# On THE IRREDUCIBILITY OF THE Generalized Laguerre Polynomials 

M. Filaseta ${ }^{1}$ and T.-Y. Lam

June 10, 2001

[^0]
## 1 Introduction

The generalized Laguerre polynomials are defined by

$$
L_{m}^{(\alpha)}(x)=\sum_{j=0}^{m} \frac{(m+\alpha)(m-1+\alpha) \cdots(j+1+\alpha)(-x)^{j}}{(m-j)!j!}
$$

where $m$ is a positive integer and $\alpha$ is an arbitrary complex number. In 1929, I. Schur [4] established the irreducibility over the rationals of $L_{m}^{(0)}(x)$, the classical Laguerre polynomials, for every $m$. In 1931, I. Schur [5] considered $L_{m}^{(\alpha)}(x)$ in general and showed that $L_{m}^{(1)}(x)$ is irreducible over the rationals for every $m$. The case $\alpha \notin\{0,1\}$ remained open. The purpose of this paper is to establish the following:

Theorem 1. Let $\alpha$ be a rational number which is not a negative integer. Then for all but finitely many positive integers $m$, the polynomial $L_{m}^{(\alpha)}(x)$ is irreducible over the rationals.

Before going to the proof, it is worth noting that reducible $L_{m}^{(\alpha)}(x)$ do exist even with $\alpha=2$. In particular, we give the following examples:

$$
\begin{aligned}
L_{2}^{(2)}(x) & =\frac{1}{2}(x-2)(x-6) \\
L_{2}^{(23)}(x) & =\frac{1}{2}(x-20)(x-30) \\
L_{4}^{(23)}(x) & =\frac{1}{24}(x-30)\left(x^{3}-78 x^{2}+1872 x-14040\right) \\
L_{4}^{(12 / 5)}(x) & =\frac{1}{15000}\left(25 x^{2}-420 x+1224\right)\left(25 x^{2}-220 x+264\right) \\
L_{5}^{(39 / 5)}(x) & =\frac{-1}{375000}(5 x-84)\left(625 x^{4}-29500 x^{3}\right. \\
& \left.+448400 x^{2}-2662080 x+5233536\right)
\end{aligned}
$$

It is not difficult to show that in fact there are infinitely many positive integers $\alpha$ for which $L_{2}^{(\alpha)}(x)$ is reducible (a product of two linear polynomials).

Theorem 1 is a direct consequence of the following more general result:

Theorem 2. Let $\alpha$ be a rational number which is not a negative integer. Then for all but finitely many positive integers $m$, the polynomial

$$
\sum_{j=0}^{m} a_{j} \frac{(m+\alpha)(m-1+\alpha) \cdots(j+1+\alpha) x^{j}}{(m-j)!j!}
$$

is irreducible over the rationals provided only that $a_{j} \in \mathbb{Z}$ for $0 \leq j \leq m$ and $\left|a_{0}\right|=\left|a_{m}\right|=1$.
I. Schur obtained his irreducibility results for $L_{m}^{(0)}(x)$ and $L_{m}^{(1)}(x)$ through general results similar to the above (except also for all $m \geq 1$ ). Recent work of a similar nature has been done by Filaseta [1, 2] and by Filaseta and Trifonov [3]. We note also that the above results can be made effective so that for any fixed $\alpha \in \mathbb{Q}$ it is possible to determine a finite set $S=S(\alpha)$ of $m$ such that the polynomial in Theorem 2 is irreducible (for $a_{j}$ as stated there) provided $m \notin S$.

## 2 A Proof of Theorem 2

For a prime $p$ and a non-zero integer $a$, we define $\nu(a)=\nu_{p}(a)=e$ where $p^{e} \| a$. We set $\nu(0)=+\infty$. We define the Newton polygon of a polynomial $f(x)=$ $\sum_{j=0}^{n} a_{j} x^{j}$ with respect to a prime $p$, where $a_{n} a_{0} \neq 0$ as the lower convex hull of the points $\left(j, \nu\left(a_{n-j}\right)\right)$. Thus, the slopes of the edges of the Newton polygon of $f(x)$ with respect to $p$ are increasing from left to right. We begin with the following preliminary results.

Lemma 1. Let $k$ and $\ell$ be integers with $k>\ell \geq 0$. Suppose $g(x)=\sum_{j=0}^{n} b_{j} x^{j} \in$ $\mathbb{Z}[x]$ and $p$ is a prime such that $p \nmid b_{n}, p \mid b_{j}$ for all $j \in\{0,1, \ldots, n-\ell-1\}$, and the right-most edge of the Newton polygon for $g(x)$ with respect to $p$ has slope $<1 / k$. Then for any integers $a_{0}, a_{1}, \ldots, a_{n}$ with $\left|a_{0}\right|=\left|a_{n}\right|=1$, the polynomial $f(x)=\sum_{j=0}^{n} a_{j} b_{j} x^{j}$ cannot have a factor with degree in the interval $[\ell+1, k]$.

Lemma 2. Let $a, b, c$ and $d$ be integers with $b c-a d \neq 0$. Then the largest prime factor of $(a m+b)(c m+d)$ tends to infinity as the integer $m$ tends to infinity.

Lemma 1 is given as Lemma 2 in [1]. Lemma 2 above is a fairly easy consequence of the fact that the Thué equation $u x^{3}-v y^{3}=w$ has finitely many solutions in integers $x$ and $y$ where $u$, $v$, and $w$ are fixed integers with $w \neq 0$. It also immediately follows from Corollary 1.2 of [6]. We omit the proofs.

Fix $\alpha$ now as in Theorem 2. Throughout the argument we suppose as we may that $m$ is large. Define

$$
c_{j}=\binom{m}{j}(m+\alpha)(m-1+\alpha) \cdots(j+1+\alpha) \quad \text { for } 0 \leq j \leq m
$$

We want to show that for all but finitely many positive integers $m$, the polynomial $f(x)=\sum_{j=0}^{m} a_{j} c_{j} x^{j}$ is irreducible over the rationals, where $a_{j}$ are arbitrary integers with $\left|a_{0}\right|=\left|a_{n}\right|=1$. Motivated by Lemma 11, we consider instead $g(x)=\sum_{j=0}^{m} c_{j} x^{j}$. Let $u$ and $v$ be relatively prime integers with $v>0$ such that $\alpha=u / v$. The condition that $\alpha$ is not a negative integer implies that for each $j \in\{0,1, \ldots, m-1\}, m-j+\alpha$ and, hence, $v(m-j)+u$ cannot be zero. We assume that $g(x)$ has a factor in $\mathbb{Z}[x]$ of degree $k \in[1, m / 2]$ and establish the theorem by obtaining a contradiction to Lemma 1. We divide the argument into cases depending on the size of $k$.

Case 1. $k>m / \log ^{2} m$.
For $a$ and $b$ integers with $b>0$, let $\pi(x ; b, a)$ denote the number of primes $\leq x$ which are $\equiv a(\bmod b)$. Then the Prime Number Theorem for Arithmetic Progressions implies that if $\operatorname{gcd}(a, b)=1$, then

$$
\begin{aligned}
\pi(x ; b, a) & =\frac{1}{\phi(b)} \int_{2}^{x} \frac{d t}{\log t}+O\left(\frac{x}{\log ^{4} x}\right) \\
& =\frac{1}{\phi(b)}\left(\frac{x}{\log x}+\frac{x}{\log ^{2} x}+\frac{2 x}{\log ^{3} x}+O\left(\frac{x}{\log ^{4} x}\right)\right) .
\end{aligned}
$$

By considering $\pi(x ; b, a)-\pi(x-h ; b, a)$, it follows that for $a$ and $b$ fixed, the interval $(x-h, x]$ contains a prime $\equiv a(\bmod b)$ if $h=x /\left(2 \log ^{2} x\right)$ and if $x$ is sufficiently large. Taking $a=u, b=v$, and $x=v m+u$, we deduce that for some integer $j \in[0, k)$, the number $v(m-j)+u$ is prime. Call such a prime $p$, and observe that $p \geq 2 v m / 3$ (since $v$ is a positive integer and $m$ is large). We deduce that $p$ does not divide $v$. Observe that

$$
c_{\ell}=\binom{m}{\ell} \frac{(v m+u)(v(m-1)+u) \cdots(v(\ell+1)+u)}{v^{m-\ell}} \quad \text { for } 0 \leq \ell \leq m .
$$

For $j \in\{0,1, \ldots, k-1\}$, the numbers $v(m-j)+u$ appear in the numerator of the fraction on the right-hand side above whenever $0 \leq \ell \leq m-k$. Therefore,

$$
\begin{equation*}
\nu_{p}\left(c_{\ell}\right) \geq 1 \quad \text { for } 0 \leq \ell \leq m-k \tag{1}
\end{equation*}
$$

Since $c_{m}= \pm 1, \nu_{p}\left(c_{m}\right)=0$. To obtain a contradiction from Lemma 1 for the case under consideration, we show that $\nu_{p}\left(c_{0}\right)=1$; the contradiction will be achieved since then it will follow that the right-most edge of the Newton polygon of $g(x)$ with respect to $p$ has slope $<1 /(m-k)<1 / k$. Recall that $p \nmid v$ and that $p \geq 2 v m / 3$. For $j \in\{0,1, \ldots, m-1\}$, we deduce the inequality

$$
2 p>v m+u \geq v(m-j)+u \geq v+u>-p .
$$

The condition that $\alpha$ is not a negative integer implies that none of $v(m-j)+u$ can be zero. Hence, $p$ itself is the only multiple of $p$ among the numbers $v(m-j)+u$ with $0 \leq j \leq m-1$. Since $c_{0}=(v m+u)(v(m-1)+u) \cdots(v+u) / v^{m}$, we obtain $\nu_{p}\left(c_{0}\right)=1$.

Case 2. $k_{0} \leq k \leq m / \log ^{2} m$ with $k_{0}=k_{0}(u, v)$ a sufficiently large integer.
Let $z=k(\log \log k)^{1 / 2}$. We first show that there is a prime $p>z$ that divides $v(m-j)+u$ for some $j \in\{0,1, \ldots, k-1\}$. Then (1) follows as before, and we will obtain a contradiction to Lemma 1 by showing that the right-most edge of the Newton polygon of $g(x)$ with respect to $p$ has slope $<1 / k$.

Let

$$
T=\{v(m-j)+u: 0 \leq j \leq k-1\} .
$$

Since $m$ is large, we deduce that the elements of $T$ are each $\geq m / 2$. Also, observe that $\operatorname{gcd}(u, v)=1$ implies that each element of $T$ is relatively prime to $v$. For each prime $p \leq z$, we consider an element $a_{p}=v(m-j)+u \in T$ with $\nu_{p}\left(a_{p}\right)$ as large as possible. We let

$$
S=T-\left\{a_{p}: p \nmid v, p \leq z\right\} .
$$

By the Prime Number Theorem,

$$
\pi(z) \leq \frac{2 k(\log \log k)^{1 / 2}}{\log k}
$$

We combine this estimate momentarily with $|S| \geq k-\pi(z)$. Since $k \leq m / \log ^{2} m$, we obtain $m \geq k \log ^{2} k$. Consider a prime $p \leq z$ with $p$ not dividing $v$, and let $r=\nu_{p}\left(a_{p}\right)$. By the definition of $a_{p}$, if $j>r$, then there are no multiples of $p^{j}$ in $T$ (and, hence, in $S$ ). For $1 \leq j \leq r$, there are $\leq\left[k / p^{j}\right]+1$ multiples of $p^{j}$ in $T$ and, hence, at most $\left[k / p^{j}\right]$ multiples of $p^{j}$ in $S$. Therefore,

$$
\nu_{p}\left(\prod_{s \in S} s\right) \leq \sum_{j=1}^{r}\left[\frac{k}{p^{j}}\right] \leq \nu_{p}(k!)
$$

and

$$
\prod_{s \in S} \prod_{p \leq z} p^{\nu_{p}(s)} \leq k!\leq k^{k}
$$

On the other hand,

$$
\prod_{s \in S} s \geq\left(\frac{m}{2}\right)^{|S|} \geq\left(\frac{k \log ^{2} k}{2}\right)^{k-\pi(z)}
$$

Recalling our bound on $\pi(z)$, we obtain

$$
\begin{aligned}
\log \left(\prod_{s \in S} s\right) & \geq(k-\pi(z))(\log k+2 \log \log k-\log 2) \\
& \geq\left(k-\frac{2 k \sqrt{\log \log k}}{\log k}\right)(\log k+2 \log \log k-\log 2) \\
& \geq k \log k+2 k \log \log k+O(k \sqrt{\log \log k})
\end{aligned}
$$

Since $k \geq k_{0}$ where $k_{0}$ is sufficiently large,

$$
\log \left(\prod_{s \in S} s\right)>k \log k \geq \log \left(\prod_{s \in S} \prod_{p \leq z} p^{\nu_{p}(s)}\right)
$$

It follows that there is a prime $p>z$ that divides some element of $S$ and, hence, divides some element of $T$.

Fix a prime $p>z$ that divides an element in $T$, and let $\nu=\nu_{p}$. The right-most edge of the Newton polygon of $g(x)$ with respect to $p$ is

$$
\max _{1 \leq j \leq m}\left\{\frac{\nu\left(c_{0}\right)-\nu\left(c_{j}\right)}{j}\right\}
$$

Fix $j \in\{1,2, \ldots, m\}$. To complete the case under consideration, we want to show that the fraction above is $<1 / k$. Observe that

$$
\begin{aligned}
\nu\left(c_{0}\right)-\nu\left(c_{j}\right) & \leq \nu((v j+u)(v(j-1)+u) \cdots(v+u)) \\
& \leq \nu((v j+|u|)!)=\sum_{j=1}^{\infty}\left[\frac{v j+|u|}{p^{j}}\right] \\
& <\sum_{j=1}^{\infty} \frac{v j+|u|}{p^{j}}=\frac{v j+|u|}{p-1} .
\end{aligned}
$$

Since $p>z=k(\log \log k)^{1 / 2}$ and $k \geq k_{0}$, we easily deduce that the right-most edge of the Newton polygon of $g(x)$ with respect to $p$ has slope $<1 / k$ as desired. Hence, as indicated at the beginning of this case, we obtain a contradiction to Lemma 1 .

Case 3. $2 \leq k<k_{0}$.
By Lemma 2 (with $a=v, b=u, c=v$, and $d=u-v$ ), the largest prime factor of the product $(v m+u)(v(m-1)+u)$ tends to infinity. Since $m$ is large, we deduce that there is a prime $p>(v+|u|) k_{0}$ that divides $(v m+u)(v(m-1)+u)$. The argument now follows as in the previous case. In particular,

$$
\frac{\nu\left(c_{0}\right)-\nu\left(c_{j}\right)}{j}<\frac{v j+|u|}{j(p-1)} \leq \frac{v+|u|}{p-1} \leq \frac{1}{k_{0}}<\frac{1}{k} \quad \text { for } 1 \leq j \leq m
$$

and the right-most edge of the Newton polygon of $g(x)$ with respect to $p$ has slope $<1 / k$. Hence, in this case, we also obtain a contradiction.

Case 4. $k=1$.
From Lemma 2, the largest prime factor of $m(v m+u)$ tends to infinity with $m$. We consider a large prime factor $p$ of this product. In particular, we suppose that $p>v+|u|$. Note this implies $p \nmid v$. As in the previous case, we are through if $p \mid(v m+u)$. So suppose $p \mid m$. The binomial coefficient $\binom{m}{j}$ appears in the definition of $c_{j}$, and this is sufficient to guarantee that $\nu\left(c_{j}\right) \geq 1$ and $\nu\left(c_{m-j}\right) \geq 1$ for $1 \leq j \leq p-1$. On the other hand,

$$
c_{j}=\binom{m}{j} \frac{(v m+u)(v(m-1)+u) \cdots(v(j+1)+u)}{v^{m-j}} .
$$

For $j \leq m-p$, the numerator of the fraction on the right is a product of $\geq p$ consecutive terms in the arithmetic progression $v t+u$ with $\operatorname{gcd}(p, v)=1$; thus, $\nu\left(c_{m-j}\right) \geq 1$ for $j \geq p$. This implies that (1) holds with $k=1$. It follows in the same manner as before that the slope of the right-most edge is $<1$. A contradiction to Lemma 1 is again obtained (and the proof of the theorem is complete).

## References

[1] M. Filaseta, The irreducibility of all but finitely many Bessel Polynomials, Acta Math. 174 (1995), 383-397.
[2] M. Filaseta, A generalization of an irreducibility theorem of I. Schur, Analytic Number Theory: Proceedings of a Conference in Honor of Heini Halberstam, Volume 1, edited by B. C. Berndt, H. G. Diamond, and A. J. Hildebrand, Birkhauser, Boston, 1996, 371-396.
[3] M. Filaseta and O. Trifonov, The irreducibility of the Bessel Polynomials, preprint.
[4] I. Schur, Einige Sätze über Primzahlen mit Anwendungen auf Irreduzibilitätsfragen, I, Sitzungsberichte der Preussischen Akademie der Wissenschaften 1929, Physikalisch-Mathematische Klasse, 125-136.
[5] I. Schur, Affektlose Gleichungen in der Theorie der Laguerreschen und Hermiteschen Polynome, Journal für die reine und angewandte Mathematik 165 (1931), 52-58.
[6] T. N. Shorey and R. Tijdeman, Exponential Diophantine Equations, Cambridge Univ. Press, Cambridge, 1986.


[^0]:    ${ }^{1}$ The author gratefully acknowledges support from the National Security Agency.

