9 and

n(n+ 1) = 2k3tm,
then
m > nl/4,
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Connection with Part I:

r? 4+ 7 =2"m

2 2 2 2

) ()



Theorem: If x, n andm are positive integers satisfying
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Theorem: If x, n andm are positive integers satisfying
z?+7=2"m and = ¢ {1,3,5,11,181},

then
m > 0-4345
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Main Idea: Find “small” integersP, (), and E such that
skp —2tQ = E
and
Qmq — Pmo # 0.
Then

ge (Qmq1 — Pm2) = £Q — Emea.

Obtain an upper bound o8*. Since3*m; > n, it
follows thatmy and, hencemm = mm+ are not small.
Use Paé approximations fof1 — z)¥ to obtain P, Q,
andFE.
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One largely needs to be dealing with two primes (like
and 3) with a difference of powers of these primes bel
small (like3? — 23 = 1).

In the case o2 +7 = 2™m, the difference of the primes
(14++/—7)/2 and(1—+/—7) /2 each raised to th&3th
power has absolute valiee 2.65 and the prime powers
themselves have absolute vakie90.51.



