Let q denote a prime number. Recently Michael Rosen told me that if u and v are integers such that, for almost every prime p, either u or v is congruent modulo p to a q-th power, then either u or v is a q-th power. The Corollary to Proposition 2 below describes a generalization of this result.

Let Q denote the set of rational numbers.

Lemma 1 Let ζ denote a primitive q-th root of 1.

- (i) If c is a rational number and c is a q-th power of an element of $Q[\zeta]$, then c is a q-th power of a rational number.
- (ii) Let S denote a finite set of non-zero rational integers and let T denote the set of all q-th roots of elements of S. Suppose that there is an element of the Galois group of Q[T] over $Q[\zeta]$ which does not fix any element of T. Then the set of rational primes p such that no element of S is congruent modulo p to a q-th power has density strictly bigger than 0.

<u>Proof.</u> If q=2, then ζ =-1 and Q[ζ]=Q, so statement (i) holds trivially. Suppose now that q is an odd prime, and suppose also that there is an element γ in Q[ζ] such that γ^q =c. Let N denote the norm map from Q[ζ] to Q and observe that $|N(\gamma)| = |\gamma|^{q-1}$ because the roots of X^q -c have the same absolute values. Since $|\gamma|^{q-1} = |N(\gamma)| \in Q$ and $|\gamma|^q = |c| \in Q$, $|\gamma| \in Q$. Therefore |c| is the q-th power of a rational number, namely $|\gamma|$. This observation and the assumption that q is odd imply that c is the q-th power of a rational number. This proves (i).

Suppose that there is an element σ of the Galois group of Q[T] over Q[ζ] such that $\sigma(t)-t\neq 0$ for every t in T. Let R denote the ring of algebraic integers in Q[T]. Let P denote an ideal of R such that P is a maximal ideal, P does not contain any element of $SU\{q\}$ and $\sigma(P)=P$. Since $t^q \in S$ for every element t in T, t^q is a rational integer and hence $\sigma(t)/t$ is a q-th root of 1 for every t in T. Observe also that $\sigma(t)/t\neq 1$ for every t in T. These observations and the assumption that P does not contain q imply that $\sigma(t)/t-1$ does not lie in P when $t\in T$. Hence $\sigma(t)-t$ does not lie in P when $t\in T$, this observation and the assumption that $\sigma(P)=P$ imply that t is not congruent modulo P to a rational integer

when t € T. Therefore

(1) no element of S is congruent modulo P to a q-th power of a rational integer.

Note that only finitely many maximal ideals of R contain an element of $SU\{q\}$. Note also that, by the Chebotarev density theorem, the set of maximal ideals P of R satisfying $\sigma(P)=P$ has strictly positive density. These observations imply that the set of maximal ideals P of R for which statement (1) holds has strictly positive density. Therefore the set of rational primes p such that no element of S is congruent modulo p to a q-th power has strictly positive density.

<u>Proposition 2</u> Let S denote a set of rational integers. Assume that $|S| \le q$ and S does not contain a q-th power of a rational integer. Then the set of primes p such that no element of S is congruent modulo p to a q-th power has density strictly bigger than 0.

<u>Proof.</u> Let T denote the set of q-th roots of elements of S, and let ζ denote a primitive q-th root of 1. Let G denote the Galois group of Q[T] over $Q[\zeta]$, and for every element s in S, let $G(s) = \{\sigma \in G : \sigma \text{ fixes every q-th root of s}\}$. Since S does not contain a q-th power of a rational integer, statement (i) of the Lemma implies that S does not contain a q-th power of an element of $Q[\zeta]$. Therefore G(s) is a proper subset of G for every s in S. Note also that if $s \in S$ and $t^q=s$, then G(s) is the kernel of the homomorphism from G to $\{1, \zeta, \ldots, \zeta^{q-1}\}$ which maps σ to $\sigma(t)/t$. Therefore the index of G(s) in G is q, so

$$|G(s)| = |G|/q.$$

Observe that

Dec. 87

< |G|.

Therefore there is an element of G which does not fix any element of T.

Therefore statement (ii) of the Lemma implies that the set of primes p such that no element of S is congruent modulo p to a q-th power has density strictly bigger than O.

Corollary Let S denote a set of rational integers such that $|S| \le q$ and, for almost every prime p, there is an element of S which is congruent modulo p to a q-th power. Then S contains a q-th power of a rational integer.

Remarks The Corollary does not hold when the size of S is strictly greater than q. For example let $S = \{u, u^m v : 0 \le q \}$, where u and v denote distinct primes. Then |S| = q+1 and, for every prime p, there is an element of S which is congruent modulo p to a q-th power, but S does not contain a q-th power.

More generally let k denote an integer such that $k \ge 2$ and let u and v denote distinct primes. Let $S = \{u^d, v^d, u^m v : 0 \le d \le k, 0 \le m \le k, d \text{ divides } k \text{ and } gcd(m,k)=1 \}$. Then for every prime p, S contains a number which is congruent modulo p to a k-th power, but S does not contain a k-th power.