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Effective Approach: (Linear Forms of Logarithms)

θ =
c

log log n

Problem: Can we narrow the gap between these
ineffective and effective results?
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Theorem (joint work with R. Williams): For almost all

positive integersn the polynomialL
(n)
n (x) is irreducible

(and, hence, has Galois groupAn for almost all evenn).

Work in Progress with Trifonov: We’re attempting to

show the irreducibility ofL
(n)
n (x) for all n > 2.
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Theorem: If n ≥ 9 and

n(n + 1) = 2k3`m,

then
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Theorem: If x, n andm are positive integers satisfying

x2 + 7 = 2nm and x 6∈ {1, 3, 5, 11, 181},

then
m ≥ x0.4345.



Part III: The Method



Part III: Beukers’ Method



Part III: Beukers’ Method

n(n + 1) = 3k2`m



Part III: Beukers’ Method

n(n + 1) = 3k2`m

3km1 − 2`m2 = ±1



Part III: Beukers’ Method

n(n + 1) = 3k2`m

3km1 − 2`m2 = ±1

Main Idea: Find “small” integersP , Q, andE such that

3kP − 2`Q = E.



Part III: Beukers’ Method

n(n + 1) = 3k2`m

3km1 − 2`m2 = ±1

Main Idea: Find “small” integersP , Q, andE such that

3kP − 2`Q = E.

Then

3k (Qm1 − Pm2) = ±Q − Em2.



Part III: Beukers’ Method

n(n + 1) = 3k2`m

3km1 − 2`m2 = ±1

Main Idea: Find “small” integersP , Q, andE such that

3kP − 2`Q = E.

Then

3k (Qm1 − Pm2) = ±Q − Em2.



Main Idea: Find “small” integersP , Q, andE such that

3kP − 2`Q = E

and

Qm1 − Pm2 6= 0.

Then

3k (Qm1 − Pm2) = ±Q − Em2.



Main Idea: Find “small” integersP , Q, andE such that

3kP − 2`Q = E

and

Qm1 − Pm2 6= 0.

Then

3k (Qm1 − Pm2) = ±Q − Em2.

Obtain an upper bound on3k.



Main Idea: Find “small” integersP , Q, andE such that

3kP − 2`Q = E

and

Qm1 − Pm2 6= 0.

Then

3k (Qm1 − Pm2) = ±Q − Em2.

Obtain an upper bound on3k. Since3km1 ≥ n, it
follows thatm1 and, hence,m = m1m2 are not small.



Main Idea: Find “small” integersP , Q, andE such that

3kP − 2`Q = E

and

Qm1 − Pm2 6= 0.

Then

3k (Qm1 − Pm2) = ±Q − Em2.

Obtain an upper bound on3k. Since3km1 ≥ n, it
follows thatm1 and, hence,m = m1m2 are not small.
Use Pad́e approximations for(1 − z)k to obtainP , Q,
andE.
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One largely needs to be dealing with two primes (like 2
and 3) with a difference of powers of these primes being
small (like32 − 23 = 1).

In the case ofx2+7 = 2nm, the difference of the primes
(1+

√−7)/2 and(1−√−7)/2 each raised to the13th

power has absolute value≈ 2.65 and the prime powers
themselves have absolute value≈ 90.51.


