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1. Introduction and the Main Theorems

This note describes an algorithm for determining whether a given polynomial f(x) 2
Z[x] has a cyclotomic divisor. In particular, the algorithm works well when the number of

non-zero terms is small compared to the degree of f(x). This work is based on papers of

H. B. Mann [3] and J. H. Conway and A. J. Jones [1].

For m a positive integer, we de�ne �m(x) to be the mth cyclotomic polynomial, and

let �m = e2�i=m. If m = k` where k and ` are relatively prime positive integers, then

it is not diÆcult to see that Q (�m) = Q (�k ; �`). Letting � denote Euler's �-function, we
observe that [Q(�k ) : Q ] = �(k) and [Q(�m) : Q ] = �(m) = �(k)�(`). It follows that

[Q (�m) : Q(�k )] = �(`) and that �`(x) is the minimal polynomial for �` over the �eld

Q (�k ). In particular, f1; �`; �2` ; : : : ; �
�(`)�1

` g forms a basis for Q(�m) over Q(�k ). We will

mainly be interested in the case when ` is a prime power. For integers a, b, and m with

m > 0, we write a � b (mod m) if mj(a� b) and use the notation a mod m to represent

the unique b � a (mod m) such that 0 � b < m. For f(x), g(x), and w(x) in Q [x] with
degw(x) � 1, we write f(x) � g(x) (mod w(x)) if w(x)j(f(x) � g(x)), and we use the

notation f(x) mod w(x) to denote the unique polynomial g(x) � f(x) (mod w(x)) with
either g(x) � 0 or 0 � deg g(x) < degw(x).

Theorem 1. Let f(x) 2 Z[x]. Let m, k, and ` be positive integers, with k and ` relatively
prime, m = k`, and �m(x) dividing f(x). Let

(1) f(xy) mod �`(y) =

�(`)�1X
j=0

aj(x)y
j:

Then �k(x) divides each aj(x) for 0 � j � �(`)� 1.

Proof. Observe that m = k` and k and ` being relatively prime imply that �k�` is a

primitive mth root of unity. Taking x = �k and y = �`, we deduce that

�(`)�1X
j=0

aj(�k)�
j
` = 0:

On the other hand, f1; �`; �2` ; : : : ; �
�(`)�1

` g is a basis for Q (�m) over Q(�k ). Hence, aj(�k) =
0 for 0 � j � �(`)� 1, and the result follows. �
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Corollary 1. Let f(x) 2 Z[x]. Let m be a positive integer for which �m(x) divides f(x).
Let

f(xy) mod �m(y) =

�(m)�1X
j=0

aj(x)y
j:

Then aj(1) = 0 for 0 � j � �(m)� 1.

The Corollary immediately follows by considering the case ` = m and k = 1 in Theorem

1. We note that the converses of both Theorem 1 and this Corollary hold. In other words,

if the aj(x) are de�ned as in Theorem 1 and if �k(x) divides each aj(x), then �m(x)

divides f(x) (provided k and ` are relatively prime); this follows along lines similar to

the argument given for Theorem 1. Also, we note that the polynomials aj(x) de�ned in

Theorem 1 will necessarily have integer coeÆcients since �`(y) is monic. In addition, we

observe that if ` = 1 in Theorem 1, then the sum on the right side of (1) consists of one

term, namely a0(x) = f(x).

Theorem 2. Let f(x) 2 Z[x] have N non-zero terms. Suppose n is a positive integer such

that �n(x)jf(x). Suppose further that p1; p2; : : : ; pk are distinct primes satisfying

2 +

kX
j=1

(pj � 2) > N:

Let ej be the non-negative integer for which p
ej
j jjn. Then for at least one j 2 f1; 2; : : : ; kg,

we have �m(x)jf(x) where m = n=p
ej
j .

Proof. We �rst describe and then make use of Theorem 5 from [1]. For r a positive

integer, de�ne 
(r) = 2 +
P

pjr(p� 2). Following [1], we call a vanishing sum S minimal

if no proper subsum of S vanishes. We will be interested in sums S =
Pt

j=1 aj!j where t

is a positive integer, each aj is a non-zero rational number and each !j is a root of unity.

We refer to the reduced exponent of such an S as the least positive integer r for which

(!i=!1)
r = 1 for all i 2 f1; 2; : : : ; tg. Theorem 5 of [1] asserts then that if S =

Pt
j=1 aj!j

is a minimal vanishing sum, then t � 
(r) where r is the reduced exponent of S. (Also,

note that Theorem 1 of [1] implies that the reduced exponent r of a minimal vanishing

sum is necessarily squarefree.)

To prove Theorem 2, we suppose as we may that ej > 0 for each j 2 f1; 2; : : : ; kg. We

write f(x) =
Ps

i=1 fi(x) where each fi(x) is a non-zero polynomial divisible by �n(x), no
two fi(x) have terms involving x to the same power, and s is maximal. Thus, each fi(�n)
is a minimal vanishing sum. For each i 2 f1; 2; : : : ; sg, we write fi(x) = xbigi(x

di) where bi
and di are non-negative integers chosen so that gi(0) 6= 0 and the greatest common divisor

of the exponents appearing in gi(x) is 1. Then gi(�
di
n ) is a minimal vanishing sum with

reduced exponent n= gcd(n; di). If ti denotes the number of non-zero terms of gi(x), we
deduce from Theorem 5 of [1] that

N =

sX
i=1

ti �
sX

i=1




�
n

gcd(n; di)

�
� 2s+

kX
j=1

(pj � 2)

����
�
1 � i � s : pj divides

n

gcd(n; di)

�����:
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The inequality in Theorem 2 implies that at least one of the expressions jf1 � i � s :

pj j(n= gcd(n; di))gj is zero. In other words, for some j 2 f1; 2; : : : ; kg and every i 2
f1; 2; : : : ; sg, we have pejj jdi. Settingm = n=p

ej
j and d0i = di=p

ej
j , we obtain that gi(�

d0i
m ) = 0.

Since gcd(m; pj) = 1, �
p
ej

j
m is a primitive mth root of unity and we deduce gi(�

di
m ) = 0. As

this is true for every i 2 f1; 2; : : : ; sg, we conclude f(�m) = 0, establishing the theorem. �

Corollary 2. Let f(x) 2 Z[x] have N non-zero terms. If f(x) is divisible by a cyclo-

tomic polynomial, then there is a positive integer m such that 2 +
P

pjm(p� 2) � N and

�m(x)jf(x).
The above is a direct consequence of Theorem 2. Observe that it follows easily from

Corollary 2 that if f(x) is divisible by a cyclotomic polynomial, then there is a positive

integer m such that every prime divisor of m is � N and �m(x)jf(x).

2. The Algorithm

We now describe how to determine if a given f(x) 2 Z[x] has a cyclotomic divisor.

The algorithm we describe has been implemented using MAPLE V, Release 5, and an

interactive World Wide Web page that allows users to input polynomials f(x) and make

use of the algorithm is available at the web address

http://www.math.sc.edu/~filaseta/cyclotomic.html.

The web page was developed jointly by Douglas Meade and the �rst author. A copy of

the MAPLE program can also be downloaded there (but access to MAPLE is necessary to

take advantage of the downloaded program). In particular, we note that on a Sun Ultra

1, the program handles a random polynomial with 100 non-zero terms, with coeÆcients

bounded by 1000000 and with degree 1000000 in approximately two and a half minutes.

It is also possible to run the program with polynomials of degree up to 10100.

Corollary 2 implies that we need only consider the possibility that �m(x)jf(x) where
each prime divisor of m is � N , the number of non-zero terms of f(x). For each prime

p � N , we compute the value of

r(p) =

�
log deg f

log p

�
+ 1:

Observe that if pejm, then

deg f(x) � deg�m(x) = �(m) � �(pe) = pe�1(p� 1) � pe�1

so that e � r(p).

When computing the aj(x) associated with Theorem 1 or determining whether f(x) is
divisible by a cyclotomic polynomial �`(x) in this section, we reduce the exponents of f(x)
modulo ` (as in [2]) and then perform a division by �`(x). To be more precise, suppose

(2) f(x) =

rX
j=0

bjx
dj
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where the bj denote non-zero integers and the dj denote distinct non-negative integers. To

compute f(xy) mod �`(y), one can �rst compute the values of dj = dj mod ` to obtain

(3) f(xy) �
rX

j=0

bjx
djydj �

`�1X
i=0

ci(x)y
i (mod �`(y));

where the ci(x) are obtained by combining equal values of dj . Note that this de�nition of

the ci(x) implies that f(x) =
P`�1

j=0 ci(x). Now, each of ydj mod �`(y) can be computed

directly. We will be interested in the case that ` = pe for some prime p and some positive

integer e. If dj < �(`) = pe�1(p � 1), then the value of ydj will remain unchanged when

we consider it mod �`(y). If dj � pe�1(p� 1), then we use the reduction

(4) ydj mod �`(y) = �
p�1X
u=1

ydj�p
e�1u;

which follows from �`(y) = �p(y
pe�1

) =
Pp�1

j=0 y
pe�1j . Observe that since dj < pe, the

exponents appearing on the right of (4) are in the interval [0; pe�1(p � 1)). Also, the

exponents on the right of (4) are di�erent for di�erent choices of dj in [pe�1(p� 1); pe) (as
the integers in this interval are incongruent modulo pe�1).

A simple algorithm for testing f(x) for divisibility by a cyclotomic polynomial can

be described as follows. Let p1; p2; : : : ; pr denote the complete list of primes � N with

p1 < p2 < � � � < pr. Consider each integer

(5) m =

rY
j=1

p
ej
j where 0 � ej � r(pj);

and check directly if �m(x)jf(x). If some �m(x) divides f(x), then the algorithm stops

and indicates so. Otherwise, the algorithm outputs that f(x) has no cyclotomic divisor.

This simple algorithm is not, however, as eÆcient as we would like. In particular, to handle

polynomials as described in the �rst paragraph of this section would require testing over

6� 1019 di�erent values of m. Some improvement can be made by considering only m for

which �(m) � deg f(x), but our main improvement will be of a di�erent nature.

Given a positive integer `, consider aj(x) as de�ned in (1). Observe that if some aj(x)

has only one non-zero term, then it cannot be divisible by �k(x) for any positive integer k.
It follows then from Theorem 1 that �k`(x) does not divide f(x) for any positive integer

k. We use this information to reduce the number of m we need consider in (5). We now

describe how this is achieved.

For 1 � j � r, de�ne Bj = r(pj). Let

S = f(e1; e2; : : : ; er) : 0 � ej � Bj for 1 � j � rg:

Thus, S consists of the r-tuples formed from the exponents appearing in (5). De�ne a

lexicographical ordering on the elements of S. More precisely, if A = (a1; : : : ; ar) and
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B = (b1; : : : ; br) are elements of S, then we say A < B if there is some i 2 f0; 1; : : : ; r� 1g
such that a1 = b1; a2 = b2; : : : ; ai = bi, and ai+1 < bi+1. If d and m are positive integers,

we say that d exactly divides m and write djjm if djm and gcd(d;m=d) = 1. Finally, we

say that d is obtained from an element (e1; e2; : : : ; er) of S if d = pe11 � � � perr .

We describe a subroutine shrinkf that makes use of Theorem 1. The input for shrinkf

consists of a polynomial g(x), a prime p, and a positive integer r. We consider g(x) in

place of f(x) and ` = pr in Theorem 1. The subroutine shrinkf computes the aj(x) given
there and outputs a non-zero value of aj(x) which has as few non-zero terms as possible.

The idea is that if we wish to know if there is an m exactly divisible by pr for which �m(x)

divides g(x), then shrinkf(g; p; r) will output a polynomial a(x) which \typically" has

less (and never has more) non-zero terms than g(x) and which is divisible by �m=pr (x).

Suppose d is obtained from (e1; e2; : : : ; er) in S. Write d = q
e0
1

1 � � � qe
0

s
s where each qj is

prime with q1 < � � � < qs � N and where each e0j is a positive integer. Setting f0(x) = f(x),

we de�ne recursively the polynomials

fj(x) = shrinkf(fj�1; qj ; e
0
j) for 1 � j � s:

If �m(x)jf(x) and djjm, then Theorem 1 implies inductively that �
m
Æ�

q
e0
1

1
���q

e0
j

j

�(x) divides
fj(x). In particular, in this case, we have �m=d(x)jfs(x). Thus, if fs(x) is a polynomial

with exactly one non-zero term and �m(x)jf(x), then it follows that d cannot exactly

divide m. We also observe that if �d(x)jf(x), then fs(1) = 0.

We wish to determine if f(x) is divisible by �m(x) for some integer m obtained from

an element of S. We go through the elements of S in increasing order as follows. We

begin with the smallest element (0; 0; : : : ; 0). We let d denote the integer obtained from

the element of S under consideration; initially then d = 1. For each element (e1; : : : ; er) of
S under consideration and the corresponding d obtained from it, we proceed by computing

fs(x) as de�ned above (in the case of d = 1, we interpret fs(x) to be f0(x) = f(x)). If

fs(x) is a polynomial with exactly one non-zero term, then we know that f(x) cannot be
divisible by �m(x) for any integer m exactly divisible by d. This is where a savings over

the simple algorithm described earlier in this section occurs; we can now ignore integers m
obtained from elements of S if djjm. To explain how this is done, we let i and j be integers
with 0 � i � j � r satisfying

0 � ei < Bi; ei+1 = Bi+1; ei+2 = Bi+2; : : : ; ej = Bj; ej+1 = 0; ej+2 = 0; : : : ; er = 0:

Here, if a subscript is not in the range [1; r], then it is to be ignored; and if j = i, then we

take this to mean that the middle equations et = Bt with i+1 � t � j are not present. The
case d = 1 we equate with i = j = 0. If i � 1, then the next element of S we consider is

(e1; : : : ; ei�1; ei+1; 0; 0; : : : ; 0). Given the ordering of the elements of S described earlier, if

m is obtained from an element of S between (e1; : : : ; er) and (e1; : : : ; ei�1; ei+1; 0; : : : ; 0),
then djjm. This implies that we have skipped over considering elements of S which we

know correspond to cyclotomic polynomials that cannot divide f(x). If i = 0 above, then

we stop the algorithm and indicate that f(x) has no cyclotomic divisors. In this case, the

remaining elements of S correspond to integers m for which djjm and so they need not be

considered. This describes how we proceed if fs(x) has exactly one non-zero term.
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Suppose now that (e1; : : : ; er) and d are as before but fs(x) has more than one non-zero

term. We check if fs(1) = 0. If it does, then it might happen that �d(x)jf(x) and we

determine whether this is the case by a direct computation. If we determine �d(x)jf(x),
then we stop and output that f(x) is divisible by a cyclotomic polynomial. Otherwise,

either we have fs(1) = 0 and �d(x) - f(x) or we have fs(1) 6= 0 (and �d(x) - f(x) here as
well). Note that we could have simply checked if �d(x)jf(x) without checking the value of
fs(1); the idea behind checking if fs(1) = 0, however, is that we expect usually fs(1) 6= 0

and checking the value of fs(1) saves time (i.e., division by �d(x) is more time consuming).

If �d(x) - f(x), then we simply consider the next element of S greater than (e1; : : : ; er)

in our ordering of the elements of S. (Some savings is gained by observing that the fs(x)
associated with each subsequent d can be computed by a single call to shrinkf by making

use of previously computed fj(x).)

The above describes the algorithm. To justify the algorithm works is relatively simple.

First, observe that if the algorithm indicates f(x) has a cyclotomic divisor, it does as this

indication will be as a result of a direct check of a possible cyclotomic divisor as in the

paragraph above. On the other hand, for each m as in (5), either the algorithm checks if

�m(x)jf(x) when d = m (directly or by computing fs(1)) or the algorithm has skipped over

considering �m(x) as a divisor of f(x) because the algorithm has veri�ed that �m(x) - f(x)
through the use of some exact divisor d of m. Thus, the algorithm determines if there is

an m as in (5) with �m(x) dividing f(x), and this is suÆcient for deciding whether f(x)
is divisible by a cyclotomic polynomial.

3. Running Times and Other Concluding Remarks

One diÆculty in estimating the running time of the algorithm in Section 2 is in �nding

good bounds for the total number of elements of S that are skipped over as we determine

d for which �m(x) does not divide f(x) for positive integers m exactly divisible by d. In
addition, we checked whether �m(x) divides f(x) by a direct division. Even after reducing

the exponents of f(x) modulo m, the division can cost considerable time as the size of

m can be large and can even exceed deg f(x). To get a good theoretical bound for the

maximal running time of an algorithm which determines whether f(x) has a cyclotomic

factor, we make the following changes in the algorithm just described.

We alter shrinkf so that, given input g(x), p, and r as before, shrinkf returns not

just one but every aj(x) obtained from Theorem 1 (discarding multiplicities). If there are

t distinct non-zero aj(x), then the output is a t-tuple with components consisting of these

aj(x) (in any order).

We go through the elements of S using their lexicographical ordering as before, checking

to see if �m(x) divides f(x) for some m obtained from an element of S. Let d be a number
we are considering, obtained from (e1; e2; : : : ; er) in S. In particular, we may suppose that

at this point in the algorithm, we have already determined that each d0 obtained from a

previous element of S is such that �d0(x) does not divide f(x) (otherwise the algorithm

would have already terminated indicating that f(x) has a cyclotomic divisor). We write

d = q
e0
1

1 � � � qe
0

s
s where, as before, each qj is prime with q1 < � � � < qs � N and each e0j is a
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positive integer. We check initially whether

(6) 2 +

sX
j=1

(qj � 2) � N:

If not, then Corollary 2 implies that we need not consider any m obtained from an element

of S that is divisible by d. As in the previous section, we can skip over those elements of

S exactly divisible by d (and, in fact, more).

We consider next the case where (6) holds. De�ne a positive integer t1 and polynomials

f
(1)

1 (x); : : : ; f
(t1)
1 (x) by

�
f
(1)

1 (x); : : : ; f
(t1)
1 (x)

�
= shrinkf(f; q1; e

0
1):

Next, we compute shrinkf(f
(i)
1 ; q2; e

0
2) for each i 2 f1; : : : ; t1g and concatenate the re-

sults to obtain
�
f
(1)

2 (x); : : : ; f
(t2)
2 (x)

�
so that each component of each shrinkf(f

(i)
1 ; q2; e

0
2)

occurs as some f
(i)
2 (x) (multiplicities discarded). We continue in this manner until we ob-

tain
�
f
(1)
s (x); : : : ; f

(ts)
s (x)

�
, the values of shrinkf(f

(i)
s�1; qs; e

0
s) concatenated. The revised

algorithm now reads the same as before except, in the case that fs(1) = 0, we do not

check if �d(x)jf(x) by a direct computation. Instead we check if every f
(i)
s (1) = 0. We

claim that �d(x)jf(x) if and only if f
(i)
s (1) = 0 for every i 2 f1; 2; : : : ; tsg. The de�nition

of shrinkf and the converse of Corollary 1 imply that if every f
(i)
s (1) = 0, then each

f
(i)
s�1(x) is divisible by �

q
e0s
s

(x). Now, the converse of Theorem 1 implies that each f
(i)
s�2(x)

is divisible by �
q
e0
s�1

s�1
q
e0s
s

(x), and continued applications of the converse of Theorem 1 imply

�d(x)jf(x). The argument to see that �d(x)jf(x) implies every f
(i)
s (1) = 0 is similar but

in reverse. Thus, if (6) holds, we simply perform the algorithm as described in Section

2 replacing each check to see if �d(x)jf(x) by checking instead if f
(i)
s (1) = 0 for every

i 2 f1; 2; : : : ; tsg. (As noted there some savings is gained by using information obtained

from previous calls to shrinkf; in particular, for any given d as above, the values of f
(i)
j (x)

with j < s will be known prior to considering d.)

An estimate for the running time of the algorithm as revised here can be seen to depend

heavily on the number of di�erent f
(i)
j (x) that need to be computed. If the input polyno-

mial is f(x) =
PN

j=1 ajx
dj where the aj are nonnegative integers and the dj are integers

satisfying 0 � d1 < d2 < � � � < dN , then a deterministic upper bound for the running time

is

� exp

�
(2 + o(1))

p
N
�p

logN + log log dN
��

� log max
1�j�N

fjaj j+ 1g

as N tends to in�nity. This estimate is hampered mainly by a presumably poor estimate

for the number of elements of S skipped over in the approach described in Section 2. In

any case, with N �xed, one sees that the running time depends only logarithmically on

the degree of f(x).
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We note that H. W. Lenstra [2, Proposition 3.5] has described an algorithm which takes

a given lacunary polynomial and determines all cyclotomic factors, with their multiplicities,

having degree less than some prescribed amount. It would be of interest to �nd an eÆcient

algorithm for determining all the cyclotomic divisors of a lacunary polynomial f(x). We

would also be interested in good upper bounds for the number of m considered in the

algorithms described here (excluding the m we skipped over by considerations of an exact

divisor d of m).
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