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1. Introduction

In 1951, Emil Grosswald [7] began investigating the irreducibility of the Bessel Polyno-

mials

yn(x) =

nX
j=0

(n+ j)!

2j(n� j)!j!
xj :

He conjectured (cf. [8],[9]) that yn(x) is irreducible over the rationals for all positive integers

n. In this paper, we resolve this conjecture and establish the following generalization.

Theorem. Let n be a positive integer, and let a0; a1; : : : ; an be arbitrary integers with

ja0j = janj = 1. Then
nX

j=0

aj
(n+ j)!

2j(n� j)!j!
xj

is irreducible over the rationals.

The above theorem was established in the case that n is su�ciently large, say n � n0, by

the �rst author in [4]. He also conjectured there that the above general theorem holds.

Although the method in [4] gives an e�ectively computable value for n0, a direct application

of the methods there does not allow one to establish even that n0 � 1010
1000

. Nevertheless,

our approach in this paper is quite similar to that given in [4] and is based on re�ning the

estimates made there. Related work has been done by I. Schur [11], the �rst author [2,3,5],

and S. Graham and the �rst author [6].

2. Preliminaries

As in previous approaches, we de�ne

zn(x) = xnyn(2=x) =

nX
j=0

(2n� j)!

j!(n� j)!
xj =

nX
j=0

(n+ j)!

j!(n� j)!
xn�j:
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The polynomial F (x) given in the theorem is easily seen to be irreducible if and only if

(1) f(x) = xnF (2=x) =

nX
j=0

an�j
(2n� j)!

j!(n� j)!
xj

is irreducible. We therefore concentrate our e�orts on showing f(x) is irreducible (though

with some modi�cations one can work directly with F (x)).

Given g(x) =
Pn

j=0 bjx
j 2 Z[x] and p a prime, we de�ne the Newton polygon of g(x)

with respect to p as the lower convex hull of the points (j; �(bn�j)) where �(m) = �p(m) is

the nonnegative integer r for which prkm (cf. [4], [8]; the points where bn�j = 0 need not

be considered). Our �rst lemma below is used to connect the degrees of possible factors of

the general polynomial f(x) with information about the Newton polygons of zn(x). The

proof can be found in [4, see Lemma 2].

Lemma 1. Let k and ` be integers with k > ` � 0. Suppose g(x) =
Pn

j=0 bjx
j 2 Z[x] and

p is a prime such that p - bn, pjbj for all j 2 f0; 1; : : : ; n� `� 1g, and the right-most edge

of the Newton polygon for g(x) with respect to p has slope < 1=k. Then for any integers

a0; a1; : : : ; an with ja0j = janj = 1, the polynomial f(x) =
Pn

j=0 an�jbjx
j cannot have a

factor with degree in the interval [`+ 1; k].

We take g(x) = zn(x). Following the proofs of Lemmas 4 and 5 from [4], we note that

the slope of the right-most edge of the Newton polygon of zn(x) with respect to p is

max
1�u�n

(
1

u

 
�(u!) + �

�
(2n)!

(2n� u)!

�
� �

�
n!

(n� u)!

�!)
:

We will be interested in using this expression for the slope when applying Lemma 1 to ob-

tain information about the degrees of the factors of f(x). First, we indicate the information

obtained from Lemma 1 in [4] (cf. Lemmas 4 and 5 there).

Lemma 2. Let n be a positive integer. Suppose that p is a prime, that k and r are

positive integers, and that ` is an integer in [0; k � 1] for which

(i) prjj(n� `),

(ii) p � 2`+ 1,

and

(iii)
log(2n)

pr log p
+

1

p� 1
� 1

k
.

Then f(x) cannot have a factor with degree 2 [`+ 1; k].

Lemma 3. Let n be a positive integer. Suppose that p is a prime, that k and r are

positive integers, and that ` is an integer in [�k;�1] for which
(i) prjj(n� `),

(ii) p � 2j`j+ 1,

and
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(iii) max

�
1

p � 2j`j + 1
;

log(2n)

(pr � 2j`j+ 1) log p

�
+

1

p� 1
� 1

k
.

Then f(x) cannot have a factor with degree 2 [j`j; k].
In [4], Lemma 3 was only used to show that for n large f(x) cannot have a factor of

degree 1, 2, 3, or 4; furthermore, only the case ` = �1 was used. In this paper, we

will take advantage of the full range of values of ` given in the above two lemmas. The

condition given in Lemma 3 (iii) is somewhat awkward and can be improved when r = 1.

The purpose of our next lemma is to obtain such an improvement and at the same time

uniformize our use of Lemmas 2 and 3.

Lemma 4. Let n be a positive integer. Suppose that p is an odd prime, that k is an

integer > 1, and that ` 2 f�k;�(k � 1); : : : ;�1; 0; 1; : : : ; k � 2; k � 1g. Suppose further

that

(i) pj(n� `),

(ii) p � 2k + 1,

and

(iii)
log(2n)

(p� 2k + 1) log p
<

1

k
.

Then f(x) cannot have a factor of degree k.

Proof. In order to prove Lemma 4, we consider the cases ` � 0 and ` < 0 separately. For

` � 0, we show the above lemma is in fact a consequence of Lemma 2. To do this we need

only show that the inequality in Lemma 4 (iii) implies the inequality in Lemma 2 (iii);

more precisely, we establish

(2)
log(2n)

(p� 2k + 1) log p
<

1

k
=) log(2n)

p log p
+

1

p� 1
<

1

k

from which Lemma 2 (iii) is an easy consequence. By a direct computation, we have

1

pk

�
1

k
� 1

p� 1

��1

=
p� 1

p(p � k � 1)
� 1

p� 2k + 1
:

The inequality in Lemma 4 (iii) implies

1

pk

�
1

k
� 1

p� 1

��1
log(2n)

log p
� log(2n)

(p� 2k + 1) log p
<

1

k
;

and the implication in (2) easily follows.

Now, consider the case ` < 0. We modify the argument given for Lemma 5 in [4] as

follows. Observe that zn(x) =
Pn

m=0 cmx
n�m where c0 = 1 and

cm =

�
n

m

�
(n+ 1) � � � (n+m) for m � 1:
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Hence, pjcm form 2 fj`j; j`j+1; : : : ; ng. We apply Lemma 1 and make use of the description

of the slope of the right-most edge of the Newton polygon of zn(x) with respect to p. Thus,

we want to show that for each u 2 f1; 2; : : : ; ng,

(3)
1

u

 
�(u!) + �

�
(2n)!

(2n� u)!

�
� �

�
n!

(n� u)!

�!
<

1

k
:

Fix such a u, and de�ne a(x; j) as the number of multiples of pj in (x� u; x]. Then

�

�
(2n)!

(2n� u)!

�
� �

�
n!

(n� u)!

�
=

1X
j=1

�
a(2n; j)� a(n; j)

�
:

The upper limit in the summation may be replaced by [log(2n)= log p] since a(2n; j) =

a(n; j) = 0 when pj > 2n. Furthermore,

a(x; j) =

�
x

pj

�
�
�
x� u

pj

�
=

u

pj
+ �(x; j)

where j�(x; j)j < 1. It follows that a(2n; j)� a(n; j) is an integer with absolute value < 2.

Therefore, ja(2n; j)� a(n; j)j � 1. Hence,

�

�
(2n)!

(2n� u)!

�
� �

�
n!

(n� u)!

�
�

X
1�j�[log(2n)= log p]

��a(2n; j) � a(n; j)
�� � log(2n)

log p
:

Also,

�(u!) =

1X
j=1

�
u

pj

�
�

1X
j=1

u

pj
=

u

p� 1
:

Suppose �rst that u � p. Then

1

u

 
�(u!) + �

�
(2n)!

(2n� u)!

�
� �

�
n!

(n� u)!

�!
� 1

p� 1
+

log(2n)

u log p
� 1

p� 1
+

log(2n)

p log p
:

From (2), it follows that Lemma 4 (iii) implies this last expression is < 1=k. We show next

that (3) holds when u < p so that we may deduce that the right-most edge of the Newton

polygon of zn(x) has slope < 1=k and apply Lemma 1.

Suppose u < p. Then �(u!) = 0. If 1 � u � p + 2`, then n � ` � p < n � u + 1 and

2n � 2` � p < 2n � u + 1 so that there are no multiples of p in each of (n � u; n] and

(2n� u; 2n]. In this case,

1

u

 
�(u!) + �

�
(2n)!

(2n� u)!

�
� �

�
n!

(n� u)!

�!
= 0:
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If u � p+ 2`+ 1, then u � p� 2k + 1 so that

1

u

 
�(u!) + �

�
(2n)!

(2n� u)!

�
� �

�
n!

(n� u)!

�!
� 1

u

X
1�j�[log(2n)= log p]

��a(2n; j) � a(n; j)
��

� log(2n)

u log p
� log(2n)

(p� 2k + 1) log p
:

We deduce from Lemma 4 (iii) that this last expression is < 1=k.

Combining the above, we obtain that (3) holds for each u 2 f1; 2; : : : ; ng and, hence, the
slope of the right-most edge of the Newton polygon of zn(x) is < 1=k. Lemma 1 implies

that f(x) cannot have a factor of degree k, completing the proof. �

3. The Proof of the Theorem

In this section, we let f(x) denote the polynomial given in (1). We assume that f(x)

has a factor of degree k 2 [1; n=2] and establish the theorem by obtaining a contradiction.

We break the argument up into di�erent cases depending on the size of k. For these

di�erent cases, we will establish the theorem for n � 2479. The �nal case we consider is

the irreducibility of f(x) when n < 2479. Throughout our arguments we will make use

of the following explicit analytic estimates of Rosser and Schoenfeld [10, formulas (3.6),

(3.14), (3.15), and (3.16)].

Lemma 5. Let �(x) denote the number of primes p � x, and let #(x) =
P

p�x log p.
Then

�(x) < 1:256
x

log x
for all x > 1;

#(x) < x

�
1 +

1

2 log x

�
for all x > 1; and #(x) >

8>><
>>:

x

�
1� 1

log x

�
for x � 41

x

�
1� 1

2 log x

�
for x � 563:

CASE 1:
n

100
� k � n

2
and n � 2479.

Lemma 6. For x � 2479, there is a prime in the interval (x; 1:01x].

Proof. Let #(x) =
P

p�x log p. There is a prime in (x; 1:01x] provided #(1:01x) > #(x).

We deduce from Lemma 5 that, for x � 563, there is a prime in (x; 1:01x] provided

1:01x

�
1� 1

2 log(1:01x)

�
> x

�
1 +

1

2 log x

�
:

One easily checks that this holds if log x � 101. Since e101 < 1044, we are through if

x > 1044.

5



We are left with verifying the theorem for all x 2 [2479; 1044 ]. We de�ne a sequence

recursively as follows. Let x0 = 2479. For n � 1, de�ne xn as the largest prime <

1:01xn�1. Suppose that xn+1 > xn. It follows that if x 2 [xn; xn+1), then there is a prime

p 2 (x; 1:01x] (the prime xn+1 will be such a p). We computed xn for 1 � n � 104 using

both MAPLE (Version V, Release 4) and PARI (Version 1.39.12). Each of these contains

a subroutine called \isprime" which, in both cases, is a pseudo-primality test. We avoided

use of this subroutine and instead used the factoring routines in these symbolic packages.

We compared the values of x1000j for 1 � j � 10. The results were identical with

x10000 = 30160992555276892299261579269275542298335694063 > 1047:

This establishes the lemma. �

By Lemma 6, there is a prime p = n + `+ 1 where 0 � ` < n=100. As in the proof of

Lemma 4, we use that zn(x) =
Pn

m=0 cmx
n�m where c0 = 1 and

cm =

�
n

m

�
(n+ 1)(n+ 2) � � � (n+m) for m � 1:

Thus, pjcm for m 2 f` + 1; ` + 2; : : : ; ng. The endpoints of the right-most edge of the

Newton polygon of zn(x) with respect to p are (`; 0) and (n; 1). This edge, therefore, has

slope 1=(n� `). By Lemma 1, f(x) cannot have a factor with degree in (`; n� `). Hence,

k cannot be in the range given for this case.

CASE 2: n1=2 � k <
n

100
.

Observe that the conditions in this case imply n > 104 and k > 100. To show no

factor can be of degree k, we show that there is a prime p > 3k > (2n)1=2 that divides

n(n� 1) � � � (n� k + 1). Once we have done this, Lemma 2 implies we are through since

log(2n)

pr log p
+

1

p� 1
<

log(2n)

p log((2n)1=2)
+

1

3k
<

2

3k
+

1

3k
=

1

k
:

Since k > 41, we deduce from Lemma 5 that

Y
k<p�3k

p = exp
�
#(3k)� #(k)

� � exp

�
2k +

3k

2 log(3k)
+

k

log k

�
� exp

�
2k +

2:5k

log k

�
:

We make use of an idea of Erd}os [1] (also described by Tijdeman in [12]). For each prime

p � k, we consider a number among n; n� 1; : : : ; n� k + 1 which is divisible by pe where

e = e(p) is as large as possible. We dispose of these, and let S denote the set of numbers

that remain. For every prime p, let Np denote the exponent in the largest power of p

dividing
Q

m2S p. For p � k, we obtain Np � [k=p] + [k=p2] + � � � . For k < p � 3k, we use

that k � n1=2 to deduce that Np � 1. Therefore,

Y
p>3k

pNp =

Q
m2S m�Q

p�k p
Np

��Q
k<p�3k p

Np

� � (n� k + 1)jSj
�
k! exp

�
2k +

2:5k

log k

���1

:
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To complete this case, it su�ces to show this last expression is > 1. We use that n�k+1 >

99k, jSj > k � 1:256k= log k (by Lemma 5), and k! < ((k + 1)=e)k+1 for k � 6. Taking

logarithms, we want

k log k+

�
(log 99)�1:256

�
k� (log 99)(1:256)

k

log k
> (k+1) log(k+1)+(k�1)+2:5

k

log k
:

Since k > 100, we have log k � log 100 > 4. Also, (log x)=x is decreasing for x > e so

that log k < k(log 100)=100 < (0:05)k. Finally, we use that log(k+1) � (log k)+ (1=k). A

direct computation shows the above inequality holds.

CASE 3: 100 � k < n
1
2 .

We obtain a contradiction here by modifying the approach used in the previous case.

In Cases 3, 4, and 5, we use one and the same construction. We give details here though

not all aspects of our discussion will be needed for Case 3. De�ne pmin = pmin(k) as the

least prime � 2k +
p
2k2 � 2k + 1. Hence,

p � pmin =) 1

p� 2k + 1
+

1

p� 1
� 1

k
:

For each prime p, de�ne r = r(p) so that pr(p)jj(n + k)(n+ k � 1) � � � (n � k + 1). De�ne

P = P (k) =
Q

p�pmin
pr(p). We estimate P in two di�erent ways. First we get a lower

bound. Using the idea of Erd}os [1], for each prime p < pmin, we consider a number among

n + k; n + k � 1; : : : ; n � k + 1 which is divisible by pe where e = e(p) is as large as

possible. We dispose of these, and let S be the set of numbers that remain. For every

prime p, let Np denote the exponent of the largest power of p dividing
Q

m2Sm. Obviously

r(p) � Np for each prime p and
Q

m2Sm =
Q

p p
Np . As before, for p < pmin we obtain

Np � [2k=p] + [2k=p2] + � � � so that
Q

p<pmin
pNp � (2k)!. Since P �Qp�pmin

pNp , we get

(4) P >
(n� k)2k��(pmin�1)

(2k)!
:

Next, we get an upper bound for P . Note that when p � pmin > 2k at most one of the

numbers n + k; n + k � 1; : : : ; n � k + 1 is divisible by p. Let p0 be a prime � pmin. We

estimate P1(p0) =
Q

p�p0;r(p)>1 p
r(p) (where we de�ne the product to be 1 if r(p) � 1 for

each p � p0). De�ne P1 = P1(pmin). Let p, if it exists, be a prime � p0 with r(p) > 1.

From Lemma 2 and Lemma 3, we get

log(2n)

(pr � 2k + 1) log p
+

1

p � 1
>

1

k
:

De�ning

�k = �k(p0) =
1

k
� 1

p0 � 1
and �k = �k(p0) = �k(p

2
0 � 2k + 1);

7



we deduce that

�k <
log(2n)

(pr � 2k + 1) log p
and �k <

log(2n)

log p
:

These inequalities hold provided p � p0 and r(p) > 1 as in the product de�ning P1(p0). If

�k � log(2n)= log p0, then it follows that no such p exists. In other words,

(5) n � p
�k
0

2
=) P1(p0) = 1:

The above inequalities also imply for r > 1 that

(6) 2k � 1 +
log(2n)

�k log p
> pr and

k log(2n)

log p
> pr where k = k(p0) =

1

�k
+

2k � 1

�k
:

Observe that when k � 4, we have 2k +
p
2k2 � 2k + 1 � 3k + 1. Also, pmin(3) = 11 and

pmin(2) = 7. It follows that for k > 1, we have

pmin � 3k + 1; �k � 2

3k
; �k > 6k +

8

3
; and k <

3k

2
+

1

3
:

Set z = z(k; p0) = k log(2n)= log p0. Then z > pr(p) > 1 and
p
z > p for each p in the

product. In particular, if such a p exists (that is if P1(p0) > 1), then �(
p
z) > �(p0 � 1)

and P1(p0) � z�(
p
z)��(p0�1). Lemma 5 implies

z�(
p
z) < exp(2:512

p
z) = (2n)

2:512
p
z

log(2n) :

Since �k < log(2n)= log p0, we have

p
z

log(2n)
<

1

log p0

r
k

�k
:

It follows that if there is a prime p � p0 for which r(p) > 1, then

(7) P1(p0) � (2n)�k=z�(p0�1) where �k =
2:512

log p0

r
k

�k
:

Also,
p
z > p0 implies

z�(p0�1) � z�(pmin�1) � p
2�(pmin�1)

0 :

De�ne

B = max

(
1;

(2n)�k

p
2�(pmin�1)

0

)
:

Then we obtain

(8) P1(p0) � B:
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Now, we estimate P2 =
Q

p�pmin;r(p)=1 p (where we de�ne the product to be 1 if r(p) 6= 1

for each p � pmin). If P 6= 1, we let pmax denote the largest prime in the product P . Then

P2 � exp(#(pmax)� #(pmin � 1)). For k > 1, Lemma 4 implies

(9) 2k � 1 +
k log(2n)

log p
� p

for each prime appearing in the product P . In particular, (9) holds with p = pmax (if

P 6= 1). Lemma 5 implies #(pmax) � c1(k) + c2(k) logn where

c1(k) =

�
1 +

1

2 log pmax

��
2k � 1 +

k log 2

log pmax

�

and

c2(k) =

�
1 +

1

2 log pmax

�
k

log pmax

:

Thus, if P 6= 1, then

(10) P2 � ec1(k)nc2(k)Q
p<pmin

p
:

Observe that if P = 1, then P2 = 1 so that in general P2 is bounded above by the maximum

of 1 and the expression on the right of (10). Also, note that (4) through (10) hold true for

all n > 2k > 2. Furthermore, (4) through (8) hold when k = 1.

Now, we use these estimates to complete Case 3. We have n�k > n(1� 1
k ). Also, since

(1� 1
k )

k is increasing for k � 1, we obtain (1� 1
k )

k � (0:99)100 . Lemma 5 implies

�(pmin � 1) � �((2 +
p
2)k) < 1:256

(2 +
p
2)k

log((2 +
p
2)� 100)

< 0:74k:

We use that for m � 50, the inequality m! < (m=e)m+1 holds. Since k > 25 and n > k2,

we deduce that (2k)! < (2k=e)(2=e)2knk. Using (4) we obtain

P >
1

3k

�
e

2

�2k

n0:26k >
n0:26k

3k
:

Recall that for k > 1, �k > 6k+ (8=3) and k < (3k=2)+ (1=3). Thus, k=�k < 1=4. Also,

pmin(100) = 347 and �(346) = 68. From (8), we deduce that

P1 < n0:3:

Using pmax(k) � pmin(k) � pmin(100) = 347 we get c1(k) < 2:3k and c2(k) < 0:2k. For

k � 100, we obtain from Lemma 5 that

log

� Y
p<pmin

p

�
= #(pmin � 1) � #(3k) >

�
1� 1

log 300

�
3k > 2:3k:
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Therefore, (10) implies P2 � n0:2k.

Since P = P1P2, combining the above, we deduce

n0:26k

3k
< n0:3n0:2k:

In other words, n0:06k�0:3 < 3k. Since
p
n > k � 100, we obtain n0:06k�0:3 � n5 � 3k.

The previous inequality therefore cannot hold, and we obtain a contradiction. Thus, f(x)

cannot have a factor of degree k in this case.

CASE 4: 3 � k < 100 and n � 1800.

We proceed in the same way as we did in the previous case, the only di�erence being

that we compute the quantities depending on k but not on n instead of estimating them.

Our computations were done with the use of MAPLE V, Release 4. In particular, we

calculated pmin = pmin(k) and �(pmin�1) precisely for 3 � k < 100 to determine that the

right-hand side of (4) is > 1 when n = 805. It follows that P > 1 whenever n > 804 and

3 � k < 100. Since in fact n � 1800, we also have n � k = n(1 � k=n) � n(1 � k=1800).

From (4), we obtain

P >
(1� k

1800
)sns

(2k)!
where s = 2k � �(pmin � 1):

We consider �rst the possibility that P1 > 1 and take p0 = pmin. Then (8) implies

P1 � (2n)�k

p
2�(pmin�1)

min

:

Using (10) and P = P1P2, we obtain

(1� k
1800

)sns

(2k)!
<

(2n)�k

p
2�(pmin�1)

min

� ec1(k)nc2(k)Q
p<pmin

p
:

Taking logarithms, we deduce that e1(k) logn+ e2(k) < 0 where

e1(k) = s� c2(k)� �k

and

e2(k) = #(pmin�1)+s log
�
1� k

1800

�
+2�(pmin�1) log(pmin)�log((2k)!)��k(log 2)�c1(k):

We �nd trivial upper bounds for c1(k) and c2(k) by using the estimate pmax(k) � pmin(k).

Observe that with this estimate for pmax(k), we obtain lower bounds for e1(k) and e2(k)

that depend only on k. Direct computations show that e1(k) > 0 and e2(k) > 0 for each

10



k 2 [3; 100). Thus, in the case that P1 > 1, we deduce that f(x) has no factors of degree

k 2 [3; 100).

We now consider the possibility that P1 = 1. Since P = P2, we obtain e01(k) log n +

e02(k) < 0 where e01(k) = e1(k)+�k > e1(k) > 0 and e02(k) = e2(k)�2�(pmin�1) log(pmin)+

�k(log 2). Direct computations give here that

e01(k) logn+ e02(k) � e01(k) log(1800) + e02(k) > 7:4e01(k) + e02(k) > 0 for 8 � k < 100:

Therefore, f(x) has no factors of degree k 2 [8; 100). The cases k = 3, 4, 5, 6, and 7 require

some additional work.

For 3 � k � 7, this same argument works provided n > N where N = N(k) =

exp(�e02=e01) (since then e01(k) logn + e02(k) > 0). Further work is required to handle

n 2 [1800; N ]. For such n, we use (9) to obtain

2k � 1 +
k log(2N)

log p
� p � 0

for each prime p dividing P2. As a function of p, the left-hand side of the above inequality

is decreasing. We determine the least prime q = q(k) such that the inequality does not

hold if p is replaced by q. Then pmax < q. Using the de�nition of pmin, we obtain

k = 7 =) 29 = pmin � pmax � 31; k = 6 =) 23 = pmin � pmax � 29;

k = 5 =) 17 = pmin � pmax � 23; k = 4 =) 13 = pmin � pmax � 19;

and

k = 3 =) 11 = pmin � pmax � 19:

Since in this case P = P2 is at most the product of the primes from pmin to pmax, we

obtain an upper bound on P = P (k) for each k 2 [3; 7]. Speci�cally, we have

P (7) � 29 � 31 = 899; P (6) � 23� 29 = 667; P (5) � 17 � 19� 23 = 7429;

P (4) � 13� 17� 19 = 4199; and P (3) � 11 � 13� 17� 19 = 46189:

On the other hand, using (4) with n � 1800, we obtain the lower bounds

P (7) � 212565; P (6) � 21624; P (5) � 2860847; P (4) � 143680; and P (3) � 4485:

For 4 � k � 7, the lower bounds on P (k) exceed the upper bounds and we deduce again

that f(x) cannot have a factor of degree k. For k = 3, we iterate the above procedure a

second time. Using (4), we obtain that P (3) � 46192 if n � 5770. Since we have already

determined that P (3) � 46189, we obtain n � 5769. Replacing N(3) with 5769 above, we

deduce that pmax(3) � 13 so that P (3) � 11�13 = 143. This contradicts our lower bound

for P (3) and we conclude that f(x) cannot have a factor of degree 3.

11



CASE 5: k = 1 or 2 and n � 1614.

First, assume that f(x) has a factor of degree 2 (i.e., k = 2). In this case, pmin =

pmin(2) = 7. Since among any four consecutive integers there is exactly one divisible by 4,

at most one divisible by 9, and at most one divisible 5, we have P =
Q

p�7 p
r � (n� 1)=6.

We need to re�ne somewhat our estimates for P1 and P2.

We consider �rst the possibility that pmax � 23, that is that the largest prime divisor

of (n + 2)(n + 1)n(n � 1) is � 23. Then Lemma 4 implies n � (1=2)2310. By using (10)

and pmax � 23 we obtain P2 � 2� n0:74.

To estimate P1 we �rst show that r(p) � 1 for all primes p � 11. Assume otherwise

so that r(p) > 1 for some prime p � 11. From (6) (with p0 = pmin = 7) we obtain

7r(7) < 2 log(2n). From (7), we see that P1(11) < 2n0:245=z4 where z = z(2; 11) =

2(11) log(2n)= log(11) > log(2n). Recall also from the arguments there that
p
z > p.

Hence, z � 112 = 121. We obtain

P1 = P1(7) � 7r(7) � P1(11) < 2n0:245
2 log(2n)

log(2n)� 1213
< 10�5n0:245:

We deduce that

n� 1 � 6P = 6P1P2 < 6� 2� 10�5n0:985 <
n0:985

10
:

By dividing through by n0:985, it is easy to see that the above inequalities cannot hold for

n � 2. Since n � (1=2)2310, we obtain a contradiction.

Thus, we must have r(p) � 1 for all primes p � 11. But then we obtain

P1 � 7r(7) < 2 log(2n) =) n� 1 � 6P = 6P1P2 < 24 log(2n)n0:74:

By dividing through by n0:74 and rearranging, we obtain the function w(n) = n0:26 �
n�0:74 � 24 log(2n). It is easy to deduce that w(n) is increasing for n > 108 and that

w(1011) > 0. Since we are interested in n � (1=2)2310 > 1011, we obtain again a contra-

diction. We deduce that pmax � 19.

Since pmin = 7 and pmax � 19, there are at most �ve primes p in the product P for

which r(p) > 0. From Lemma 2 and Lemma 3, we obtain pr < 3 + (3 log(2n)= log(7)) for

any prime p � 7 so that

(11) n� 1 � 6P = 6
Y
p�7

pr � 6

�
3 +

3 log(2n)

log 7

�5

:

Dividing through by n and substituting x = n1=5, we are led to considering the function

w(x) = 1� 1

x5
� 6

�
3

x
+

15 log x+ 3 log 2

x log 7

�5

:

12



It is easy to see that w(x) is increasing for x > e. Since w(50) > 0, we deduce that (11)

cannot hold if n > 505. Therefore, f(x) has no factors of degree 2 for such values of n.

Let n � 505. Note that (5) implies P1 = 1 for n � (1=2)7(46=3). In particular, P1 = 1 for

n � 505. Therefore, in this case,

n� 1 � 6P = 6P2 � 6� 7� 11 � 13� 17� 19 < 107:

Now, from (9) we deduce that pmax � 13. Hence, n � 1 � P � 6 � 7 � 11 � 13 so that

n � 6007. One more application of (9) gives pmax � 7 which implies n� 1 � 6� 7. Thus,

f(x) has no irreducible factors of degree 2 when n > 43.

The case k = 1 is similar to the case k = 2. With k = 1, we have pmin = 3. At least one

of n and n + 1 is odd so that the de�nition of P implies P =
Q

p�3 p
r � n. We consider

�rst the possibility that the largest prime divisor of n(n + 1) is � 13 (in other words,

pmax � 13). Lemma 2 and Lemma 3 imply n � (1=2)1311 > 1011. We wish to apply (10)

except our argument for (10) made use of (9) which holds only for k > 1. By using Lemma

2 and Lemma 3 again we obtain for each p > 2 that p < 2+ log(2n)= log p, and we replace

our use of (9) (to derive (10)) with this inequality. For k = 1 we deduce that (10) holds

with

c1(1) =

�
1 +

1

2 log pmax

��
2 +

log 2

log pmax

�

and c2(1) as de�ned earlier. Using pmax � 13 in (10), we deduce that P2 < 8
p
n.

To estimate P1 we show �rst that r(p) � 1 for all primes p � 5. Assume r(p) > 1

for some prime p � 5. From (6) we obtain 3r < 2:5 log(2n). Using (7), we deduce that

P1(5) < 2 � n0:45=z2 where z = z(1; 5) = 1(5) log(2n)= log 5 � 0:8 log(2n). Also,
p
z > p

implies z � 25. We obtain

P1 = P1(3) = 3r(3) � P1(5) < 2� n0:45
2:5 log(2n)

0:8 log(2n)� 25
=

n0:45

4
:

We deduce that n � P = P1P2 < 2 � n0:95. This does not hold for n � 220. Since

n > 1011 > 220, we arrive at a contradiction. Therefore, r(p) � 1 for all primes � 5. Now,

we obtain

P1 � 3r < 2:5 log(2n) and n � P < 2:5 log(2n)� 8
p
n = 20 log(2n)

p
n:

The function w(x) = 20 log(2x)=
p
x is easily seen to be decreasing for x > 4. Also,

w(105) < 1. It follows that the inequality on n above does not hold for n � 105. Since

n > 1011, we deduce that the largest prime divisor of n(n+ 1) is < 13.

It remains to consider the case when pmax � 11. Lemma 2 and Lemma 3 imply

(12) pr < 1 +
2 log(2n)

log p
� 1 +

2 log(2n)

log 3
for each prime dividing P:

Therefore,

n � P =
Y
p�3

pr <

�
1 +

2 log(2n)

log 3

�4

:
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By considering w(x) = x�1=4 + (2 log(2x)=(x1=4 log(3)) in a manner similar to before, we

deduce that the above inequality does not hold for n � 500000. Using the inequality

p < 2+ log(2n)= log p mentioned above on primes p dividing P and n < 500000, we obtain

pmax � 7. From (12), we now see that

n � P �
�
1 +

2 log(2n)

log 3

��
1 +

2 log(2n)

log 5

��
1 +

2 log(2n)

log 7

�
:

For each p � 2, the function w(x) = x�1=3 + (2 log(2x)=(x1=3 log(p)) is decreasing for

x � 21 > e3. We deduce that the inequality above does not hold if n � 1614. Thus, we

conclude that f(x) does not have a linear factor for n � 1614.

CASE 6: n � 2479.

We suppose as we may that n � 2. We verify that f(x) is irreducible whenever 2 �
n � 2479 as follows. Fix such an n. We use Lemma 4 to prove that f(x) cannot have a

factor of degree k 2 [2; n=2], and then we address the possibility that f(x) has a linear

factor. We make use of three primes p1, p2, and p3. We de�ne p1 as the smallest prime

� n. We de�ne p2 as the largest prime divisor of (n� 1)n(n+ 1)(n+ 2). We let t be the

least positive integer satisfying

(p2 � 2t+ 1) log p2 � t log(2n):

De�ne p3 as the largest prime divisor of
Qt

j=�t+1(n+j). The prime p1 is used in a manner

similar to Case 1. We deduce that f(x) cannot have a factor of degree k 2 (�; n=2] where

� = p1 �n. By the de�nition of t, for each k < t, we have (p2 � 2k+1) log p2 > k log(2n).

This implies p2 > 2k for each such k. Since also p2j(n�1)n(n+1)(n+2), the conditions in

Lemma 4 hold, and we deduce that f(x) cannot have a factor of degree k 2 [2; t). If t > �,

then we can conclude f(x) has no factor of degree k 2 [2; n=2]. If t � �, we make use of

p3. We checked computationally using MAPLE, and for each n 2 [2; 2479] (and somewhat

beyond) the inequalities

p3 > 2k and (p3 � 2k + 1) log p3 > k log(2n)

held for t � k � �; indeed, the computation was somewhat simple as the inequalities hold

for all such k if the second inequality holds when k = �. It follows that for k 2 [t; �],

Lemma 4 again applies to show that f(x) has no factor of degree k.

We are left with considering the possibility of a linear factor (i.e, k = 1). We use

Lemmas 2 and 3 for this purpose. The computation for n � 2479 (and beyond) was a

direct application of these lemmas. We take two primes p1 and p2, p1 being the largest

prime factor of n and p2 being the largest prime factor of n + 1. We check if Lemma 2

applies with k = 1, ` = 0, and p = p1. If it does, we're done as f(x) then cannot have a

linear factor. Otherwise, we check if Lemma 3 applies with k = 1, ` = �1, and p = p2. In

every case except n = 2 and n = 3, one of these two lemmas applied to show that f(x)

does not have a linear factor. For n = 2 and n = 3, one can apply Lemma 1 directly with

p = 3 (in fact, f(x) is Eisenstein with respect to 3 in these cases). We deduce that f(x)

cannot have a linear factor.
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