ON THE FACTORIZATION OF n(n+1)

by Michael Filaseta University of South Carolina

Joint Work with M. Bennett & O. Trifonov

Part I: On the factorization of $x^2 + x$

Part I: On the factorization of x(x + 1)

Part I: On the factorization of n(n+1)

Part I: On the factorization of n(n + 1)

Well-Known: The largest prime factor of n(n+1) tends to infinity with n.

Part I: On the factorization of n(n + 1)

Well-Known: The largest prime factor of n(n+1) tends to infinity with n.

Let p_1, p_2, \ldots, p_r be primes. There is an N such that if $n \geq N$ and

$$n(n+1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

$$n(n+1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

$$n(n+1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

for some integer m, then m > 1.

Lehmer: Gave some explicit estimates:

$$n(n+1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

for some integer m, then m > 1.

Lehmer: Gave some explicit estimates:

n(n+1) divisible only by primes $\leq 11 \Longrightarrow n \leq 1$

$$n(n+1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

for some integer m, then m > 1.

Lehmer: Gave some explicit estimates:

n(n+1) divisible only by primes $\leq 11 \Longrightarrow n \leq$... only by primes $\leq 41 \Longrightarrow n \leq$

$$n(n+1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

for some integer m, then m > 1.

Lehmer: Gave some explicit estimates:

n(n+1) divisible only by primes $\leq 11 \Longrightarrow n \leq 9800$... only by primes $\leq 41 \Longrightarrow n \leq 100$

$$n(n+1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

for some integer m, then m > 1.

Lehmer: Gave some explicit estimates:

n(n+1) divisible only by primes $\leq 11 \Longrightarrow n \leq 9800$... only by primes $\leq 41 \Longrightarrow n \leq 63927525375$

$$n(n+1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

for some integer m, then $m > n^{\theta}$.

$$n(n+1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

for some integer m, then $m > n^{\theta}$.

$$n(n+1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

for some integer m, then $m > n^{\theta}$.

abc-conjecture $\implies \theta =$

$$n(n+1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

for some integer m, then $m > n^{\theta}$.

abc-conjecture $\implies \theta = 1 - \varepsilon$

$$n(n+1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

for some integer m, then $m > n^{\theta}$.

abc-conjecture
$$\implies \theta = 1 - \varepsilon$$

unconditionally one can obtain $\theta =$

$$n(n+1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

for some integer m, then $m > n^{\theta}$.

abc-conjecture
$$\implies \theta = 1 - \varepsilon$$

unconditionally one can obtain $\theta = 1 - \varepsilon$

$$n(n+1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

for some integer m, then $m > n^{\theta}$.

abc-conjecture
$$\implies \theta = 1 - \varepsilon$$

unconditionally one can obtain $\theta = 1 - \varepsilon$ (ineffective)

$$n(n+1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

for some integer m, then $m > n^{\theta}$.

Effective Approach:

$$n(n+1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

for some integer m, then $m > n^{\theta}$.

Effective Approach: (Linear Forms of Logarithms)

$$n(n+1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

for some integer m, then $m > n^{\theta}$.

Effective Approach: (Linear Forms of Logarithms)

$$heta = rac{c}{\log\log n}$$

$$n(n+1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

for some integer m, then $m > n^{\theta}$.

Effective Approach: (Linear Forms of Logarithms)

$$heta = rac{c}{\log\log n}$$

Problem: Can we narrow the gap between these ineffective and effective results?

Don't Get Me Started:

Theorem (R. Gow, 1989): If n > 2 is even and

$$L_n^{(n)}(x)=\sum_{j=0}^n {2n \choose n-j}rac{(-x)^j}{j!}$$

is irreducible, then the Galois group of $L_n^{(n)}(x)$ is A_n .

Theorem (R. Gow, 1989): If n > 2 is even and

$$L_n^{(n)}(x)=\sum_{j=0}^n {2n \choose n-j}rac{(-x)^j}{j!}$$

is irreducible, then the Galois group of $L_n^{(n)}(x)$ is A_n .

Theorem (joint work with R. Williams): For almost all positive integers n the polynomial $L_n^{(n)}(x)$ is irreducible (and, hence, has Galois group A_n for almost all even n).

Theorem (R. Gow, 1989): If n > 2 is even and

$$L_n^{(n)}(x)=\sum_{j=0}^n {2n \choose n-j}rac{(-x)^j}{j!}$$

is irreducible, then the Galois group of $L_n^{(n)}(x)$ is A_n .

Theorem (joint work with R. Williams): For almost all positive integers n the polynomial $L_n^{(n)}(x)$ is irreducible (and, hence, has Galois group A_n for almost all even n).

Work in Progress with Trifonov: We're attempting to show the irreducibility of $L_n^{(n)}(x)$ for all n > 2.

$$n(n+1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

for some integer m, then $m > n^{\theta}$.

$$n(n+1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

for some integer m, then $m > n^{\theta}$.

Theorem: If $n \ge 9$ and

$$n(n+1) = 2^k 3^\ell m,$$

then

 $m \geq$

$$n(n+1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

for some integer m, then $m > n^{\theta}$.

Theorem: If $n \ge 9$ and

$$n(n+1) = 2^k 3^\ell m_s$$

then

 $m \ge n^{1/4}.$

Part II: On the non-factorization of $x^2 + 7$

Part II: On the non-factorization of $x^2 + 7$

Classical Ramanujan-Nagell Theorem: If x and n are integers satisfying

$$x^2 + 7 = 2^n,$$

then

$$x \in \{1, 3, 5, 11, 181\}.$$

Part II: On the non-factorization of $x^2 + 7$

Classical Ramanujan-Nagell Theorem: If x and n are integers satisfying

$$x^2 + 7 = 2^n,$$

then

$$x \in \{1, 3, 5, 11, 181\}.$$

Problem: If $x^2 + 7 = 2^n m$ and x is not in the set above, then can we say that m must be large? **Problem:** If $x^2 + 7 = 2^n m$ and x is not in the set above, then can we say that m must be large?

Connection with Part I:

Problem: If $x^2 + 7 = 2^n m$ and x is not in the set above, then can we say that m must be large?

Connection with Part I:

$$x^2 + 7 = 2^n m$$

$$igg(rac{x+\sqrt{-7}}{2}igg)igg(rac{x-\sqrt{-7}}{2}igg) = igg(rac{1+\sqrt{-7}}{2}igg)^{n-2}igg(rac{1-\sqrt{-7}}{2}igg)^{n-2}m$$

Theorem: If *x*, *n* and *m* are positive integers satisfying

 $x^2 + 7 = 2^n m$ and $x \not\in \{1, 3, 5, 11, 181\},$ then

$$m \geq ???$$

Theorem: If *x*, *n* and *m* are positive integers satisfying

 $x^2 + 7 = 2^n m$ and $x \notin \{1, 3, 5, 11, 181\},$ then $m \ge x^{0.4345}.$

Part III: The Method

$$n(n+1) = 3^k 2^\ell m$$

$$n(n+1) = 3^k 2^\ell m$$
 $3^k m_1 - 2^\ell m_2 = \pm 1$

$$n(n+1) = 3^k 2^\ell m$$
 $3^k m_1 - 2^\ell m_2 = \pm 1$

Main Idea: Find "small" integers P, Q, and E such that $3^k P - 2^\ell Q = E$.

$$n(n+1) = 3^k 2^\ell m$$
 $3^k m_1 - 2^\ell m_2 = \pm 1$

Main Idea: Find "small" integers P, Q, and E such that $3^k P - 2^\ell Q = E$.

Then

$$3^k \left(Qm_1 - Pm_2
ight) = \pm Q - Em_2.$$

$$n(n+1) = 3^k 2^\ell m$$
 $3^k m_1 - 2^\ell m_2 = \pm 1$

Main Idea: Find "small" integers P, Q, and E such that $3^k P - 2^\ell Q = E$.

Then

$$3^k \left(Qm_1 - Pm_2
ight) = \pm Q - Em_2.$$

and

$$Qm_1 - Pm_2 \neq 0.$$

Then

$$3^k\left(Qm_1-Pm_2
ight)=\pm Q-Em_2.$$

and

$$Qm_1 - Pm_2 \neq 0.$$

Then

$$3^k \left(Qm_1 - Pm_2
ight) = \pm Q - Em_2.$$

Obtain an upper bound on 3^k .

and

$$Qm_1 - Pm_2 \neq 0.$$

Then

$$3^k \left(Qm_1 - Pm_2
ight) = \pm Q - Em_2.$$

Obtain an upper bound on 3^k . Since $3^k m_1 \ge n$, it follows that m_1 and, hence, $m = m_1 m_2$ are not small.

and

$$Qm_1 - Pm_2 \neq 0.$$

Then

$$3^k \left(Qm_1 - Pm_2
ight) = \pm Q - Em_2.$$

Obtain an upper bound on 3^k . Since $3^k m_1 \ge n$, it follows that m_1 and, hence, $m = m_1 m_2$ are not small. Use Padé approximations for $(1 - z)^k$ to obtain P, Q, and E. What's Needed for the Method to Work:

What's Needed for the Method to Work:

One largely needs to be dealing with two primes (like 2 and 3) with a difference of powers of these primes being small (like $3^2 - 2^3 = 1$).

What's Needed for the Method to Work:

One largely needs to be dealing with two primes (like 2 and 3) with a difference of powers of these primes being small (like $3^2 - 2^3 = 1$).

In the case of $x^2 + 7 = 2^n m$, the difference of the primes $(1+\sqrt{-7})/2$ and $(1-\sqrt{-7})/2$ each raised to the $13^{\rm th}$ power has absolute value ≈ 2.65 and the prime powers themselves have absolute value ≈ 90.51 .