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1 Introduction

The generalized Laguerre polynomials are defined by

L(α)
m (x) =

m∑
j=0

(
m + α

m− j

)
(−x)j

j!
.

wherem denotes a positive integer (the degree) andα a real number. In two papers, I. Schur
[10, 11] investigated the irreducibility ofL(0)

m (x) andL
(1)
m (x) as well as their associated Galois

groups. He established that these polynomials are irreducible for all positive integersm and that
the Galois group ofL(0)

m (x) is the symmetric groupSm for all m and the Galois group ofL(1)
m (x)

is the alternating groupAm if m > 1 is odd or ifm + 1 is an odd square and, otherwise, the Galois
group isSm. That the Galois group ofL(1)

m (x) is Am wheneverm is odd(and sometimes whenm is
a multiple of4) is of particular interest as a classical result of Van der Waerden [12] is that almost
all polynomials in a certain asymptotic sense have Galois groupSm. More recently, R. Gow [7]
showed that the Laguerre polynomialsL

(m)
m (x) provide a possible complimentary list of polyno-

mials toL
(1)
m (x) in the sense that for eachevenm the polynomialL(m)

m (x) may well have Galois
groupAm. More specifically, he established that ifm is even, then the Galois group ofL

(m)
m (x) is

Am provided that the polynomialL(m)
m (x) is irreducible over the rationals. A computation shows

that for2 < m ≤ 100, L
(m)
m (x) is irreducible. In addition, Gow established the irreducibility of

L
(m)
m (x) whenm is of the form2pk wherep is a prime greater than 3 or whenm is of the form4pk

wherep is a prime greater than7. The purpose of this paper is to give some further insight into the
irreducibility of the polynomialsL(m)

m (x). We establish

Theorem 1. For almost all positive integersm the polynomialL(m)
m (x) is irreducible over the

rationals (and, hence, has Galois groupAm for almost all evenm). More precisely, the number of
m ≤ t such thatL(m)

m (x) is reducible is

� exp

(
9 log(2t)

log log(2t)

)
.

Furthermore, for all but finitely manym, L
(m)
m (x) is either irreducible orL(m)

m (x) is the product of
a linear polynomial times an irreducible polynomial of degreem− 1.

Our approach will be based on recent work of the first author [3, 4] and of his joint works
with T.-Y. Lam [5] and O. Trifonov [6]. There several irreducibility results were established by
combining the use of Newton polygons with information on the distribution of primes. Similar
to the general form of these results and to the original work of Schur, we establish the following
result from which Theorem 1 is an easy consequence.

Theorem 2. For all but O
(
exp(9 log(2t)/ log log(2t))

)
positive integersm ≤ t, the polynomial

f(x) =
m∑

j=0

aj

(
2m

m− j

)
xj

j!
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is irreducible over the rationals for every choice of integersa0, a1, . . . , am with |a0| = |am| = 1.
Furthermore, there is an absolute constantm0 such that the exceptionalm for which some choice
of integersa0, a1, . . . , am as above produces a reducible polynomialf(x) are either< m0 or are
of the formm = 2i × 3j × n where

n < exp

(
8 log(2m)

log log(2m)

)
.

In the case thatm ≥ m0, eitherf(x) is irreducible orf(x) is the product of a linear polynomial
times an irreducible polynomial of degreem− 1.

We let A denote the set of exceptionalm in Theorem 2, and letA(t) denote the number of
elements ofA that are≤ t. Thus, Theorem 2 gives

A(t) � exp

(
9 log(2t)

log log(2t)

)
.

We note that the setA is nonempty. Indeed,2 is an element ofA since

2!L
(2)
2 (x) = (x2 − 8x + 12) = (x− 6)(x− 2).

The polynomialL(2)
2 (x) may well be the only example of a reducibleL

(m)
m (x). However, we show

in the final section of this paper that the setA is infinite. Our next theorem follows from the
methods given there.

Theorem 3. A(t) � log t.

Because of our approach for determining whetherf(x) has a quadratic factor, the value ofm0

in Theorem 2 is ineffective. We note here, however, that our approach can be modified to give an
explicit constantx0 such that ifm ≥ x0, then eitherf(x) is irreducible or it has a factor of degree
≤ 2.

Considerf(x) as in the statement of Theorem 2. Definecm = am, and

cj = aj

(
m

j

)
(2m)(2m− 1) · · · (m + j + 1) for 0 ≤ j ≤ m− 1.

Thus, we have

cm−1 = am−1

(
m

1

)
(2m), cm−2 = am−2

(
m

2

)
(2m)(2m− 1), . . . ,

c1 = a1

(
m

1

)
(2m)(2m− 1) · · · (m + 2), and c0 = a0(2m)(2m− 1) · · · (m + 1).

Thus, ifg(x) = m!f(x), theng(x) =
∑m

j=0 cjx
j. Hence, it suffices to prove the analogous result

in Theorem 2 for the polynomialsg(x) =
∑m

j=0 cjx
j ∈ Z[x].

We organize the remainder of this paper as follows. We begin by stating some general analytic
results. Next, we provide a few technical lemmas crucial to the proof of Theorem 2. We prove
Theorem 2 using a proof by contradiction. We assume thatg(x) has a factor of degreek ∈ [1, m/2].
We partition the interval[1, m/2] into seven subintervals. In each such subinterval, we show that
for m sufficiently largeg(x) cannot have a factor of degreek except in the case thatk = 1 where
g(x) might have a linear factor ifm takes on a specific form. We end the paper by giving a
constructive proof that the setA is infinite.
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2 Preliminaries

We begin with some analytic results which will aid in the proof of Theorem 2. We will make use
of the following result of Rosser and Schoenfeld [9].

Lemma 1. Letπ(x) denote the number of primes not exceedingx. Then

π(x) <
x

log x

(
1 +

3

2 log x

)
for all x > 1.

The next result can be found in [4].

Lemma 2. Let a be a fixed non-zero integer, and letN be a fixed positive integer. Letε > 0. If
m is sufficiently large (depending ona, N , andε), then the largest divisor ofm(m + a) which is
relatively prime toN is≥ m1−ε.

Newton polygons will be an important tool utilized in determining the irreduciblility of the
polynomialsg(x) discussed at the end of the previous section. We define the Newton polygon of a
polynomial as follows. Let

f(x) =
m∑

j=0

ajx
j ∈ Z[x]

with a0am 6= 0. Let p be a prime, and lety be an integer. We use thep-adic notation

ν(y) = νp(y) = r if pr||y (that is ifpr|y andpr+1 - y).

If y = 0, then we understand this to meanν(y) = +∞. Forj ∈ {0, 1, 2, . . . ,m}, we define the set
of points

S = {(0, ν(am)), (1, ν(am−1)), . . . , (m, ν(a0))}

in the extended plane. We refer to the elements ofS as the spots off(x). We consider the lower
edges along the convex hull of these spots. The left-most edge has one endpoint being(0, ν(am))
and the right-most edge has(m, ν(a0)) as an endpoint. The endpoints of every edge belong to the
setS. When referring to the “edges” of a Newton polygon we shall not allow 2 different edges to
have the same slope. The polygonal path formed by these edges is called the Newton polygon of
f(x) with respect to the primep. Observe that the slopes of the edges are always increasing when
calculated from the left-most edge to the right-most edge.

We will make use of the following result from [3] (which itself is based on work of M. G. Du-
mas [2]).

Lemma 3. Let k and` be integers withk > ` ≥ 0. Supposeg(x) =
∑m

j=0 bjx
j ∈ Z[x] andp is

a prime such thatp - bm, p|bj for all j ∈ {0, 1, . . . ,m − ` − 1}, and the right-most edge of the
Newton polygon forg(x) with respect top has slope< 1/k. Then for any integersa0, a1, . . . , am

with |a0| = |am| = 1, the polynomialG(x) =
∑m

j=0 ajbjx
j cannot have a factor with degree in the

interval [` + 1, k].
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3 Further Preliminaries

We now considerf(x) as in Theorem 2 andg(x) = m!f(x) =
∑m

j=0 cjx
j as defined in the

introduction. We establish some technical lemmas associated with the polynomialg(x).

Lemma 4. Letm be a positive integer. Suppose thatp is a prime, thatk andr are positive integers,
and that` is an integer in[0, k) satisfying:

(i) pr||(m− `) or pr||(2m− `)

(ii) p ≥ 3k + 1

(iii) ∆(r, p)
log(2m)

pr log p
+

1

p− 1
≤ 1

k
where∆(r, p) = 2

/(
1− 1

3pr−1

)
.

Theng(x) cannot have a factor with degree in[` + 1, k].

Proof. The conclusion of the lemma holds if` ≥ m, so we supposè ≤ m − 1. The proof
consists of verifying the hypotheses of Lemma 3. For this purpose, we only consider the case that
am = am−1 = · · · = a0 = 1. Thencm = 1 so thatp - cm. Also, we have

cj =

(
m

j

)
(2m)(2m− 1) · · · (m + j + 1) for 0 ≤ j ≤ m− 1. (1)

If pr||(2m−`), then it is clear from (1) thatp dividescj for j ∈ {0, 1, . . . ,m−`−1}. If pr||(m−`),
then writing (1) as

cj =

(
2m

m− j

)
m(m− 1) · · · (j + 1),

we see thatp dividescj for j ∈ {0, 1, . . . ,m− `− 1}.
Now, we need only show that the right-most edge of the Newton polygon ofg(x) with respect

to p has slope< 1/k. The right-most edge has slope

max
1≤j≤m

{
ν(c0)− ν(cj)

j

}
. (2)

Let j be such that the quantity in (2) is maximal so that by (iii) it suffices to show that

ν(c0)− ν(cj)

j
< ∆(r, p)

log(2m)

pr log p
+

1

p− 1
.

Observe that by (1)

c0

cj

=
(2m)(2m− 1) · · · (m + 1)(

m
j

)
(2m)(2m− 1) · · · (m + j + 1)

=
j!(m + j)!(m− j)!

m!2
.

Since

ν(j!) =
∞∑
i=1

[
j

pi

]
<

∞∑
i=1

j

pi
=

j

p− 1
,
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we deduce

ν(c0)− ν(cj) = ν(j!) + ν

(
(m + j)!

m!

)
− ν

(
m!

(m− j)!

)
(3)

<
j

p− 1
+

∞∑
s=1

([
m + j

ps

]
−

[
m

ps

])
−

∞∑
s=1

([
m

ps

]
−

[
m− j

ps

])

=
j

p− 1
+

N∑
s=1

([
m + j

ps

]
− 2

[
m

ps

]
+

[
m− j

ps

])
whereN = [log(2m)/ log p]. Note that[

m + j

ps

]
− 2

[
m

ps

]
+

[
m− j

ps

]
<

m + j

ps
− 2

(
m

ps
− 1

)
+

m− j

ps
= 2

so that [
m + j

ps

]
− 2

[
m

ps

]
+

[
m− j

ps

]
≤ 1. (4)

If j ≥ pr/∆(r, p), then using (3) and (4) we obtain

ν(c0)− ν(cj)

j
<

1

p− 1
+

1

j

N∑
s=1

1 =
1

p− 1
+

N

j
≤ 1

p− 1
+ ∆(r, p)

log(2m)

pr log p

and our result follows.
Suppose thatj < pr/∆(r, p) and choosee so thatpe||(m + i) for some1 ≤ i ≤ j with e

maximal. We assume as we may thate ≥ 1 for otherwise the quantity in (2) is equal to 0 and our
result is trivial.

Claim. e < r.
To see that the claim is true, supposee ≥ r. If pr||(2m − `), then aspe||(m + i) we have

pr|(2i + `). Thus,

pr ≤ 2i + ` < 2j + k ≤ 2j +
p

3
= 2j +

pr

3pr−1
.

Likewise, if pr||(m− `), then aspe||(m + i) we deducepr|(i + `). Hence,

pr ≤ i + ` ≤ 2i + ` < 2j + k ≤ 2j +
p

3
≤ 2j +

pr

3pr−1
.

Both situations imply that

j ≥ pr

2

(
1− 1

3pr−1

)
= pr/∆(r, p),

which is a contradiction. The claim follows.
Using the claim, the fact thatpr||(2m− `) or pr||(m− `), and the fact thatpe||(m + i), we can

replacer with e in the proof of the claim to obtainj ≥ pe/∆(e, p). From the definition ofe, we
deduce fors > e that[

m + j

ps

]
− 2

[
m

ps

]
+

[
m− j

ps

]
= −

[
m

ps

]
+

[
m− j

ps

]
≤ 0
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so that

N∑
s=1

([
m + j

ps

]
− 2

[
m

ps

]
+

[
m− j

ps

])
≤

e∑
s=1

([
m + j

ps

]
− 2

[
m

ps

]
+

[
m− j

ps

])
≤

e∑
s=1

1 = e.

We now consider three possibilities: (1)e ≥ 2, (2) e = 1 andj < p, and (3)e = 1 andj ≥ p.
Suppose first thate ≥ 2. Usingj ≥ pe/∆(e, p) we see that

ν(c0)− ν(cj)

j
<

1

p− 1
+

e

j
≤ 1

p− 1
+

e∆(e, p)

pe
. (5)

Observe that∆(e, p) decreases ase increases so that fore ≥ 2 we have∆(e, p) ≤ ∆(2, p). Also,
e/pe ≤ 2/p2. Hence, using (5) we have

ν(c0)− ν(cj)

j
<

1

p− 1
+

2∆(2, p)

p2
=

1

p− 1
+

4

p(p− 1
3
)
.

Sincep ≥ 3k+1 we deducep ≥ 5. Further, we note thatp−1/3 > p−1 > 0. From the inequality
above we have

ν(c0)− ν(cj)

j
<

1

p− 1
+

4

p(p− 1)
=

p + 4

p(p− 1)
≤ p + 4

p(3k)
≤ 1

k

(
p + 4

p + 10

)
≤ 1

k
.

Applying Lemma 3 our result follows whene ≥ 2.
Suppose thate = 1 andj < p. Sincej < p we deduce thatν(j!) = 0. Note that previously in

the argument we used the fact thatν(j!) < j/(p − 1) leading to the expression1/(p − 1) in (5).
Thus, we now obtain

ν(c0)− ν(cj)

j
≤ e

j
.

Also, ase = 1 andj ≥ pe/∆(e, p) = p/∆(1, p) = p/3 we have

ν(c0)− ν(cj)

j
≤ 1

j
≤ 3

p
<

3

3k
=

1

k
.

Applying Lemma 3 our result follows whene = 1 andj < p.
Finally, suppose thate = 1 andj ≥ p. We have

ν(c0)− ν(cj)

j
<

1

p− 1
+

e

j
≤ 1

p− 1
+

1

p
<

1

2k
+

1

2k
=

1

k
.

Applying Lemma 3 our result follows whene = 1 andj ≥ p.

Lemma 5. Letm be a positive integer. Suppose thatp is a prime, thatk andr are positive integers
with r ≥ 2, and that̀ is an integer in[0, k) satisfying:

(i) pr||(m− `)

(ii) p ≥ max{k + 2, 2k − 1}
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(iii)
log(2m)

pr/2 log p
+

1

p− 1
≤ 1

k
.

Theng(x) cannot have a factor with degree in[` + 1, k].

Proof. For the proof of Lemma 5 we begin in a similar fashion as in the proof of Lemma 4. The
proof consists of verifying the hypotheses of Lemma 3. We takeam = am−1 = · · · = a0 = 1.
From the proof of Lemma 4, we see thatp - cm and if pr||(m − `) thenp dividescj for every
j ∈ {0, 1, . . . ,m− `− 1}.

Now, we need only show that the right-most edge of the Newton polygon ofg(x) with respect
to p has slope< 1/k. The right-most edge has slope given by (2). Letj be such that the quantity
in (2) is maximal. We consider the following three possiblities:j ≤ `, ` + 1 ≤ j ≤ pr/2, and
j > pr/2.

Supposej ≤ `. If p|(m + i) for somei ∈ {1, 2, . . . , j}, then sincep|(m− `) we deduce thatp
dividesi + ` = (m + i)− (m− `) and

0 < i + ` ≤ j + ` ≤ 2` ≤ 2(k − 1) < p.

This is impossible, soν((m + 1)(m + 2) · · · (m + j)) = 0. We obtain

ν(c0)− ν(cj) ≤ ν(j!) + ν

(
(m + j)!

m!

)
− ν

(
m!

(m− j)!

)
= ν(j!)− ν

(
m!

(m− j)!

)
≤ ν(j!) <

j

p− 1
<

j

k
.

Dividing through byj and applying Lemma 3 our result follows whenj ≤ `.
Suppose that̀+1 ≤ j ≤ pr/2. Observe that condition (ii) in the lemma impliesp−1 ≥ 2k−2

so thatk − 1 ≤ (p − 1)/2. Let u = [r/2] + 1. By considering the parity ofr we see that
u ≥ (r + 1)/2. We now claim that the following inequality holds:

pr/2 + k − 1 < pu. (6)

To see that the inequality holds, we begin by noting thatg(r) = pr/2 is an increasing function ofr
for r ≥ 1. Furthermore,

g(1) =
√

p =
2
√

p

2
=

√
p +

√
p

2
>

√
p + 1

2
.

Thus, it follows thatpr/2 > (
√

p + 1)/2 for all integersr ≥ 1. Multiplying both sides by
√

p − 1
(which is positive asp ≥ 2) we have

p− 1

2
< (
√

p− 1)pr/2 = p(r+1)/2 − pr/2.

Hence,

pr/2 + k − 1 ≤ pr/2 +
p− 1

2
< pr/2 + p(r+1)/2 − pr/2 ≤ pu.

Thus, the inequality in (6) holds.
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If pu|(m + i) for somei ∈ {1, 2, . . . , j}, then as in the casej ≤ ` we obtainpu|(i + `). Using
` + 1 ≤ j ≤ pr/2 and (6) we obtain

0 < i + ` ≤ j + ` ≤ pr/2 + k − 1 < pu,

which is a contradiction. Therefore,

∞∑
s=1

([
m + j

ps

]
−

[
m

ps

])
=

[r/2]∑
s=1

([
m + j

ps

]
−

[
m

ps

])
,

since the summand counts the number of multiples ofps in (m, m + j]. Thus, we have

ν(c0)− ν(cj) ≤
j

p− 1
+

[r/2]∑
s=1

([
m + j

ps

]
−

[
m

ps

])
−

∞∑
s=1

([
m

ps

]
−

[
m− j

ps

])

≤ j

p− 1
+

[r/2]∑
s=1

([
m + j

ps

]
− 2

[
m

ps

]
+

[
m− j

ps

])
−

∞∑
s=[r/2]+1

([
m

ps

]
−

[
m− j

ps

])
.

Recall (from the proof of Lemma 4) that the first summand on the right above is≤ 1. On the
other hand, there is a multiple ofps for everys ∈ ([r/2], r] in the interval(m− j, m] (namely, the
numberm− `). Hence, the term [

m

ps

]
−

[
m− j

ps

]
≥ 1

for at leastr − [r/2] ≥ r − (r/2) = r/2 differents. Therefore, we obtain

ν(c0)− ν(cj) ≤
j

p− 1
+ [r/2]− r/2 ≤ j

p− 1
.

Thus, in this case(ν(c0)− ν(cj))/j < 1/k as well. Applying Lemma 3 we deduce that in the case
` + 1 ≤ j ≤ pr/2 our result follows.

Finally, suppose thatj > pr/2. Recall from the proof of Lemma 4 we have

ν(c0)− ν(cj) <
j

p− 1
+

N∑
s=1

([
m + j

ps

]
− 2

[
m

ps

]
+

[
m− j

ps

])
whereN = [log(2m)/ log p]. Also, in the proof of Lemma 4 we showed that[

m + j

ps

]
− 2

[
m

ps

]
+

[
m− j

ps

]
≤ 1.

Therefore, using these two facts combined withj > pr/2 and (iii) we have

ν(c0)− ν(cj)

j
<

1

p− 1
+

1

j

N∑
s=1

1 ≤ 1

p− 1
+

N

j
≤ 1

p− 1
+

log(2m)

pr/2 log p
≤ 1

k
.

Applying Lemma 3 our result follows whenj > pr/2.
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We do not supply proofs for the next three results. The first is a consequence of gap results
between primes (cf. M. N. Huxley [8]), the second can be found in G. Bachman [1], and the third
is a straight forward exercise.

Lemma 6. For m sufficiently large, there is a prime in the interval(2m−m2/3, 2m].

Lemma 7. Supposep is a prime number and letn be a positive integer with

n = a0 + a1p + a2p
2 + · · ·+ asp

s,

as the basep representation ofn (so that0 ≤ ai < p for eachi). Then

νp(n!) =
n− sn

p− 1
,

wheresn = a0 + a1 + · · ·+ as.

Lemma 8. Letk be a positive integer. Ifk ≡ 3 or 15 (mod 18), then32||(2k + 1).

4 A Proof of Theorem 2

We considerm to be sufficiently large and assume thatg(x) = m!f(x) has a factor inZ[x] of
degreek ∈ [1, m/2]. We divide the argument into cases depending on the size ofk.

CASE 1. m2/3 ≤ k ≤ m/2.

Lemma 6 implies that fork in the interval above there exists a primep ∈ (2m− k, 2m]. Thus,
there exists a primep of the form2m − j wherej ∈ [0, k). In particular, we havep > m. Recall
that

c` = a`

(
m

`

)
(2m)(2m− 1) · · · (m + ` + 1) for 0 ≤ ` ≤ m− 1.

Sincej ∈ {0, 1, 2, . . . , k − 1}, the number2m− j appears on the right-hand side above whenever
0 ≤ ` ≤ m− k. Therefore, we have

νp(c`) ≥ 1 for 0 ≤ ` ≤ m− k. (7)

Also, cm = ±1 impliesνp(cm) = 0. To obtain a contradiction for the case under consideration,
we show thatνp(c0) = 1; the contradiction will be achieved since then it will follow that the right-
most edge of the Newton polygon ofg(x) with respect top has horizontal length> m − k and
the endpoints are this edge’s only lattice points. In other words,g(x) has an irreducible factor of
degree> m−k which is impossible. Alternatively, the slope of the right-most edge of the Newton
polygon ofg(x) with respect top is < 1/(m− k) ≤ 1/k so that Lemma 3 applies with̀= k − 1.
For j ∈ {0, 1, 2, . . . ,m− 1} we deduce the inequality

2p > 2m ≥ 2m− j > 0.

Hence,p itself is the only multiple ofp among the numbers2m − j with 0 ≤ j ≤ m − 1. Since
c0 = ±(2m)(2m− 1) · · · (m + 1) we obtainνp(c0) = 1.
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CASE 2. 1030 ≤ k < m2/3.

Let z = (k/4) log k. We will show that there is a primep > z that divides2m − j for some
j ∈ {0, 1, 2, . . . , k − 1}. Then (7) follows as before. We consideram = am−1 = · · · = a0 = 1 and
obtain a contradiction to Lemma 3 by showing that the right-most edge of the Newton polygon of
g(x) with respect top has slope< 1/k.

Let
T = {2m− j : 0 ≤ j ≤ k − 1}.

Clearly, the elements ofT are each≥ m. For each primep ≤ z, we consider an elementbp =
2m− j ∈ T with νp(bp) as large as possible. We let

S = T − {bp : p ≤ z}.

Note that fork ≥ 100 we havelog(1/4) + log k + log log k ≥ log k from which it follows that

1.03

log(1/4) + log k + log log k
≤ 1.03

log k

so that
1.03(k/4) log k

log(1/4) + log k + log log k
≤ (0.26k) log k

log k
= 0.26k.

Sincek ≥ 1030 and z = (k/4) log k, we deduce from Lemma 1 thatπ(z) < 1.03z/ log z. It
follows for k ≥ 1030 that

π(z) <
1.03z

log z
≤ 0.26k <

k

3
. (8)

We combine this estimate momentarily with|S| ≥ k−π(z). Sincek ≤ m2/3, we deducem ≥ k3/2.
Consider a primep ≤ z and letr = νp(bp). By the definition ofbp, if j > r, then there are no
multiples ofpj in T (and, hence, inS). For1 ≤ j ≤ r, there are≤ [k/pj] + 1 multiples ofpj in T
and, hence, at most[k/pj] multiples ofpj in S. Therefore,

νp

( ∏
s∈S

s

)
≤

r∑
j=1

[
k

pj

]
≤ νp(k!),

and ∏
s∈S

∏
p≤z

pνp(s) ≤ k! ≤ kk.

On the other hand, ∏
s∈S

s ≥ m|S| ≥ (k3/2)k−π(z) = k1.5(k−π(z)).

Claim. Fork ≥ 1030 we have
k1.5(k−π(z)) > kk.

To verfiy the claim it suffices to show that fork ≥ 1030 we have

1.5(k − π(z)) > k.

10



Observe that fork ≥ 1030 we have from (8)

1.5π(z) < (1.5)(k/3) = k/2 =⇒ k + 1.5π(z) < 1.5k

=⇒ 1.5(k − π(z)) > k.

The claim follows.
The above estimates now give ∏

s∈S

s >
∏
s∈S

∏
p≤z

pνp(s),

from which it follows that there is a primep > z that divides some element ofS and, hence, divides
some element ofT . Fix a primep > z that divides an element2m − ` in T with 0 ≤ ` < k, and
let ν = νp. Sincek ≥ 1030, we obtainp > z > 5k. The right-most edge of the Newton polygon
of g(x) with respect top has slope as in (2). Fixj ∈ {1, 2, . . . ,m} so that the quotient in (2) is
maximal. To complete the case under consideration, we want to show that this quotient is< 1/k.
Let L be an integer such thatpL+1 > m + j ≥ pL. Then

ν(c0)− ν(cj) = ν(j!) + ν

(
(m + j)!

m!

)
− ν

(
m!

(m− j)!

)
= ν

(
(m + j)!

m!

)
− ν

(
m!

j!(m− j)!

)
= ν

(
(m + j)!

m!

)
− ν

((
m

j

))
≤ ν

(
(m + j)!

m!

)
= ν((m + 1)(m + 2) · · · (m + j)) = ν((m + j)!)− ν(m!)

=
∞∑

`=1

([
m + j

p`

]
−

[
m

p`

])
≤

∑
1≤`≤L

(
j

p`
+ 1

)

≤ j

p− 1
+ L ≤ j

p− 1
+

log(2m)

log p
.

Thus, for eachj ∈ {1, 2, . . . ,m},

ν(c0)− ν(cj) ≤ ν((m + 1)(m + 2) · · · (m + j)) ≤ j

p− 1
+

log(2m)

log p
. (9)

If p does not divide(m + 1)(m + 2) · · · (m + j), thenν((m + 1)(m + 2) · · · (m + j)) = 0 and
our result follows. Thus, we suppose as we may thatp divides(m + i) for somei ∈ {1, 2, . . . , j}.
Further, sincep divides2m − `, it follows thatp divides2i + ` = 2(m + i) − (2m − `). This
implies thatp ≤ 2i + ` ≤ 2j + k − 1. In other words, ifp > 2j + k − 1, then

ν((m + 1)(m + 2) · · · (m + j)) = 0 (10)

and our result follows. Thus, we assume thatp ≤ 2j + k − 1.

11



Initially, suppose thatj ≤ 2k. Then we deduce that

5k < p ≤ 2j + k − 1 ≤ 4k + k − 1 = 5k − 1

which is impossible.

Next, suppose thatj ≥ 2k log(2m)

log k
. Combining (9) with the fact thatp− 1 ≥ 5k we obtain

ν(c0)− ν(cj)

j
≤ 1

p− 1
+

log(2m)

j log p
≤ 1

5k
+

1

2k
<

1

k
,

which is what we desire.

Finally, it suffices for us to consider2k + 1 ≤ j <
2k log(2m)

log k
. Recall that

∏
s∈S

∏
p≤z

pνp(s) ≤ k!.

Note that ifp > z ≥ 5k, thenp divides at most one element ofS. Therefore,∏
s∈S

∏
p>z

pνp(s)≤2j+k−1

pνp(s) ≤
∏

z<p≤2j+k−1

(2j + k − 1) ≤ (2j + k − 1)π(2j+k−1).

Combining these estimates and taking logarithms it follows that

log

( ∏
s∈S

∏
p≤z

pνp(s)
∏
p>z

pνp(s)≤2j+k−1

pνp(s)

)
≤ log(k!) + π(2j + k − 1) log(2j + k − 1). (11)

Further, note that

log(k!) ≤ (k + 1) log(k + 1)− k (12)

≤ (k + 1) log k +
k + 1

k
− k = k log k + log k + 1 +

1

k
− k.

Using Lemma 1, (11), (12), and2k + 1 ≤ j <
2k log(2m)

log k
, we obtain

log

( ∏
s∈S

∏
p≤z

pνp(s)
∏
p>z

pνp(s)≤2j+k−1

pνp(s)

)
(13)

≤ (k + 1) log k + 1 +
1

k
− k + (2j + k − 1) +

3(2j + k − 1)

2 log k

≤ k log k + 2j +
3j

log k
+

3k

2 log k
+ log k

≤ k log k +
4k log(2m)

log k
+

6k log(2m)

log2 k
+

3k

2 log k
+ log k

12



≤ k log k +
4k log m

log k
+

6k log m

log2 k
+

5k

log k
+

5k

log2 k
+ log k.

On the other hand, we have ∏
s∈S

s ≥ m|S| ≥ mk−π(z).

Thus, taking logarithms and using (8) we obtain

log

( ∏
s∈S

s

)
≥ (k − π(z)) log m ≥ (k − 0.26k) log m = 0.74k log m. (14)

We claim that the estimate on the right-hand side of (14) is larger than the right-hand side of (13).
Equivalently, we claim that

0.74 k log m > k log k +
4k log m

log k
+

6k log m

log2 k
+

5k

log k
+

5k

log2 k
+ log k

is a true inequality. In other words, we claim

0.74 log m− 4 log m

log k
− log k − 6 log m

log2 k
>

5

log k
+

5

log2 k
+

log k

k
.

Using thatk ≥ 1030, one easily deduces that the right-hand side above is< 0.1. Thus, it suffices
to show that

0.74 log m− 4 log m

log k
− log k − 6 log m

log2 k
> 0.1. (15)

To see this, note that ask ≤ m2/3 then

0.74 log m− log k ≥ 0.74 log m− (2/3) log m > 0.07 log m.

Further, ask ≥ 1030, we have

4 log m

log k
+

6 log m

log2 k
≤ 4 log m

30 log 10
+

6 log m

900 log2 10
≤ 0.06 log m.

Thus, sincem is sufficiently large, it follows that

0.74 log m− 4 log m

log k
− log k − 6 log m

log2 k
> 0.01 log m > 0.1.

Hence, ∏
s∈S

s >
∏
s∈S

∏
p≤z

pνp(s)
∏
p>z

pνp(s)≤2j+k−1

pνp(s),

from which we deduce that there exists a primep > z which divides somes ∈ S with pνp(s) >
2j + k − 1. Fix such ans, and let` now be such thats = 2m − `. Let r be an integer defined so
that thatpr > 2j + k − 1 ≥ pr−1 and such thatpr divides2m− `. Recall thatp ≤ 2j + k − 1 so
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that r ≥ 2. Note thatr − 1 ≤ log(2j + k − 1)/ log p. Also, pr does not divide(m + i) for any
i ∈ {1, 2, . . . , j} (for otherwise we deduce thatpr ≤ 2j + k − 1). Hence, we have

ν((m + 1)(m + 2) · · · (m + j)) ≤
r−1∑
u=1

(
j

pu
+ 1

)
≤ j

p− 1
+ r − 1. (16)

We show next that
j > (5/4)k(r − 1). (17)

Sincer ≥ 2, we deduce
2(5k)r−1 ≥ 2(5r−1)k ≥ (5r − 3)k

so that
4j + 2k − 2 ≥ 2pr−1 ≥ 2(5k)r−1 > 5kr − 3k − 2.

Hence, (17) easily follows. From (16) and (17), we obtain

ν(c0)− ν(cj)

j
≤ 1

p− 1
+

r − 1

j
<

1

5k
+

4

5k
=

1

k
,

which is what we desire.

CASE 3. 12 ≤ k < 1030 = k0.

We will use Lemma 4 to prove the case under consideration. From Lemma 1,

π(3k) <
3k

log(3k)

(
1 +

3

2 log(3k)

)
< k

for k ≥ 21. Upon computation we see thatπ(3k) < k for 12 ≤ k ≤ 20. Using an argument as in
Case 2, we briefly indicate why one of the numbers2m, 2m− 1, . . . , 2m− k + 1, say2m− `, can
be written as a products1s2 satisfyings1 ≤ k! ≤ k0! andgcd(s2,

∏
p≤3k p) = 1. TakeT as defined

in Case 2 andS as well but withz = 3k. Thenπ(3k) < k implies |S| > 0. Let ` be such that
2m− ` ∈ S and note that

s1 =
∏
p≤3k

pνp(2m−`) ≤
∏
s∈S

∏
p≤3k

pνp(s) ≤ k!,

the last inequality following as in Case 2. Thus, we obtain2m − ` ∈ T as above. Note that
s2 ≥ c12m for some constantc1 (e.g.,c1 = 1/(2× k0!)).

Sinceg(x) has a factor of degreek, we obtain from Lemma 4 that for every prime power divisor
pr of s2,

∆(r, p)
log(2m)

pr log p
+

1

p− 1
>

1

k
.

Since each suchp is≥ 3k + 1, it follows that

∆(r, p)
log(2m)

pr log p
>

2

3k
≥ 1

2k0

.

Thus,

pr <
c2 log(2m)

log p

14



wherec2 = 6k0. From this we deduce that

p <
2c2 log(2m)

log log(2m)
and r <

2 log log(2m)

log p
.

These lead to a contradiction sincem is sufficiently large,

log s2 =
∑
pr||s2

r log p ≤
∑

p<2c2 log(2m)/ log log(2m)

2 log log(2m)

log p
log p

≤ 5c2 log(2m)

log log(2m)
< log(2c1m) ≤ log s2.

Thus,g(x) cannot have a factor of degreek ∈ [12, k0).

CASE 4. 4 ≤ k ≤ 11.

Again we use Lemma 4 to settle the case under consideration. Observe that

cm−k = am−k
1

k!
m(m− 1) · · · (m− k + 1)(2m)(2m− 1) · · · (2m− k + 1). (18)

Defined(k) to be the number of distinct irreducible linear factors inm in the coefficientcm−k of
g(x). For example, ifk = 4, then there are 6 distinct irreducible linear factors appearing in (18),
namelym, m− 1, m− 2, m− 3, 2m− 1, and2m− 3. In general,d(k) = k + [k/2]. By a simple
computation we obtain the following table.

k 3 4 5 6 7 8 9 10 11
d(k) 4 6 7 9 10 12 13 15 16
π(3k) 4 5 6 7 8 9 9 10 11

Using the table above we deduce thatπ(3k) < d(k) for 4 ≤ k ≤ 11. Using an argument as in
Case 3, we get that one of the numbersm, m − 1, . . . ,m − k + 1, 2m, 2m − 1, . . . , 2m − k + 1
in the coefficient ofcm−k can be written as a products1s2 satisfyings1 ≤ k! ≤ 23 × 32 × 5 ×
7 × 11 × 13 × 17 × 19 andgcd(s2,

∏
p≤3k p) = 1. We obtain thats2 ≥ c12m for some constant

c1. Assumingg(x) has a factor of degreek, we obtain from Lemma 4 that for every prime power
divisorpr of s2,

∆(r, p)
log(2m)

pr log p
+

1

p− 1
>

1

k
.

We are led to a contradiction by repeating the argument at the end of Case 4. Thus,g(x) cannot
have a factor of degreek ∈ [4, 11].

CASE 5. k = 3.

Consider primes dividingm,m − 1, andm − 2. Take away at most two of these numbers
which are divisible by the highest powers of2 and3 (one of these numbers could be divisible by
the highest power of2 and the highest power of3) so that there is at least one number of the form
s1s2 wheres1 ∈ {1, 2} andgcd(6, s2) = 1. Note that form ≥ 6 we haves2 ≥ (m − 2)/s1 ≥
(m−2)/2 ≥ m/3. Write s2 = 5u×7v× s3 wheregcd(35, s3) = 1. We claim that we may assume
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that5u < m1/3 and7v < m1/3 sincem is sufficiently large. To see this, suppose that5u ≥ m1/3.
Thenu ≥ 2. Further, takingk = 3 andp = 5 we havep ≥ max{k + 2, 2k − 1}. Finally, since
5u ≥ m1/3 then5u/2 ≥ m1/6 and we have

log(2m)

5u/2 log 5
+

1

5− 1
≤ log(2m)

m1/6 log 5
+

1

4
≤ 1

3
.

Thus, usingp = 5, r = u, andk = 3 in Lemma 5 we deduce thatg(x) cannot have a factor of
degree 3. Hence, we may assume that5u < m1/3.

A similar argument allows us to assume that7v < m1/3. Hence, we havem/3 ≤ s2 =
5u × 7v × s3 < m2/3s3 so thats3 > m1/3/3.

We argue again in a manner similar to that given in Case 3. Assumingg(x) has a factor of
degreek = 3 we obtain from Lemma 4 that for every prime divisorpr of s3

∆(r, p)
log(2m)

pr log p
+

1

p− 1
>

1

3
.

Since each suchp is at least11 > 10 = 3k + 1, it follows that

∆(r, p)
log(2m)

pr log p
>

1

3
− 1

p− 1
>

1

3
− 1

9
=

2

9
>

1

6
.

Thus,

pr < 6∆(r, p)
log(2m)

log p
< 18

log(2m)

log p
.

From this we deduce that

p <
36 log(2m)

log log(2m)
and r <

2 log log(2m)

log p
.

These lead to a contradiction since

log s3 =
∑
pr||s3

r log p ≤
∑

p<36 log(2m)/ log log(2m)

2 log log(2m)

log p
log p

≤ 80 log(2m)

log log(2m)
< log

(
m1/3

3

)
< log s3.

Thus,g(x) cannot have a factor of degreek = 3.

CASE 6. k = 2.

In this case we use Lemma 2 to deduce that sincem is sufficiently largeg(x) has no factor of
degree 2. TakingN = 30 andε = 1/2 in Lemma 2 we deduce that there exists an integerM such
that form ≥ M the largest divisor ofm(m− 1) which is relatively prime to30 is≥ m1/2. Hence,
we can writem(m − 1) = s1s2 wheregcd(30, s2) = 1 ands2 ≥ m1/2 and such that ifpr divides
s2 thenp ≥ 7.

We argue again in a manner similar to that given in Case 3. Supposeg(x) has a factor of degree
k = 2. Note that every prime divisorpr of s2 is at least7 = 3× 2 + 1 = 3k + 1. Also, every prime
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divisorpr of s2 divides one ofm andm− 1. Thus, we obtain from Lemma 4 that for every prime
divisorpr of s2,

∆(r, p)
log(2m)

pr log p
+

1

p− 1
>

1

2
.

The argument proceeds as before, obtaining a contradiction by considering the size oflog s2. Thus,
g(x) cannot have a factor of degreek = 2.

CASE 7. k = 1.

We know now that there is anm′
0 such that ifm ≥ m′

0 andf(x) is as defined in Theorem
2, thenf(x) cannot have a factor of degreek ∈ [2, m/2]. We suppose in this section thatm0 is
sufficiently large and, in particular, thatm0 ≥ m′

0. Write m = 2i × 3j × n wheregcd(6, n) = 1
with m ≥ m0. Suppose thatn satisfies

n ≥ exp

(
8 log(2m)

log log(2m)

)
. (19)

Sinceg(x) has a factor of degreek = 1 we obtain from Lemma 4 that, for every prime divisorpr

of n,

∆(r, p)
log(2m)

pr log p
+

1

p− 1
> 1.

Since each suchp is at least5 > 4 = 3k + 1, it follows that

∆(r, p)
log(2m)

pr log p
> 1− 1

p− 1
≥ 1− 1

3
=

2

3
≥ 1

2
.

Thus,

pr <
3

2
∆(r, p)

log(2m)

log p
<

9 log(2m)

2 log p
.

From this we deduce that

p <
5 log(2m)

log log(2m)
and r <

3 log log(2m)

2 log p
.

These lead to a contradiction sincem sufficiently large implies

log n =
∑
pr||n

r log p ≤
∑

p<5 log(2m)/ log log(2m)

3 log log(2m)

2 log p
log p

<
8 log(2m)

log log(2m)
≤ log n.

Thus,g(x) cannot have a factor of degreek = 1.
On the other hand, ifm is written as above withm ≥ m0 andn does not satisfy (19) and

g(x) has a linear factor, then we claim thatg(x) has an irreducible factor of degreem − 1. Write
g(x) = u(x)v(x) whereu(x) ∈ Z[x], v(x) ∈ Z[x], deg(u(x)) = 1, anddeg(v(x)) = m − 1.
Suppose thatv(x) is reducible. Thenv(x) has a factorr(x) ∈ Z[x] with 1 ≤ deg(r(x)) ≤
(m − 1)/2. This implies thatr(x)u(x) is a factor ofg(x) with degree in[2, (m + 1)/2]. Since
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m ≥ m0 ≥ m′
0, we know thatg(x) cannot have a factor of degreek ∈ [2, m/2]. Thus,r(x)u(x)

must have degree(m+1)/2 andv(x)/r(x) is a factor ofg(x) of degree(m−1)/2. We are through
unless(m − 1)/2 = 1 (otherwiseg(x) has a factor of degreek ∈ [2, m/2]). In this casem = 3
andg(x) has three linear factors. Sincem ≥ m0 andm0 is sufficiently large, this case need not be
considered. Hence, the claim follows.

Finally, we estimateA(t), the number of elements ofA which are≤ t. Suppose thatm ∈ A
andm0 ≤ m ≤ t. Thenm = 2i × 3j × n wheren satisfies the inequality in Theorem 2. Thus,
2i ≤ m ≤ t so thati ≤ (log t)/(log 2). Similarly, we havej ≤ (log t)/(log 3). Hence,

A(t) � m0 + (log t)2 exp

(
8 log(2t)

log log(2t)

)
� exp

(
9 log(2t)

log log(2t)

)
.

This completes the proof of Theorem 2.

5 An Infinite Set of Reducible Examples

In this section, we establish that the setA of Theorem 2 is infinite. In fact, our argument is easily
modified to giveA(t) � log t.

Recall the generalized Laguerre polynomial withα = m is of the formh(x) = m!L
(m)
m (x) =∑m

j=0 bjx
j ∈ Z[x] where

bj =

(
m

j

)
(2m)(2m− 1) · · · (m + j + 1) for 0 ≤ j ≤ m.

For each0 ≤ j ≤ m note that

bj =

(
m

j

)
(2m)(2m− 1) · · · (m + j + 1) =

(
m

j

)(
2m

m− j

)
(m− j)!.

Furthermore, note thatg(x) =
∑m

j=0 cj =
∑m

j=0 ajbj where thebj ’s are defined as above.
Let m = 3 · 2k = (2 + 1) · 2k = 2k+1 + 2k wherek is a positive integer withk ≡ 3 or 15

(mod 18). Observe that the spots of the polynomialh(x) are of the form(m − j, νp(bj)) where
j ∈ {0, 1, . . . ,m}. Supposep = 2 and consider the values ofν2(b2k) andν2(b0). Takingj = 2k

we have from above that

b2k =

(
2k+1 + 2k

2k

)(
2k+2 + 2k+1

2k+1

)
2k+1!.

Lemma 7 implies thatν2((2
k+2 + 2k+1)!) = 2k+2 + 2k+1 − 2, ν2((2

k+1 + 2k)!) = 2k+1 + 2k − 2,
ν2(2

k+1!) = 2k+1 − 1, andν2(2
k!) = 2k − 1. Therefore, we have

ν2(b2k) =
[
ν2((2

k+1 + 2k)!)− ν2(2
k!)− ν(2k+1!)

]
+

[
ν2((2

k+2 + 2k+1)!)− ν2(2
k+1!)− ν(2k+2!)

]
+ ν(2k+1!)

= 0 + 0 + 2k+1 − 1 = 2k+1 − 1.
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Thus, ifj = 2k we have the spot(m− j, ν2(bj)) = (2k+1, 2k+1 − 1). Also,

b0 =

(
m

0

)(
2m

m

)
m! = 1 · (2m)!

m!
=

(2k+2 + 2k+1)!

(2k+1 + 2k)!
.

Hence, we have

ν2(b0) = ν2((2
k+2 + 2k+1)!)− ν2((2

k+1 + 2k)!)

= (2k+2 + 2k+1 − 2)− (2k+1 + 2k − 2)

= 2k+2 − 2k = 2k · 3 = m.

Thus, ifj = 0 we have the spot(m− j, ν2(bj)) = (m, m).
Consider the integers

A = 63 · b3, B = 2 · 62k · b2k , C = 2m2 · 6m−1, and D = 6m + b0.

Observe that2m exactly divides6m andb0 so thatν2(D) ≥ m+1. Also,ν2(B) = ν2(2)+ν2(6
2k

)+
ν2(b2k) = 1 + 2k + 2k+1 − 1 = m. Thus,ν2(D) > ν2(B) = m.

Next, lets = ν3(b0) and observe that

s = ν3

(
(2m)!

m!

)
< ν3((2m)!) =

∞∑
j=1

[
2m

3j

]
≤ (2m)

∞∑
j=1

1

3j
= (2m)(1/2) = m.

Thus,ν3(D) = min{ν3(6
m), ν3(b0)} = min{m, s} = s. Further,ν3(A) = ν3(6

3) + ν3(b3) =
3 + ν3(b3). We claim that ask ≡ 3 or 15 (mod 18) then

ν3(b3) = ν3(b0)− 3.

To see this observe that

b3 =

(
m

3

)(
2m

m− 3

)
(m− 3)!

=
m(m− 1)(m− 2)

6
· (2m)(2m− 1) · · · (m + 4)

=
m(m− 1)(m− 2)

6(m + 1)(m + 2)(m + 3)
(2m)(2m− 1) · · · (m + 1)

=
m(m− 1)(m− 2)

6(m + 1)(m + 2)(m + 3)
b0.

Thus, in order to justify the claim it suffices to show that ifk ≡ 3 or 15 (mod 18) then

ν3

(
m(m− 1)(m− 2)

6(m + 1)(m + 2)(m + 3)

)
= −3.

Observe that exactly one ofm, m − 1, andm − 2 is divisible by3. Moreover, asm = 3 · 2k it
follows thatν3(m) = 1, ν3(m − 1) = 0, andν3(m − 2) = 0. Similarly, exactly one ofm + 1,
m + 2, andm + 3 is divisible by3. Further, ask ≡ 3 or 15 (mod 18) Lemma 8 implies that
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32||2k + 1. As m + 3 = 3 · 2k + 3 = 3 · (2k + 1) we see thatν3(m + 3) = 1 + 2 = 3, and
ν3(m + 1) = ν3(m + 2) = 0. Therefore, we have

ν3(b3) = ν3(b0) + ν3(m) + ν3(m− 1) + ν3(m− 2)

− ν3(6)− ν3(m + 1)− ν3(m + 2)− ν3(m + 3)

= ν3(b0) + 1 + 0 + 0− 1 + 0 + 0− 3 = ν3(b0)− 3.

The claim follows and we haveν3(A) = 3 + ν3(b3) = 3 + ν3(b0) − 3 = ν3(b0) = s. Hence, we
haveν3(D) = ν3(A) = s.

Also, ν2(C) = ν2(2m
2 · 6m−1) = ν2(2 · 6m−1) + ν2(m

2) = m + 2k > m. Also, ν3(C) =
0 + 2 + (m− 1) = m + 1 > m. Therefore,gcd(A, B, C) = 2i3j with 1 ≤ i ≤ m and1 ≤ j ≤ s.
We deduce thatgcd(A, B, C) > 1 andgcd(A, B, C)|D. It follows that there exists integersu, v,
andt such thatAu + Bv + Ct = −D.

Finally, we construct a reducibleg(x) by takingam = a0 = 1, a3 = u, a2k = 2v, am−1 = t,
andaj = 0 for j 6∈ {0, 3, 2k, m− 1, m}. Thus, we have

g(x) = xm + 2m2txm−1 + 2vb2kx2k

+ ub3x
3 + b0.

Observe that

g(6) = 6m + 2m2t · 6m−1 + 2vb2k62k

+ ub36
3 + b0

= 6m + Ct + Bv + Au + b0

= D + Ct + Bv + Au = 0.

Thus,g(x) has a linear factor, namely,x − 6. The fact thatA is infinite follows from the fact that
there are infinitely many distinct degreesm which produce a reducible polynomial for some choice
of the integersaj.
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