
ON TESTING THEDIVISIBILITY OF

LACUNARY POLYNOMIALS BY

CYCLOTOMIC POLYNOMIALS

Michael Filaseta1 and Andrzej Schinzel

August 30, 2002

1The first author gratefully acknowledges support from the National Security Agency
and the National Science Foundation.

1 Introduction and the Main Theorems

This note describes an algorithm for determining whether a given polynomial
f(x) ∈ Z[x] has a cyclotomic divisor. In particular, the algorithm works well
when the number of non-zero terms is small compared to the degree off(x). This
work is based on a paper by J. H. Conway and A. J. Jones [1]. The specific result
we establish is the following.

Theorem 1. There is an algorithm that has the following property: givenf(x) =∑N
j=1 ajx

dj ∈ Z[x] with N > 1 anddeg f = n > 1, the algorithm determines
whetherf(x) has a cyclotomic factor and with running time

� exp
(
(2 + o(1))

√
N/ log N(log N + log log n)

)
log(H + 1) (1)

asN tends to infinity, whereH = max1≤j≤N{|aj|}.

In the above theorem, we view the input as consisting of a list ofN coefficient-
exponent pairs(aj, dj) sorted in increasing order by the values ofdj. Observe that
for fixedN and bounded coefficients, the algorithm runs in time that is polynomial
in log n. In the case that a cyclotomic factor exists, the algorithm can be made to
output a positive integerm for which Φm(x), the mth cyclotomic polynomial,
dividesf(x) without affecting the bound given for the running time.

For m a positive integer, letζm = e2πi/m. For integersa, b, andm with
m > 0, we writea ≡ b (mod m) if m|(a − b) and use the notationa mod m
to represent the uniqueb ≡ a (mod m) such that0 ≤ b < m. For f(x), g(x),
and w(x) in Q[x] with deg w(x) ≥ 1, we write f(x) ≡ g(x) (mod w(x)) if
w(x)|(f(x)− g(x)), and we use the notationf(x) modw(x) to denote the unique
polynomialg(x) ≡ f(x) (mod w(x)) with eitherg(x) ≡ 0 or 0 ≤ deg g(x) <
deg w(x). If S is a set, we will denote by|S| the cardinality ofS.

Theorem 2. Let f(x) ∈ Z[x] haveN non-zero terms. Supposen is a positive in-
teger such thatΦn(x)|f(x). Suppose further thatp1, p2, . . . , pk are distinct primes
satisfying

2 +
k∑

j=1

(pj − 2) > N.

Let ej be the non-negative integer for whichpej

j ||n. Then for at least onej ∈
{1, 2, . . . , k}, we haveΦm(x)|f(x) wherem = n/p

ej

j .

1

Proof. We first describe and then make use of Theorem 5 from [1]. Forr a positive
integer, defineγ(r) = 2 +

∑
p|r(p − 2). Following [1], we call a vanishing sum

S minimal if no proper subsum ofS vanishes. We will be interested in sums
S =

∑t
j=1 ajωj wheret is a positive integer, eachaj is a non-zero rational number

and eachωj is a root of unity. We refer to the reduced exponent of such anS as the
least positive integerr for which (ωi/ω1)

r = 1 for all i ∈ {1, 2, . . . , t}. Theorem
5 of [1] asserts then that ifS =

∑t
j=1 ajωj is a minimal vanishing sum, then

t ≥ γ(r) wherer is the reduced exponent ofS. (Also, note that Theorem 5 of
[1] implies that the reduced exponentr of a minimal vanishing sum is necessarily
squarefree.)

To prove Theorem 2, we suppose as we may thatej > 0 for eachj ∈
{1, 2, . . . , k}. We write f(x) =

∑s
i=1 fi(x) where eachfi(x) is a non-zero

polynomial divisible byΦn(x), no twofi(x) have terms involvingx to the same
power, ands is maximal. Thus, eachfi(ζn) is a minimal vanishing sum. For each
i ∈ {1, 2, . . . , s}, we writefi(x) = xbigi(x

di) wherebi anddi are non-negative in-
tegers chosen so thatgi(0) 6= 0 and the greatest common divisor of the exponents
appearing ingi(x) is 1. Thengi(ζ

di
n) is a minimal vanishing sum with reduced

exponentn/ gcd(n, di). If ti denotes the number of non-zero terms ofgi(x), we
deduce from Theorem 5 of [1] that

N =
s∑

i=1

ti ≥
s∑

i=1

γ

(
n

gcd(n, di)

)

≥ 2s +
k∑

j=1

(pj − 2)

∣∣∣∣
{

1 ≤ i ≤ s : pj divides
n

gcd(n, di)

}∣∣∣∣.

The inequality in Theorem 2 implies that at least one of the expressions|{1 ≤
i ≤ s : pj|(n/ gcd(n, di))}| is zero. In other words, for somej ∈ {1, 2, . . . , k}
and everyi ∈ {1, 2, . . . , s}, we havepej

j |di. Settingm = n/p
ej

j andd′
i = di/p

ej

j ,

we obtain thatgi(ζ
d′i
m) = 0. Sincegcd(m, pj) = 1, ζ

p
ej
j

m is a primitivemth root of
unity and we deducegi(ζ

di
m) = 0. As this is true for everyi ∈ {1, 2, . . . , s}, we

concludef(ζm) = 0, establishing the theorem.

Corollary 1. Let f(x) ∈ Z[x] haveN non-zero terms. Iff(x) is divisible by a
cyclotomic polynomial, then there is a positive integerm such that

2 +
∑
p|m

(p − 2) ≤ N and Φm(x)|f(x).

2

The above is a direct consequence of Theorem 2. Observe that it follows easily
from Corollary 1 that iff(x) is divisible by a cyclotomic polynomial, then there is
a positive integerm such that every prime divisor ofm is ≤ N andΦm(x)|f(x).

2 The Proof of Theorem 1

For the proof of Theorem 1, we will make use of the following preliminary result
of independent interest.

Theorem 3. There is an algorithm that has the following property: givenf(x) =∑N
j=1 ajx

dj ∈ Z[x] with deg f = n > 1 and a positive integerm together with
its factorizationm =

∏s
j=1 p

ej

j wheres ≥ 1, thepj are distinct primes≤ M , and
theej are positive integers≤ E, the algorithm determines whetherΦm(x) divides
f(x) and with running time

� (log n + log M)2+o(1) + s
(
log M + log(E + 1)

)
+ s2sN log(H + 1) + s2sN(s + log N)

(
s + log n + log N

)1+o(1)
,

asN tends to infinity, whereH = max1≤j≤N{|aj|}.

In the above theorem, we view the input as consisting of a list of coefficient-
exponent pairs(aj, dj) sorted in increasing order by the values ofdj and a list of
prime-exponent pairs(pj, ej) sorted in increasing order by the values ofpj. The
total length of the input is

� (
log(H + 1) + log n

)
N +

(
log M + log(E + 1)

)
s.

Observe that in the statement of the theorem, the bound given for the running time
of the algorithm exceeds the length of the input. In fact, the terms

(
log M +

log(E + 1)
)

in the theorem exists only because the input needs to be read.

Proof of Theorem 3.We suppose as we may throughout thatN > 1. We begin
with the algorithm and then justify that the algorithm works and has the indicated
bound for its running time.

For a polynomialg(x) ∈ Z[x], we defineω
(
g(x)

)
asg(x) mod (xm − 1).

We can viewω
(
g(x)

)
as the polynomial obtained by reducing the exponents of

3

g(x) modulom and combining the terms with like exponents. In other words, if
g(x) =

∑T
j=1 ujx

vj , then

ω
(
g(x)

)
=

T∑
j=1

ujx
(vj mod m) =

T ′∑
j=1

u′
jx

v′
j

where0 ≤ v′
1 < v′

2 < · · · < v′
T ′ < m, 0 ≤ T ′ ≤ T , and eachu′

j is a sum of one
or moreuj.

For the moment, suppose thatm has already been computed from the prime-
exponent pairs(pj, ej); the running time for computingm will be discussed later.
Given g(x) as an ordered list of coefficient-exponent pairs(uj, vj), ordered in
increasing order by the size ofvj, we computeω

(
g(x)

)
as follows. We compute

the complete list of pairs(uj, vj modm) in

� T (log U) + T
(
log m + log V

)1+o(1)

binary operations, whereU = 1 + max1≤j≤T{|uj|} andV = 1 + max1≤j≤T{vj}.
Next, we sort the pairs in increasing order according to the values ofvj modm
and combine terms of like exponents to form a sorted list of coefficient-exponent
pairs(u′

j, v
′
j) associated withω

(
g(x)

)
; this requires

� T (log U) + T (log T)(log m + log T)

binary operations. Thus, the total number of binary operations to computeω
(
g(x)

)
is bounded by

O
(
T (log U) + T (log T)

(
log m + log V + log T

)1+o(1)
)
.

We use the above to describe and justify the running time of the following algo-
rithm.

Algorithm A (Specific Cyclotomic Factor Test): Given f(x) =
∑N

j=1 ajx
dj ∈

Z[x] with deg f = n > 1 andm =
∏s

j=1 p
ej

j as in the statement of the
theorem, determine whetherΦm(x) dividesf(x).

Step A1. Check the Size ofφ(m). Check whether
s∏

j=1

p
ej−1
j (pj − 1) ≤ n.

If the inequality holds, then proceed to Step A2. Otherwise, output that
Φm(x) does not dividef(x).

4

Step A2. Reduce Exponents off Modulom. Compute

f0(x) = ω
(
f(x)

)
where the functionω is defined above.

Step A3. Multiply By xm/p − 1 For Eachp Dividing m. For j ∈ {1, 2, . . . , s},
recursively define

fj(x) = ω
(
fj−1(x)

(
xm/pj − 1

))
.

Step A4. Check Whether the Final Result is Zero.Check whetherfs(x) ≡ 0. If
fs(x) ≡ 0, then output thatΦm(x) dividesf(x). Otherwise, output that
Φm(x) does not dividef(x).

We justify now the correctness of the algorithm. Since the degree ofΦm(x) is

φ(m) =
s∏

j=1

p
ej−1
j (pj − 1),

if φ(m) > n, then it is impossible forΦm(x) to dividef(x). It remains to con-
sider then the case thatφ(m) ≤ n. We use that the factorization ofxm − 1 into
irreducible polynomials over the rationals is given by

xm − 1 =
∏
d|m

Φd(x).

Observe that every divisord of m with d 6= m divides m/pj for somej ∈
{1, 2, . . . , s}. Thus, for each suchd, Φd(x) divides the polynomial

h(x) =
s∏

j=1

(
xm/pj − 1

)
.

On the other hand,Φm(x) does not divideh(x). We deduce thath(x) is not
divisible byxm − 1, but Φm(x)h(x) is. This implies thatΦm(x) dividesf(x) if
and only ifxm − 1 dividesf(x)h(x). From Steps A2 and A3, we see thatfs(x) is
f(x)h(x) mod(xm − 1). Therefore,Φm(x) dividesf(x) if and only if fs(x) ≡ 0.
Step A4 and the correctness of the algorithm are justified.

To obtain the bound on the running time of the algorithm, we begin by esti-
mating the amount of time needed to check the inequality in Step A1. We view

5

this as being done as follows. Set a variable, sayA, to be1. Consider in turn
eachpj beginning withj = 1 and ending withj = s. For each suchj, replace
the value ofA with the value ofA × pj and do thisej − 1 times. Then replace
the value ofA with the value ofA × (pj − 1) before continuing to the next value
of j. After each multiplication, check ifA ≤ n. Each multiplication will take
O(

(log n + log M)1+o(1)
)

binary operations. At mostO(log n) multiplications
are necessary (before obtainingA > n). Hence, Step A1 requires

� (log n + log M)2+o(1)

binary operations. Observe that further steps in the algorithm are only considered
if φ(m) ≤ n. In particular,m ≤ φ(m)2 ≤ n2 implies log m ≤ 2 log n. We
therefore suppose this holds in discussing the remaining steps of the algorithm.

A procedure analogous to that just described for determining whether the in-
equality in Step A1 holds can be used for computingm (as well asm/pj) from the
list of exponent pairs(pj, ej). Given that nowm ≤ n2, computingm (or m/pj)
requires

� (log n + log M)2+o(1)

binary operations.
Given the running time analysis for computingω

(
g(x)

)
, Step A2 takes

� N log(H + 1) + N(log N)
(
log n + log N

)1+o(1)

binary operations. In Step A3, forj ∈ {1, 2, . . . , s}, we first compute the product
fj−1(x)

(
xm/pj −1

)
. This can be done by replacing each coefficient-exponent pair

(a, d) definingfj−1(x) by the two pairs(−a, d) and (a, (d + (m/pj)) mod m)
and then sorting the complete list of new pairs in increasing order by their second
components, combining pairs that have like exponents. Inductively, we obtain that
fj(x) has≤ 2jN non-zero terms, with each coefficient≤ 2jNH and each expo-
nent≤ m. Using the running time analysis for computingω

(
g(x)

)
, computing

ω
(
fj−1(x)

)
takes

� 2sN log(H + 1) + 2sN(s + log N)
(
s + log n + log N

)1+o(1)

binary operations. Multiplying this estimate bys gives an upper bound on the
total number of binary operations to perform Step A3.

The polynomialfs(x) either consists of an empty coefficient-exponent pair list
or the list contains at least one pair. Step A4 therefore is a simple check to see
which of these is the case and takes

� 2sN
(
s + log n + log N + log(H + 1)

)

6

binary operations, a bound on the bit-length offs(x).
The result of the theorem follows.

Proof of Theorem 1.Corollary 1 implies that we need only consider the possi-
bility that Φm(x)|f(x) where each prime divisor ofm is ≤ N , the number of
non-zero terms off(x). For each primep ≤ N , we consider

r(p) =

[
log deg f

log p

]
+ 1. (2)

Observe that ifpe|m, then

deg f(x) ≥ deg Φm(x) = φ(m) ≥ φ(pe) = pe−1(p − 1) ≥ pe−1

so thate ≤ r(p). We make use of this notation for describing an algorithm for
proving Theorem 1.

Algorithm B (General Cyclotomic Factor Test): Given f(x) =
∑N

j=1 ajx
dj ∈

Z[x] with deg f = n, determine whether there is at least onem such that
Φm(x) dividesf(x).

Step B1. Determine Relevant Primes.Compute the setP = {p1, p2, . . . , pr} of
all primes≤ N .

Step B2. Obtain Exponent Bounds.ComputeBj = r(pj) (defined by (2)) for
1 ≤ j ≤ r.

Step B3. Determine Relevant Elements.Compute the subsets{q1, q2, . . . , qs} of
P for which

2 +
s∑

j=1

(qj − 2) ≤ N. (3)

LetQ denote the set of all such subsets.

Step B4. Compute Possible Cyclotomic Factors.Construct a list of tuples

(
(q1, e1), (q2, e2), . . . , (qs, es)

)

where{q1, q2, . . . , qs} ∈ Q and if qi = pj then1 ≤ ei ≤ Bj.

7

Step B5. Check Divisibility. For each
(
(q1, e1), . . . , (qs, es)

)
in Step B4, apply

Algorithm A with m = qe1
1 qe2

2 · · · qes
s to determine whetherΦm(x) divides

f(x). If at least one suchm exists, indicate thatf(x) has a cyclotomic
factor. Otherwise, indicate thatf(x) has no cyclotomic factor.

Given the algorithm above, we need to justify the correctness of the algorithm
and the appropriate running time. Corollary 1 implies thatf(x) is divisible by
a cyclotomic polynomial if and only ifΦm(x)|f(x) for some positive integerm
such that the complete set of prime divisors ofm is an element ofQ. As indicated
after (2), if pe

j ||m, thene ≤ r(pj) = Bj. It follows that f(x) is divisible by
a cyclotomic polynomial if and only ifΦm(x)|f(x) for some positive integerm
considered in Step B5. Thus, the correctness of the algorithm is justified.

Next, we justify the bound on the running time indicated for the algorithm.
The first two steps indicated in the algorithm can be estimated rather poorly with-
out affecting this bound. In Step B1, the primes that are≤ N are determined. A
crude upper bound on the number of binary operations for this step isO(N 2).
Note thatr is determined by the conditionpr ≤ N < pr+1. Hence, by the
Prime Number Theorem,r ∼ N/ log N . Computing any particularBj takes no
more thanO(log3 n) binary operations so that the running time for Step B2 is
� r log3 n � N log3 n/ log N .

The running time for the algorithm is affected largely by the number of ele-
ments ofQ. From (3) andr ∼ N/ log N , we deduce that

s∑
j=1

qj ≤ (1 + o(1))N (4)

asN tends to infinity. Using that
∑

p≤z p ∼ z2/(2 log z), we obtain from (4) that

s ≤ (2 + o(1))
√

N/ log N

(takez = (1 + ε)
√

N log N and use thatπ(z) ∼ z/ log z). Let K denote this
bound ons. Since there arer choices for each primeqj, we deduce that

|Q| ≤ rK ≤ NK = exp
(
(2 + o(1))

√
N log N

)
.

In Step B3, the elements ofQ are determined. This can be done by considering
increasing values ofs beginning withs = 1 and determining those subsets ofP
of sizes that belong toQ. For each of the≤ rs subsets ofP of sizes, checking
(3) takes� s log N binary operations. Once a value ofs is obtained for which no

8

subsets ofP of sizes belong toQ, the setQ will be determined and Step B3 ends.
By the definition ofK, there are no subsets ofP of sizeK + 1 in Q. It follows
that the number of binary operations needed for Step B3 is

�
K+1∑
s=1

rss log N � rK+1K log N � exp
(
(2 + o(1))

√
N log N

)
.

For Step B4, we observe thatB1 ≤ 1 + 2 log n andBj ≤ 1 + log n for j > 1.
For each of the≤ rK elements{q1, q2, . . . , qs} of Q, we therefore form at most
2(1 + log n)s ≤ 2(1 + log n)K tuples

(
(q1, e1), . . . , (qs, es)

)
. It follows that there

are
� rK(1 + log n)K � exp

(
K(log r + log(1 + log n))

)
such tuples. Note that we are interested in asymptotics asN (and, hence,n) tends
to infinity so that, in particular,log(1 + log n) ∼ log log n. Forming each tuple(
(q1, e1), . . . , (qs, es)

)
takes

� K(log N + log log n)

binary operations. Therefore, we can use

O(
exp

(
(1 + o(1))K(log r + log log n)

))
as an upper bound on the running time for Step B4.

The running time for Step B5 is determined from the running time for Algo-
rithm A as given by Theorem 3. Observe that we can takeM = N in Theorem
3 asN serves as a bound for everyqj. Also, M = N ≤ n, E � log n, and
s ≤ K � √

N . Given the number of tuples considered in Step B4, the running
time for Step B5 is

� 2KN5/2
(
log2+o(1) n + log(H + 1)

)
exp

(
(1 + o(1))K(log r + log log n)

)
.

Using r ∼ N/ log N andK = (2 + o(1))
√

N/ log N , the running time in Step
B5 is bounded by

� exp
(
(2 + o(1))

√
N/ log N(log N + log log n)

)
log(H + 1)

asN tends to infinity. As this exceeds the bounds obtained for the running times
in the previous steps of the algorithm, it also serves as a bound for the order of
magnitude of the running time of the entire algorithm, completing the proof.

Acknowledgment: The authors are grateful to the referee for his or her com-
ments. In particular, the current version of Theorem 3 together with Algorithm A
are due to the referee.

9

References

[1] J. H. Conway and A. J. Jones,Trigonometric diophantine equations (On van-
ishing sums of roots of unity), Acta Arith.30 (1976), 229–240.

10

	Introduction and the Main Theorems
	The Proof of Theorem ??

