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1 Introduction and the Main Theorems

This note describes an algorithm for determining whether a given polynomial
f(z) € Z[x] has a cyclotomic divisor. In particular, the algorithm works well
when the number of non-zero terms is small compared to the degyfée ofThis

work is based on a paper by J. H. Conway and A. J. Jones [1]. The specific result
we establish is the following.

Theorem 1. There is an algorithm that has the following property: givgn) =
Zj.v:l a;x% € Z[z] with N > 1 anddeg f = n > 1, the algorithm determines
whetherf(x) has a cyclotomic factor and with running time

< exp ((24 0(1))y/N/log N(log N + loglogn)) log(H + 1) (1)
as N tends to infinity, wheré! = max;<;<n{|a;|}.

In the above theorem, we view the input as consisting of a lisY aoefficient-
exponent pairsa;, d;) sorted in increasing order by the valuesiof Observe that
for fixed V-and bounded coefficients, the algorithm runs in time that is polynomial
in log n. In the case that a cyclotomic factor exists, the algorithm can be made to
output a positive integem for which ®,,(x), the mth cyclotomic polynomial,
divides f (x) without affecting the bound given for the running time.

For m a positive integer, let,, = ¢>™/™. For integersa, b, andm with
m > 0, we writea = b (mod m) if m|(a — b) and use the notatiom mod m
to represent the unigue= a (mod m) such thatd < b < m. For f(z), g(z),
andw(x) in Q[z] with degw(z) > 1, we write f(z) = g(z) (mod w(x)) if
w(z)|(f(z) —g(x)), and we use the notatiof{x) modw(z) to denote the unique
polynomialg(z) = f(x) (mod w(z)) with eitherg(z) = 0 or0 < degg(x) <
degw(x). If S'is a set, we will denote by5| the cardinality ofS.

Theorem 2. Let f(x) € Z[z] haveN non-zero terms. Supposds a positive in-
teger such tha®,, ()| f(x). Suppose further that, ps, . . ., p;, are distinct primes

satisfying
k

2+ (pj—2)>N.

=1

Let e; be the non-negative integer for whigh'||n. Then for at least ong
{1,2,...,k}, we haved,,(z)|f(x) wherem = n/p}’.



Proof. We first describe and then make use of Theorem 5 from [1]r Bqgyositive
integer, definey(r) = 2+ 3 (p — 2). Following [1], we call a vanishing sum
S minimal if no proper subsum af vanishes. We will be interested in sums
S = Z;Zl a;w; Wheret is a positive integer, eagct) is a non-zero rational number
and eachy, is a root of unity. We refer to the reduced exponent of such as the
least positive integer for which (w; /w;)” = 1 foralli € {1,2,...,t}. Theorem

5 of [1] asserts then that if = Zzzl a;w; is a minimal vanishing sum, then
t > ~(r) wherer is the reduced exponent &t (Also, note that Theorem 5 of
[1] implies that the reduced exponendf a minimal vanishing sum is necessarily
squarefree.)

To prove Theorem 2, we suppose as we may that- 0 for each; <
{1,2,...,k}. We write f(z) = >_;_, fi(x) where eachf;(z) is a non-zero
polynomial divisible by®,,(x), no two f;(z) have terms involving to the same
power, ands is maximal. Thus, eacfi((,) is a minimal vanishing sum. For each
i€{1,2,...,s}, wewrite f;(x) = zbg;(x%) whereb; andd; are non-negative in-
tegers chosen so that0) # 0 and the greatest common divisor of the exponents
appearing ing;(z) is 1. Theng;(¢%) is a minimal vanishing sum with reduced
exponentn/ ged(n, d;). If t; denotes the number of non-zero termggf), we
deduce from Theorem 5 of [1] that

S S n
N=S"t> S —
ZZ:; T = 7(g;cd(mcli))

k
225+Z(p,-—2>H1 < i< s:p;divides

J=1

)|

The inequality in Theorem 2 implies that at least one of the expressfans
i < s:p;l(n/ged(n,d;))}| is zero. In other words, for somee {1,2,...,k}
and everyi € {1,2,...,s}, we havepy|d;. Settingm = n/p; andd] = d;/p;’,

J

we obtain thayi(d%) = 0. Sinceged(m, p;) = 1, ¢ is a primitivernth root of
unity and we deduce;((%) = 0. As this is true for every € {1,2,...,s}, we
concludef(¢,,) = 0, establishing the theorem. O

Corollary 1. Let f(z) € Z[z] have N non-zero terms. If (z) is divisible by a
cyclotomic polynomial, then there is a positive integesuch that

2+Z(p—2)§N and &, (x)|f(z).

plm



The above is a direct consequence of Theorem 2. Observe that it follows easily
from Corollary 1 that iff () is divisible by a cyclotomic polynomial, then there is
a positive integem such that every prime divisor of is < N and®,,(z)|f(x).

2 The Proof of Theorem 1

For the proof of Theorem 1, we will make use of the following preliminary result
of independent interest.

Theorem 3. There is an algorithm that has the following property: givén) =
Z;V:l ajx% € Z[z] with deg f = n > 1 and a positive integem together with
its factorizationm = szlp;fj wheres > 1, thep; are distinct primes< A/, and
thee; are positive integers. E, the algorithm determines whethér, (x) divides

f(x) and with running time

< (logn + log M)**® + s(log M +log(E + 1))
+52°Nlog(H + 1) + s2°N(s + log N) (s + log n + log N) ™,

as N tends to infinity, wheré! = max;<;<n{|a;|}.

In the above theorem, we view the input as consisting of a list of coefficient-
exponent pairga;, d;) sorted in increasing order by the valuesipfand a list of
prime-exponent pair§p;, ;) sorted in increasing order by the valuesppf The
total length of the input is

< (log(H + 1) 4+ logn) N + (log M + log(E + 1))s.

Observe that in the statement of the theorem, the bound given for the running time
of the algorithm exceeds the length of the input. In fact, the te(ﬂngM +
log(F + 1)) in the theorem exists only because the input needs to be read.

Proof of Theorem 3We suppose as we may throughout that> 1. We begin
with the algorithm and then justify that the algorithm works and has the indicated
bound for its running time.
For a polynomialg(z) € Z[z], we definew(g(xz)) asg(z) mod (z™ — 1).
We can vieww (g(ac)) as the polynomial obtained by reducing the exponents of



g(x) modulom and combining the terms with like exponents. In other words, if
g(x) = Z? | u;z, then

W(g(ﬂf)) :Z vj mod m) Zu
j=1
where0 < v} <v) < -+ <vfp <m,0<T" < T, and eacm; is a sum of one
or moreu,;.

For the moment, suppose thathas already been computed from the prime-
exponent pairgp;, e;); the running time for computing: will be discussed later.
Given g(x) as an ordered list of coefficient-exponent pdits, v;), ordered in
increasing order by the size of, we computev (g(x)) as follows. We compute
the complete list of pairgu;, v; modm) in

< T(logU) + T(logm + log V) Lol

binary operations, wherg = 1 + max;<;<r{|u;|} andV = 1 + max;<;<r{v;}.

Next, we sort the pairs in increasing order according to the valueg wiod m

and combine terms of like exponents to form a sorted list of coefficient-exponent
pairs (v, v}) associated withv (g(x)); this requires

< T(logU) + T(log T)(logm + log T)

binary operations. Thus, the total number of binary operations to cormﬁy(e))
is bounded by

O(T(logU) + T(1og T)(logm + log V +log T) """},

We use the above to describe and justify the running time of the following algo-
rithm.

Algorithm A (Specific Cyclotomic Factor TestiGiven f(z) = Zév:l ajx¥i €
Z[x] with deg f = n > 1 andm = [[;_, p;’ as in the statement of the
theorem, determine whether,, () divides f(x).

Step Al. Check the Size af(m). Check whether

Hpej-—l N 1

If the inequality holds, then proceed to Step A2. Otherwise, output that
®,,(x) does not dividef ().



Step A2. Reduce Exponents ¢fModulom. Compute
folz) = w(f(z))

where the functiow is defined above.

Step A3. Multiply By ™7 — 1 For Eachp Dividing m. Forj € {1,2,...,s},
recursively define

fi(e) = w(fj-a(x) (z™P - 1)),

Step A4. Check Whether the Final Result is Zeheck whethelf(x) = 0. If
fs(z) = 0, then output thatb,,(z) divides f(x). Otherwise, output that
®,,(x) does not dividef ().

We justify now the correctness of the algorithm. Since the degrég, 0f) is
o(m) =[]»p7 (- 1),
j=1

if (m) > n, then it is impossible fol,,(x) to divide f(z). It remains to con-
sider then the case thatm) < n. We use that the factorization of* — 1 into
irreducible polynomials over the rationals is given by

™ —1= H@d(x).

dlm

Observe that every divisaf of m with d # m dividesm/p; for some; €
{1,2,...,s}. Thus, for each sucth, ®,(x) divides the polynomial

s

h(z) = H (Im/pj —1).

j=1

On the other hand®,,(z) does not divideh(xz). We deduce that(x) is not
divisible by z™ — 1, but ®,,(z)h(x) is. This implies thatb,,(z) divides f(z) if
and only ifz™ — 1 divides f (z)h(x). From Steps A2 and A3, we see thatz) is
f(z)h(x) mod(z™ — 1). Therefored,,(x) divides f(x) if and only if f;(z) = 0.
Step A4 and the correctness of the algorithm are justified.

To obtain the bound on the running time of the algorithm, we begin by esti-
mating the amount of time needed to check the inequality in Step A1. We view
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this as being done as follows. Set a variable, dayo bel. Consider in turn
eachp; beginning with; = 1 and ending withj = s. For each such, replace
the value ofA with the value of4 x p; and do thise; — 1 times. Then replace
the value ofA with the value ofA x (p;, — 1) before continuing to the next value
of j. After each multiplication, check il < n. Each multiplication will take
O((logn + log M)'+°W)) binary operations. At mosp(logn) multiplications
are necessary (before obtainidg> n). Hence, Step Al requires

< (logn + log M)**+o®

binary operations. Observe that further steps in the algorithm are only considered
if ¢(m) < n. In particular,m < ¢(m)? < n? implieslogm < 2logn. We
therefore suppose this holds in discussing the remaining steps of the algorithm.

A procedure analogous to that just described for determining whether the in-
equality in Step Al holds can be used for computingas well asn/p,) from the
list of exponent pairgp;, e;). Given that nown < n?, computingm (or m/p;)
requires

< (logn + log M)*+o®

binary operations.
Given the running time analysis for computimgjg(:c)), Step A2 takes

< Nlog(H + 1) + N(log N)(logn + logN)HO(l)

binary operations. In Step A3, fgre {1,2,..., s}, we first compute the product
fj-1(z)(z™/?i —1). This can be done by replacing each coefficient-exponent pair
(a,d) defining f;_1(z) by the two pairs(—a, d) and(a, (d + (m/p;)) modm)

and then sorting the complete list of new pairs in increasing order by their second
components, combining pairs that have like exponents. Inductively, we obtain that
fi(x) has< 27N non-zero terms, with each coefficient2’ N H and each expo-
nent< m. Using the running time analysis for computimgg(x)), computing
w(fj-1(z)) takes

< 2°Nlog(H + 1) + 2°N(s + log N) (s + logn + log N)Ho(l)
binary operations. Multiplying this estimate Bygives an upper bound on the
total number of binary operations to perform Step A3.

The polynomialf,(z) either consists of an empty coefficient-exponent pair list
or the list contains at least one pair. Step A4 therefore is a simple check to see
which of these is the case and takes

< QSN(S +logn +log N + log(H + 1))
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binary operations, a bound on the bit-lengthfgfr).
The result of the theorem follows. O

Proof of Theorem 1Corollary 1 implies that we need only consider the possi-
bility that ®,,,(z)|f(z) where each prime divisor of is < N, the number of
non-zero terms of (x). For each prime < N, we consider

o) = [EEL )y @

Observe that ip|m, then

deg f(z) > deg @y, () = ¢(m) > ¢(p°) = p* ' (p— 1) > p°!

so thate < r(p). We make use of this notation for describing an algorithm for
proving Theorem 1.

Algorithm B (General Cyclotomic Factor TestGiven f(z) = Y, aa® €

Z[z] with deg f = n, determine whether there is at least onesuch that
®,, () divides f(x).

Step B1. Determine Relevant Prime€ompute the seP = {pi,p2,...,p,} Of
all primes< N.

Step B2. Obtain Exponent BoundsComputeB; = r(p,) (defined by (2)) for
I1<j<r.

Step B3. Determine Relevant ElemenSompute the subsetg, ¢, .. ., g} of
P for which

2+ (-2 <N 3)
j=1
Let O denote the set of all such subsets.

Step B4. Compute Possible Cyclotomic FactoSonstruct a list of tuples

((QI7€1)7<q2762)7"-7(Qs>es))

where{q, ¢, ...,qs} € Qandifg, = p; thenl <e; < B;.



Step B5. Check Divisibility. For each((gi,¢1), ..., (g5, e5)) in Step B4, apply
Algorithm A with m = ¢7'¢5* - - - ¢¢ to determine whetheb,,(z) divides
f(z). If at least one such exists, indicate thaf(x) has a cyclotomic
factor. Otherwise, indicate thg{x) has no cyclotomic factor.

Given the algorithm above, we need to justify the correctness of the algorithm
and the appropriate running time. Corollary 1 implies tfiét) is divisible by
a cyclotomic polynomial if and only if,,(x)| f(z) for some positive integemn
such that the complete set of prime divisorsofs an element 00. As indicated
after (2), if p5||m, thene < r(p;) = B;. It follows that f(z) is divisible by
a cyclotomic polynomial if and only if,,(x)| f(z) for some positive integet
considered in Step B5. Thus, the correctness of the algorithm is justified.

Next, we justify the bound on the running time indicated for the algorithm.
The first two steps indicated in the algorithm can be estimated rather poorly with-
out affecting this bound. In Step B1, the primes that<€ré&/ are determined. A
crude upper bound on the number of binary operations for this st&lA&?).

Note thatr is determined by the condition. < N < p,,;. Hence, by the
Prime Number Theorem, ~ N/log N. Computing any particulaB; takes no
more thanO(log® n) binary operations so that the running time for Step B2 is
< rlog®n < Nlog®n/log N.

The running time for the algorithm is affected largely by the number of ele-
ments ofQ. From (3) and- ~ N/log N, we deduce that

>4 < (14 o(1)N @

asN tends to infinity. Using thal _ . p ~ 2?/(21og z), we obtain from (4) that

s < (24 0(1))\/N/log N

(takez = (1 + ¢)y/Nlog N and use thatr(z) ~ z/logz). Let K denote this
bound ons. Since there are choices for each primg;, we deduce that

1Q] < ¥ < N¥ =exp ((2+0(1))\/Nlog N).

In Step B3, the elements @ are determined. This can be done by considering
increasing values of beginning withs = 1 and determining those subsets/of
of sizes that belong taQ. For each of the< r* subsets ofP of sizes, checking
(3) takesk slog N binary operations. Once a value«©is obtained for which no
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subsets of of sizes belong toQ, the set©Q will be determined and Step B3 ends.
By the definition of K, there are no subsets 6fof size K + 1 in Q. It follows
that the number of binary operations needed for Step B3 is

K+1

< Z r’slog N < r* ™ Klog N < exp ((2+0(1))/Nlog N).
s=1
For Step B4, we observe th& <1+ 2logn andB; < 1+ logn forj > 1.
For each of the< r* elements{q, ¢, . . ., ¢} of Q, we therefore form at most
2(1+logn)* < 2(1+logn)X tuples((q1,e1), ..., (gs €s)). It follows that there
are
< (1 +1logn)® < exp (K(logr + log(1 + logn)))

such tuples. Note that we are interested in asymptotiéé @nd, hencey) tends
to infinity so that, in particularog(1 + logn) ~ loglogn. Forming each tuple
((ql, e1)s -, (qs, es)) takes

< K(log N + loglogn)
binary operations. Therefore, we can use
O(exp ((1+0(1))K (logr + loglogn)))

as an upper bound on the running time for Step B4.

The running time for Step B5 is determined from the running time for Algo-
rithm A as given by Theorem 3. Observe that we can take= N in Theorem
3 asN serves as a bound for evegy. Also, M = N < n, E < logn, and
s < K < v/N. Given the number of tuples considered in Step B4, the running
time for Step B5 is

< 2KN5/2(10g2+°(1) n+log(H + 1)) exp ((1 4 o(1)) K (logr + loglogn)).

Usingr ~ N/log N and K = (2 + o(1))/N/log N, the running time in Step
B5 is bounded by

< exp ((2+ 0(1))y/N/log N(log N + loglogn)) log(H + 1)
as N tends to infinity. As this exceeds the bounds obtained for the running times

in the previous steps of the algorithm, it also serves as a bound for the order of
magnitude of the running time of the entire algorithm, completing the proaf.

Acknowledgment: The authors are grateful to the referee for his or her com-
ments. In particular, the current version of Theorem 3 together with Algorithm A
are due to the referee.



References

[1] J. H. Conway and A. J. JoneBjigonometric diophantine equations (On van-
ishing sums of roots of unityActa Arith. 30 (1976), 229-240.

10



	Introduction and the Main Theorems
	The Proof of Theorem ??

