ON THE FACTORIZATION OF $\boldsymbol{n}(\boldsymbol{n}+1)$

by Michael Filaseta
University of South Carolina

Joint Work with M. Bennett \& O. Trifonov

Part I: On the factorization of $x^{2}+x$

Part I: On the factorization of $\boldsymbol{x}(x+1)$

Part I: On the factorization of $\boldsymbol{n}(\boldsymbol{n}+1)$

Part I: On the factorization of $\boldsymbol{n}(\boldsymbol{n}+1)$

Well-Known: The largest prime factor of $n(n+1)$ tends to infinity with \boldsymbol{n}.

Part I: On the factorization of $n(n+1)$

Well-Known: The largest prime factor of $n(n+1)$ tends to infinity with \boldsymbol{n}.

Let $p_{1}, p_{2}, \ldots, p_{r}$ be primes. There is an \boldsymbol{N} such that if $n \geq N$ and

$$
n(n+1)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} m
$$

for some integer m, then $m>1$.

Let $p_{1}, p_{2}, \ldots, p_{r}$ be primes. There is an N such that if $n \geq N$ and

$$
n(n+1)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} m
$$

for some integer m, then $m>1$.

Let $p_{1}, p_{2}, \ldots, p_{r}$ be primes. There is an N such that if $n \geq N$ and

$$
n(n+1)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} m
$$

for some integer m, then $m>1$.

Lehmer: Gave some explicit estimates:

Let $p_{1}, p_{2}, \ldots, p_{r}$ be primes. There is an N such that if $n \geq N$ and

$$
n(n+1)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} m
$$

for some integer m, then $m>1$.

Lehmer: Gave some explicit estimates:

$n(n+1)$ divisible only by primes $\leq 11 \Longrightarrow n \leq$

Let $p_{1}, p_{2}, \ldots, p_{r}$ be primes. There is an N such that if $n \geq N$ and

$$
n(n+1)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} m
$$

for some integer m, then $m>1$.

Lehmer: Gave some explicit estimates:

$n(n+1)$ divisible only by primes $\leq 11 \Longrightarrow n \leq$... only by primes $\leq 41 \Longrightarrow n \leq$

Let $p_{1}, p_{2}, \ldots, p_{r}$ be primes. There is an N such that if $n \geq N$ and

$$
n(n+1)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} m
$$

for some integer m, then $m>1$.

Lehmer: Gave some explicit estimates:

$n(n+1)$ divisible only by primes $\leq 11 \Longrightarrow n \leq 9800$ \ldots only by primes $\leq 41 \Longrightarrow n \leq$

Let $p_{1}, p_{2}, \ldots, p_{r}$ be primes. There is an N such that if $n \geq N$ and

$$
n(n+1)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} m
$$

for some integer m, then $m>1$.

Lehmer: Gave some explicit estimates:

$n(n+1)$ divisible only by primes $\leq 11 \Longrightarrow n \leq 9800$ \ldots only by primes $\leq 41 \Longrightarrow n \leq 63927525375$

Let $p_{1}, p_{2}, \ldots, p_{r}$ be primes. There is an N such that if $n \geq N$ and

$$
n(n+1)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} m
$$

for some integer m, then $m>1$.

Let $p_{1}, p_{2}, \ldots, p_{r}$ be primes. There is an N such that if $n \geq N$ and

$$
n(n+1)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} m
$$

for some integer m, then $m>1$.

Let $p_{1}, p_{2}, \ldots, p_{r}$ be primes. There is an N such that if $n \geq N$ and

$$
n(n+1)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} m
$$

for some integer m, then $m>1$.

Let $p_{1}, p_{2}, \ldots, p_{r}$ be primes. There is an N such that if $n \geq N$ and

$$
n(n+1)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} m
$$

for some integer \boldsymbol{m}, then $\boldsymbol{m}>\boldsymbol{n}^{\theta}$.

Want: Let $p_{1}, p_{2}, \ldots, p_{r}$ be primes. There is an $N=$ $N\left(\theta, p_{1}, \ldots, p_{r}\right)$ such that if $n \geq N$ and

$$
n(n+1)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} m
$$

for some integer m, then $m>n^{\theta}$.

Want: Let $p_{1}, p_{2}, \ldots, p_{r}$ be primes. There is an $N=$ $N\left(\theta, p_{1}, \ldots, p_{r}\right)$ such that if $n \geq N$ and

$$
n(n+1)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} m
$$

for some integer m, then $m>n^{\theta}$.

$$
a b c \text {-conjecture } \Longrightarrow \theta=
$$

Want: Let $p_{1}, p_{2}, \ldots, p_{r}$ be primes. There is an $N=$ $N\left(\theta, p_{1}, \ldots, p_{r}\right)$ such that if $n \geq N$ and

$$
n(n+1)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} m
$$

for some integer m, then $m>n^{\theta}$.

$$
a b c \text {-conjecture } \Longrightarrow \theta=1-\varepsilon
$$

Want: Let $p_{1}, p_{2}, \ldots, p_{r}$ be primes. There is an $N=$ $N\left(\theta, p_{1}, \ldots, p_{r}\right)$ such that if $n \geq N$ and

$$
n(n+1)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} m
$$

for some integer m, then $m>n^{\theta}$.

$$
a b c \text {-conjecture } \Longrightarrow \theta=1-\varepsilon
$$

unconditionally one can obtain $\theta=$

Want: Let $p_{1}, p_{2}, \ldots, p_{r}$ be primes. There is an $N=$ $\boldsymbol{N}\left(\boldsymbol{\theta}, \boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{r}\right)$ such that if $\boldsymbol{n} \geq \boldsymbol{N}$ and

$$
n(n+1)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} m
$$

for some integer m, then $m>n^{\theta}$.

$$
a b c \text {-conjecture } \Longrightarrow \theta=1-\varepsilon
$$

unconditionally one can obtain $\theta=1-\varepsilon$

Want: Let $p_{1}, p_{2}, \ldots, p_{r}$ be primes. There is an $N=$ $\boldsymbol{N}\left(\boldsymbol{\theta}, \boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{r}\right)$ such that if $\boldsymbol{n} \geq \boldsymbol{N}$ and

$$
n(n+1)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} m
$$

for some integer m, then $m>n^{\theta}$.

$$
a b c \text {-conjecture } \Longrightarrow \theta=1-\varepsilon
$$

unconditionally one can obtain $\theta=1-\varepsilon$ (ineffective)

Want: Let $p_{1}, p_{2}, \ldots, p_{r}$ be primes. There is an $N=$ $N\left(\theta, p_{1}, \ldots, p_{r}\right)$ such that if $n \geq N$ and

$$
n(n+1)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} m
$$

for some integer m, then $m>n^{\theta}$.

Effective Approach:

Want: Let $p_{1}, p_{2}, \ldots, p_{r}$ be primes. There is an $N=$ $\boldsymbol{N}\left(\boldsymbol{\theta}, \boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{r}\right)$ such that if $\boldsymbol{n} \geq \boldsymbol{N}$ and

$$
n(n+1)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} m
$$

for some integer m, then $m>n^{\theta}$.

Effective Approach: (Linear Forms of Logarithms)

Want: Let $p_{1}, p_{2}, \ldots, p_{r}$ be primes. There is an $N=$ $\boldsymbol{N}\left(\boldsymbol{\theta}, \boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{r}\right)$ such that if $\boldsymbol{n} \geq \boldsymbol{N}$ and

$$
n(n+1)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} m
$$

for some integer m, then $m>n^{\theta}$.

Effective Approach: (Linear Forms of Logarithms)

$$
\theta=\frac{c}{\log \log n}
$$

Want: Let $p_{1}, p_{2}, \ldots, p_{r}$ be primes. There is an $N=$ $\boldsymbol{N}\left(\boldsymbol{\theta}, \boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{r}\right)$ such that if $\boldsymbol{n} \geq \boldsymbol{N}$ and

$$
n(n+1)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} m
$$

for some integer m, then $m>n^{\theta}$.

Effective Approach: (Linear Forms of Logarithms)

$$
\theta=\frac{c}{\log \log n}
$$

Problem: Can we narrow the gap between these ineffective and effective results?

Don't Get Me Started:

What Got Us Started:

What Got Us Started:

Theorem (R. Gow, 1989): If $n>2$ is even and

$$
L_{n}^{(n)}(x)=\sum_{j=0}^{n}\binom{2 n}{n-j} \frac{(-x)^{j}}{j!}
$$

is irreducible, then the Galois group of $\boldsymbol{L}_{n}^{(n)}(x)$ is $\boldsymbol{A}_{\boldsymbol{n}}$.

What Got Us Started:

Theorem (R. Gow, 1989): If $n>2$ is even and

$$
L_{n}^{(n)}(x)=\sum_{j=0}^{n}\binom{2 n}{n-j} \frac{(-x)^{j}}{j!}
$$

is irreducible, then the Galois group of $\boldsymbol{L}_{n}^{(n)}(x)$ is $\boldsymbol{A}_{\boldsymbol{n}}$.
Theorem (joint work with R. Williams): For almost all positive integers n the polynomial $L_{n}^{(n)}(x)$ is irreducible (and, hence, has Galois group $\boldsymbol{A}_{\boldsymbol{n}}$ for almost all even \boldsymbol{n}).

What Got Us Started:

Theorem (R. Gow, 1989): If $n>2$ is even and

$$
L_{n}^{(n)}(x)=\sum_{j=0}^{n}\binom{2 n}{n-j} \frac{(-x)^{j}}{j!}
$$

is irreducible, then the Galois group of $\boldsymbol{L}_{n}^{(n)}(x)$ is $\boldsymbol{A}_{\boldsymbol{n}}$.
Theorem (joint work with R. Williams): For almost all positive integers n the polynomial $L_{n}^{(n)}(x)$ is irreducible (and, hence, has Galois group $\boldsymbol{A}_{\boldsymbol{n}}$ for almost all even \boldsymbol{n}).

Work in Progress with Trifonov: We're attempting to show the irreducibility of $L_{n}^{(n)}(x)$ for all $n>2$.

Want: Let $p_{1}, p_{2}, \ldots, p_{r}$ be primes. There is an $N=$ $N\left(\theta, p_{1}, \ldots, p_{r}\right)$ such that if $n \geq N$ and

$$
n(n+1)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} m
$$

for some integer m, then $m>n^{\theta}$.

Want: Let $p_{1}, p_{2}, \ldots, p_{r}$ be primes. There is an $N=$ $\boldsymbol{N}\left(\boldsymbol{\theta}, \boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{r}\right)$ such that if $\boldsymbol{n} \geq \boldsymbol{N}$ and

$$
n(n+1)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} m
$$

for some integer m, then $m>n^{\theta}$.

Theorem: If $\boldsymbol{n} \geq \mathbf{9}$ and

$$
n(n+1)=2^{k} 3^{\ell} m
$$

then

$$
m \geq
$$

Want: Let $p_{1}, p_{2}, \ldots, p_{r}$ be primes. There is an $N=$ $\boldsymbol{N}\left(\boldsymbol{\theta}, \boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{r}\right)$ such that if $\boldsymbol{n} \geq \boldsymbol{N}$ and

$$
n(n+1)=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}} m
$$

for some integer m, then $m>n^{\theta}$.

Theorem: If $\boldsymbol{n} \geq \mathbf{9}$ and

$$
n(n+1)=2^{k} 3^{\ell} m
$$

then

$$
m \geq n^{1 / 4}
$$

Part II: On the non-factorization of $x^{2}+7$

Part II: On the non-factorization of $\boldsymbol{x}^{2}+7$

Classical Ramanujan-Nagell Theorem: If \boldsymbol{x} and \boldsymbol{n} are integers satisfying

$$
x^{2}+7=2^{n}
$$

then

$$
x \in\{1,3,5,11,181\}
$$

Part II: On the non-factorization of $\boldsymbol{x}^{2}+7$

Classical Ramanujan-Nagell Theorem: If \boldsymbol{x} and \boldsymbol{n} are integers satisfying

$$
x^{2}+7=2^{n}
$$

then

$$
x \in\{1,3,5,11,181\}
$$

Problem: If $x^{2}+7=2^{n} m$ and x is not in the set above, then can we say that \boldsymbol{m} must be large?

Problem: If $x^{2}+7=2^{n} m$ and x is not in the set above, then can we say that \boldsymbol{m} must be large?

Connection with Part I:

Problem: If $x^{2}+7=2^{n} m$ and x is not in the set above, then can we say that \boldsymbol{m} must be large?

Connection with Part I:

$$
x^{2}+7=2^{n} m
$$

$$
\left(\frac{x+\sqrt{-7}}{2}\right)\left(\frac{x-\sqrt{-7}}{2}\right)=\left(\frac{1+\sqrt{-7}}{2}\right)^{n-2}\left(\frac{1-\sqrt{-7}}{2}\right)^{n-2} m
$$

Theorem: If $\boldsymbol{x}, \boldsymbol{n}$ and \boldsymbol{m} are positive integers satisfying

$$
x^{2}+7=2^{n} m \text { and } x \notin\{1,3,5,11,181\}
$$

then

$$
m \geq ? ? ?
$$

Theorem: If $\boldsymbol{x}, \boldsymbol{n}$ and \boldsymbol{m} are positive integers satisfying

$$
x^{2}+7=2^{n} m \text { and } x \notin\{1,3,5,11,181\}
$$

then

$$
m \geq x^{0.4345}
$$

Part III: The Method

Part III: Beukers' Method

Part III: Beukers' Method

$$
n(n+1)=3^{k} 2^{\ell} m
$$

Part III: Beukers' Method

$$
\begin{gathered}
n(n+1)=3^{k} 2^{\ell} m \\
3^{k} m_{1}-2^{\ell} m_{2}= \pm 1
\end{gathered}
$$

Part III: Beukers’ Method

$$
\begin{gathered}
n(n+1)=3^{k} 2^{\ell} m \\
3^{k} m_{1}-2^{\ell} m_{2}= \pm 1
\end{gathered}
$$

Main Idea: Find "small" integers $\boldsymbol{P}, \boldsymbol{Q}$, and \boldsymbol{E} such that

$$
3^{k} P-2^{\ell} Q=E
$$

Part III: Beukers' Method

$$
\begin{gathered}
n(n+1)=3^{k} 2^{\ell} m \\
3^{k} m_{1}-2^{\ell} m_{2}= \pm 1
\end{gathered}
$$

Main Idea: Find "small" integers $\boldsymbol{P}, \boldsymbol{Q}$, and \boldsymbol{E} such that

$$
3^{k} P-2^{\ell} Q=E
$$

Then

$$
3^{k}\left(Q m_{1}-P m_{2}\right)= \pm Q-E m_{2}
$$

Part III: Beukers' Method

$$
\begin{gathered}
n(n+1)=3^{k} 2^{\ell} m \\
3^{k} m_{1}-2^{\ell} m_{2}= \pm 1
\end{gathered}
$$

Main Idea: Find "small" integers $\boldsymbol{P}, \boldsymbol{Q}$, and \boldsymbol{E} such that

$$
3^{k} P-2^{\ell} Q=E
$$

Then

$$
3^{k}\left(Q m_{1}-P m_{2}\right)= \pm Q-E m_{2}
$$

Main Idea: Find "small" integers $\boldsymbol{P}, \boldsymbol{Q}$, and \boldsymbol{E} such that

$$
3^{k} P-2^{\ell} Q=E
$$

and

$$
Q m_{1}-P m_{2} \neq 0
$$

Then

$$
3^{k}\left(Q m_{1}-P m_{2}\right)= \pm Q-E m_{2}
$$

Main Idea: Find "small" integers $\boldsymbol{P}, \boldsymbol{Q}$, and \boldsymbol{E} such that

$$
3^{k} P-2^{\ell} Q=E
$$

and

$$
Q m_{1}-P m_{2} \neq 0
$$

Then

$$
3^{k}\left(Q m_{1}-P m_{2}\right)= \pm Q-E m_{2}
$$

Obtain an upper bound on 3^{k}.

Main Idea: Find "small" integers $\boldsymbol{P}, \boldsymbol{Q}$, and \boldsymbol{E} such that

$$
3^{k} P-2^{\ell} Q=E
$$

and

$$
Q m_{1}-P m_{2} \neq 0
$$

Then

$$
3^{k}\left(Q m_{1}-P m_{2}\right)= \pm Q-E m_{2}
$$

Obtain an upper bound on 3^{k}. Since $3^{k} \boldsymbol{m}_{1} \geq n$, it follows that \boldsymbol{m}_{1} and, hence, $\boldsymbol{m}=\boldsymbol{m}_{1} \boldsymbol{m}_{\mathbf{2}}$ are not small.

Main Idea: Find "small" integers $\boldsymbol{P}, \boldsymbol{Q}$, and \boldsymbol{E} such that

$$
3^{k} P-2^{\ell} Q=E
$$

and

$$
Q m_{1}-P m_{2} \neq 0
$$

Then

$$
3^{k}\left(Q m_{1}-P m_{2}\right)= \pm Q-E m_{2}
$$

Obtain an upper bound on 3^{k}. Since $3^{k} m_{1} \geq n$, it follows that \boldsymbol{m}_{1} and, hence, $\boldsymbol{m}=\boldsymbol{m}_{1} \boldsymbol{m}_{2}$ are not small. Use Padé approximations for $(1-z)^{k}$ to obtain P, Q, and \boldsymbol{E}.

What's Needed for the Method to Work:

What's Needed for the Method to Work:

One largely needs to be dealing with two primes (like 2 and 3) with a difference of powers of these primes being small (like $3^{2}-2^{3}=1$).

What's Needed for the Method to Work:

One largely needs to be dealing with two primes (like 2 and 3) with a difference of powers of these primes being small (like $3^{2}-2^{3}=1$).

In the case of $x^{2}+7=2^{n} m$, the difference of the primes $(1+\sqrt{-7}) / 2$ and $(1-\sqrt{-7}) / 2$ each raised to the $13^{\text {th }}$ power has absolute value ≈ 2.65 and the prime powers themselves have absolute value ≈ 90.51.

