
Newton polygons and
the Prouhet-Tarry-Escott problem

by Michael Filaseta and Maria Markovich
Department of Mathematics
University of South Carolina

Columbia, SC 29063

1 Introduction
For n ≥ 2, we consider two lists of integers

X = [x1, x2, . . . , xn] and Y = [y1, y2, . . . , yn],

where, for this section only, we view these as ordered so that x1 ≤ x2 ≤ · · · ≤ xn and y1 ≤ y2 ≤
· · · ≤ yn. We also require xj 6= yj for at least one j ∈ {1, 2, . . . , n}. The Prouhet-Tarry-Escott
problem (the PTE problem) asks for such X and Y satisfying

n∑
i=1

xei =
n∑
i=1

yei for e = {1, 2, . . . , k} (1)

where k is an integer in the interval [2, n−1]. IfX and Y satisfy (1) then the pair is called a solution
of the PTE problem, denoted as X =k Y . A solution is ideal if k = n− 1. The significance of the
case k = n − 1 is that with X and Y distinct as required above, it is impossible for (1) to hold if
k ≥ n. Thus, the largest possible value for k in (1) is n− 1.

Literature on the PTE problem is extensive. The problem is a focus of an entire chapter (Chap-
ter 24) of L. E. Dickson’s classical volumes “History of the Theory of Numbers” [9] and nu-
merous early references can be found there. The problem is also discussed in G. H. Hardy and
E. M. Wright’s well-known “An Introduction to the Theory of Numbers” [12], undoubtedly in part
due to Wright’s own interest in the problem (cf. [21, 22, 23]). We note that for the first half of
the twentieth century, the problem was referred to as the Tarry-Escott problem, until Wright [22]
pointed out that E. Prouhet [17] first discussed the problem in 1851. A few of the more recent
investigations on the PTE problem include [4, 5, 8, 14, 18]. Interesting work on generalizations
of the PTE problem can be found in [1, 6]. For applications arising from the PTE problem see
[2, 11, 13, 16, 19].
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An important open problem in the area is a conjecture of Wright [21] that for every natural
number n ≥ 3, an ideal solution exists. Despite its long history, ideal solutions are only known to
exist for 3 ≤ n ≤ 10 and n = 12. In particular, no ideal solution is known for n = 11.

To help formulate further discussion, we note that the following result and its corollary are
fairly simple consequences of properties of elementary symmetric functions (see [3, 4]).

Lemma 1. Let n and k be integers with 1 ≤ k < n. Let x1, . . . , xn and y1, . . . , yn denote arbitrary
integers. The following are equivalent:

•
n∑
i=1

xei =
n∑
i=1

yei , for e ∈ {1, 2, . . . , k},

• deg

(
n∏
i=1

(z − xi)−
n∏
i=1

(z − yi)

)
≤ n− k − 1,

• (z − 1)k+1
∣∣( n∑

i=1

zxi −
n∑
i=1

zyi
)
.

Corollary 1. The lists X = [x1, . . . , xn] and Y = [y1, . . . , yn] give an ideal PTE solution if and
only if

n∏
i=1

(z − xi)−
n∏
i=1

(z − yi) = C (2)

for some real constant C.

In this paper, we will view ideal PTE solutions as being lists X and Y satisfying (2). For
computational reasons (see [4, 7, 18]), information on possible values of C and, in particular, on
the factorization of C given (2), has played an important role in arriving at examples of ideal PTE
solutions. As C depends on n, X and Y , we define, for X =n−1 Y , the constant

Cn = Cn(X, Y ) =
n∏
i=1

(z − xi)−
n∏
i=1

(z − yi).

We clarify that what is of interest here then is the value of

Cn =
∞∏
j=1

p
ej
j ,

where
ej = min{e : pej‖Cn(X, Y ) for some X and Y as above with X =n−1 Y }.

In other words, Cn can be viewed as the greatest common divisor over all constants Cn(X, Y )
where X and Y vary over distinct ordered lists of n integers satisfying X =n−1 Y . So we would
like to know, for a given n, how Cn factors.

With the notation above, we state the following result that plays a role throughout the paper; it
is an easy consequence of Corollary 1 or Lemma 1.



Corollary 2. Let a ∈ Z. The pair of listsX = [x1, . . . , xn] and Y = [y1, . . . , yn] form an ideal PTE
solution if and only if the pair of lists X ′ = [x1+a, . . . , xn+a] and Y ′ = [y1+a, . . . , yn+a] form
an ideal PTE solution. Furthermore, if these are ideal solutions, then Cn(X, Y ) = Cn(X

′, Y ′).

The values of Cn for 3 ≤ n ≤ 7 are known (see [7]):

C3 = 22

C4 = 22 · 32

C5 = 24 · 32 · 5 · 7

C6 = 25 · 32 · 52

C7 = 26 · 33 · 52 · 7 · 11.

In this paper, we pay particular attention to ideal solutions of sizes 8 and 9. For these, according to
[7], it is known that

C8 = 2e1 · 33 · 52 · 72 · 11 · 13, where 4 ≤ e1 ≤ 8

C9 = 2e2 · 3e3 · 52 · 72 · 11 · 13 · 17e4 · 23e5 · 29e6 , where 7 ≤ e2 ≤ 9, 3 ≤ e3 ≤ 4
0 ≤ ej ≤ 1, for j ∈ {4, 5, 6}.

There are two noteworthy examples that pertain to this paper. L. E. Dickson [9] reports that, in
1913, G. Tarry [20] observed that

(x2 − 52)(x2 − 142)(x2 − 232)(x2 − 242)− (x2 − 22)(x2 − 162)(x2 − 212)(x2 − 252) = C

where C = 28 · 33 · 52 · 72 · 11 · 13. According to E. M. Wright [23], in 1942, A. Létac [15] gave
the example

(z − 1)(z − 25)(z − 31)(z − 84)(z − 87)(z − 134)(z − 158)(z − 182)(z − 198)

−(z − 2)(z − 18)(z − 42)(z − 66)(z − 113)(z − 116)(z − 169)(z − 175)(z − 199)

= 3377425033382400 = 29 · 34 · 52 · 72 · 11 · 13 · 17 · 23 · 29 · 41.

These imply
ν2
(
C8

)
≤ 8 and ν2

(
C9

)
≤ 9,

where ν2(m) refers to the 2-adic value of m, that is the largest integer j for which 2j‖m. These
somewhat old examples then give the upper bounds described above for e1 and e2.

Our interest in this paper is to explain how the classical theory of Newton polygons can be used
to obtain information about the 2-adic values of Cn. In particular, we show that ν2

(
C9

)
= 9. For

n = 8, we only provide the inequality ν2
(
C8

)
≥ 6.

The arguments we give take advantage of working modulo small powers of 2 and substituting
values for z in (2) to show smaller values for ν2

(
C9

)
and ν2

(
C8

)
cannot exist. We have found the

example

X = [31914804930538, 392011859134314, 414199788923609,



550721232905543, 563570240533272, 870589495146520,

1039460985683225, 1113937730497799]

and

Y = [226375709153429, 382003430459158, 502458387218286,

690280771238587, 750383096702563, 764464731978500,

790357673966989, 870082337037308]

which has the property that

8∏
i=1

(z − xi)−
8∏
i=1

(z − yi) ≡ 954668492881984 (mod 250).

Of interest here is that the number 954668492881984 is exactly divisible by 26. Thus, there is no
real hope that working modulo small powers of 2 will enable one to show 27 must divide C in (2).
Further, substituting any z ∈ Z into the expression on the left above results in an integer exactly
divisible by 26, so such substitutions will not provide us with a means to show 27 must divide
C. Perhaps examples like the above exist for the obvious reason that 26‖C8, and an appropriate
example, different from the one of Tarry’s indicated above, is needed then to show that ν2

(
C8

)
= 6.

The example above raises some natural questions. Is it possible to show that a 2-adic ideal
solution exists for the PTE problem for every n ≥ 3? Let p be a prime. Does a p-adic ideal
solution necessarily exist for n = 11? Is it possible to have a p-adic solution to

n∏
i=1

(z − xi)−
n∏
i=1

(z − yi) = C,

for which νp(C) < νp
(
Cn

)
, where νp is the usual p-adic valuation and n is some integer ≥ 3?

2 Further preliminaries
We write

f(z) =
n∏
j=1

(z − xj) =
n∑
j=0

ajz
j and g(z) =

n∏
j=1

(z − yj) =
n∑
j=0

bjz
j

where xj, yj ∈ Z are chosen so that

f(z)− g(z) = Cn (3)

and so that the exact power of 2 dividing Cn is equal to the exact power of 2 dividing Cn. Thus,
by Corollary 1, we have that X = [x1, . . . , xn] and Y = [y1, . . . , yn] is an ideal solution. We write
C = Cn, where n should be clear from the context.



For fixed n, we consider the two sets of points in the extended plane

S1 = {(j, ν2(an−j)) : 0 ≤ j ≤ n} and S2 = {(j, ν2(bn−j)) : 0 ≤ j ≤ n}.

Since f(z)− g(z) = C, a constant, we see that an−j = bn−j for 0 ≤ j ≤ n − 1. Thus, S1 and S2

have at least n of n+ 1 points in common.
Recalling Corollary 2, we translate f(z) and g(z) by the same translation, if necessary, so that

a0 6= 0 and b0 6= 0. Thus, ν2(a0) 6= +∞ and ν2(b0) 6= +∞. Note that (3) still holds. This ensures
that the right-most points (n, ν2(a0)) and (n, ν2(b0)), which may differ in S1 and S2, are in the
finite plane.

We will be interested in Newton polygons, and in particular to a result that goes back to work
of G. Dumas [10].

Definition 1. Let F (z) =
∑n

j=0 cjz
j ∈ Z[z] with c0cn 6= 0. Let p be a prime. For j ∈ {0, · · · , n},

we define xj = j and define yj = νp(cn−j). We consider the lower edges along the convex hull of
the points in S = {(x0, y0), · · · , (xn, yn)}. The polygonal path formed by these edges is called the
Newton polygon associated with F (z) with respect to p.

Thus, the Newton polygon of f(z) with respect to the prime 2 is the lower convex hull of the
points in S1, and the Newton polygon of g(z) with respect to 2 is the lower convex hull of the
points in S2. Note that the slopes of the edges of the Newton polygons increase from left to right.
We state next an important property of Newton polygons based on the set-up in this paper.

Lemma 2. The Newton polygons of f(z) and g(z) will each pass through n + 1 lattice points
(including the endpoints), which we denote respectively as

T1 = {(j, tj) : 0 ≤ j ≤ n} and T2 = {(j, t′j) : 0 ≤ j ≤ n}.

After possibly rearranging the xj and yj , we have 2tj−tj−1 exactly divides xj and 2t
′
j−t′j−1 exactly

divides yj for each j ∈ {1, 2, · · · , n}.

This lemma follows directly from a theorem of Dumas [10] which asserts that the Newton
polygon of a product of two polynomials with respect to a prime p can be obtained by translating
the edges of the Newton polygons for each polynomial with respect to p. Since f(z) and g(z) are a
product of n linear factors, we have that the Newton polygons associated with f(z) and g(z) each
consists of n line segments translated so that n + 1 lattice points (including endpoints) are along
its edges. Each translated segment will have the x-coordinates of its endpoints differing by 1.

As a consequence of Lemma 2, the slope of each edge of the Newton polygon of f(z) and
g(z) is an integer. In the last statement of Lemma 2, observe that the values ν2(xj) and ν2(yj)
are increasing as j ranges from 1 to n. We will want to use such an ordering throughout the
remainder of the paper. In particular, the values of the xj and the values of the yj themselves are
not necessarily increasing as in the introduction.

To illustrate, we consider n = 9 and take the example of A. Létac [15] mentioned in the
introduction, so

X = [1, 25, 31, 87, 134, 158, 182, 198, 84] and Y = [113, 169, 175, 199, 2, 18, 42, 66, 116],



where we have taken an ordering of the xj and yj corresponding to the last statement in Lemma 2.
In this case,

f(z) ≡ g(z) ≡ z9 +124z8 +70z7 +24z6 +33z5 +12z4 +72z3 +32z2 +80z +64 (mod 128),

so that the Newton polygons of f(z) and of g(z) with respect to 2 look the same and are as shown
in Figure 1.
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Figure 1: Newton polygon for A. Létac’s example

The solid circles represent the points of S1 and S2 with the bottom left-hand endpoint equal to
(0, 0) in each case (since the polynomials are monic). The open circles refer to the lattice points in
T1 and T2 as mentioned in Lemma 2. Thus, for this example,

T1 = T2 = {(0, 0), (1, 0), (2, 0), (3, 0), (4, 0), (5, 1), (6, 2), (7, 3), (8, 4), (9, 6)}.

As implied by Lemma 2, the height differences between two consecutive lattice points in T1 in-
dicates that there are exactly four odd xj’s, four xj’s that are exactly divisible by 2, and one xj
exactly divisible by 4. As T1 = T2, the yj’s satisfy analogous conditions. We note that despite
this example, in general, unlike S1 and S2 which have all but possibly their right-most points in
common, the points other than (0, 0) belonging to T1 and T2 can be different.

Lemma 3. If the points (n, ν2(a0)) in S1 and (n, ν2(b0)) in S2 are distinct and

k = min{ν2(a0), ν2(b0)},

then 2k‖C.

Proof. Since C = a0 − b0 and ν2(a0) 6= ν2(b0), we see that

ν2(C) = ν2(a0 − b0) = min{ν2(a0), ν2(b0)} = k.

Thus, 2k‖C.

We develop some notation that we will be using in the subsequent sections. Let k1 be the
number of odd xj and k′1 be the number of odd yj; thus, the 2-valuation of each of these xj and yj
is equal to 0. Further, we let k2 be the number of xj which are congruent to 2 (mod 4) and k′2 be



the number of yj that are congruent to 2 (mod 4); thus, the 2-valuation of each of these xj and yj
is equal to 1.

By translating f(z) and g(z) by 1 (or some odd number to guarantee that a0 and b0 are not
equal to 0), we may suppose k′1 ≤ bn/2c. Furthermore, we may now translate by 2 (or some other
number that is congruent to 2 (mod 4)) if needed to obtain that k′2 ≥ d(n − k′1)/2e of the yj are
congruent to 2 (mod 4).

Using the following proposition from [4], we deduce that if C is even, then k1 = k′1.

Lemma 4. Let [x1, . . . , xn] =n−1 [y1, . . . , yn] be two lists of integers that constitute an ideal PTE
solution, and suppose that a prime p divides the constant C associated with this solution. Then we
can reorder the integers yi so that

xj ≡ yj (mod p) for j ∈ {1, . . . , n}.

As noted, we can deduce now that the number of odd xj must equal the number of odd yj ,
that is, k1 = k′1. Further, we can interchange the roles of f(z) and g(z), if necessary, so that
k′2 ≥ k2. Since there are n elements in the lists X and Y , it must be the case that k1 + k2 ≤ n and
k′1 + k′2 ≤ n.

Before ending this section, we establish the following.

Lemma 5. Let n ≥ 8. Suppose [x1, . . . , xn] =n−1 [y1, . . . , yn]. For 1 ≤ j ≤ n, let xj and yj be
such that x1, . . . , xt and y1, . . . , yt are odd and otherwise xj and yj are even. Then

xk1 + · · ·+ xkt ≡ yk1 + · · ·+ ykt (mod 16), for k ≥ 1.

and
xkt+1 + · · ·+ xkn ≡ ykt+1 + · · ·+ ykn (mod 16), for k ≥ 1. (4)

Proof. Since x1, . . . , xt and y1, . . . , yt are odd, we obtain

x4j ≡ y4j ≡ 1 (mod 16), for 1 ≤ j ≤ t.

Thus,
xk1 + · · ·+ xkt ≡ xk+4

1 + · · ·+ xk+4
t (mod 16)

and
yk1 + · · ·+ ykt ≡ yk+4

1 + · · ·+ yk+4
t (mod 16).

As xk+4
j ≡ yk+4

j ≡ 0 (mod 16) for t+ 1 ≤ j ≤ n, we deduce that

xk1+ · · ·+ xkt ≡ xk+4
1 + · · ·+ xk+4

t ≡ xk+4
1 + · · ·+ xk+4

n

≡ yk+4
1 + · · ·+ yk+4

n ≡ yk+4
1 + · · ·+ yk+4

t ≡ yk1 + · · ·+ ykt (mod 16),

provided 1 ≤ k + 4 ≤ n− 1. Since n ≥ 8, the above holds for 1 ≤ k ≤ 3. On the other hand,

xk1 + · · ·+ xkn = yk1 + · · ·+ ykn for 1 ≤ k ≤ 3.

Hence,
xkt+1 + · · ·+ xkn ≡ ykt+1 + · · ·+ ykn (mod 16) for 1 ≤ k ≤ 3.

The lemma follows since for k ≥ 4, both sides of the congruence in (4) are divisible by 16.



Corollary 3. Let n ≥ 8. Suppose [x1, . . . , xn] =n−1 [y1, . . . , yn]. Let k1, k′1, k2 and k′2 be as above.
Then k2 ≡ k′2 (mod 4).

Proof. Recall k1 = k′1. From Lemma 5, we have

x2k1+1 + x2k1+1 + · · ·+ x2n ≡ x2k1+1 + x2k1+1 + · · ·+ x2n (mod 16).

As an even integer m squared is 4 modulo 16 if m ≡ 2 (mod 4) and otherwise is 0 modulo 16, the
above congruence can be rewritten as 4k2 ≡ 4k′2 (mod 16). The result follows.

3 The 2-adic value of C9

Recall that it is known that 27|C9 and 210 - C9. Our goal in this section is to increase the lower
bound of the valuation of 2 in C9. With the aid of Newton polygons, we establish 29|C9 from
which we can deduce that 29‖C9.

We make use of the notation in the previous section with n = 9 and deal with two cases, each
involving multiple subcases, depending on the values of k′1 and k′2.

Case 1. k′1 + k′2 = 9

In this case, we are assuming that there are no elements in the list Y that are congruent to 0
(mod 4). We consider possibilities for the Newton polygon of f(z). From Lemma 4, we know
that k1 = k′1 odd xj’s are in the list X . We recall that k2 ≤ k′2, which implies that X contains at
most k′2 elements that are divisible by 2 and not 4. Combining these facts, we have that each point
(j, ν2(a9−j)) in S1 is on or above the corresponding point (j, ν2(b9−j)) in S2.

Case 1.1. k2 = k′2

Recall that we have translated f(z) andg(z) so that k′1 ≤ bn/2c = b9/2c = 4. Therefore, in this
subcase, k2 and k′2 are both greater than or equal to 5. Substituting z = 2 in (3), we obtain

9∏
j=1

(2− xj)−
9∏
j=1

(2− yj) = f(2)− g(2) = C,

where at least five of the xj’s and at least five of the yj’s are 2 modulo 4. Thus, 210 divides each
product, and therefore, their difference. This implies a contradiction, since 210 - C. In other words,
it is impossible for f(z)− g(z) = C with ν2(C) = ν2(C9) in this case.

Case 1.2. k2 < k′2

In this subcase, X must contain some elements that are congruent to 0 (mod 4) but Y cannot.
We deduce that the right-most point of the Newton polygon of f(z) is above the point (9, ν2(b0)).
Since these endpoints are distinct, by Lemma 3 we have 2ν2(b0)‖C. Since all of the even elements
in Y are congruent to 2 (mod 4) (thus have valuation equal to 1 with respect to the prime 2), we
have that ν2(b0) = k′2. In the case under consideration, ν2(b0) = k′2 = 9− k′1. Since we know that
27|C, we have k′2 ≥ 7 and k′1 ≤ 2.



Case 1.2.1. k′1 = 2

In this case k′2 = 7. By Corollary 3, we deduce k2 ∈ {3, 7}. Thus, 2− xj and 2− yj are divisible
by 4 for 2 ≤ j ≤ 4, and 2 − xj and 2 − yj are divisible by 2 for 5 ≤ j ≤ 8. Letting z = 2 in (3),
we see that 210|C, giving a contradiction in this case.

Case 1.2.2. k′1 = 1

As k′2 = 8 in this subcase, Corollary 3 implies k2 ∈ {0, 4, 8}. If k2 ≥ 4, then setting z = 2
in (3) leads to 212|C, giving a contradiction. We are left with considering k2 = 0. Thus, for
j ∈ {2, 3, . . . , 9}, we have 4|xj .

Observe that setting z = 2 in (3) implies 28‖C. If we now take z = x1 in (3), we obtain

C = f(x1)− g(x1) = −g(x1) = −
9∏
j=1

(x1 − yj).

As x1 − yj is odd for 2 ≤ j ≤ 9 and 28|C, we deduce that

x1 ≡ y1 (mod 28).

Next, we use that X = [x1, x2, . . . , x9] and Y = [y1, y2, . . . , y9] being an ideal PTE solution
implies

x41 + x42 + · · ·+ x49 = y41 + y42 + · · ·+ y49.

Since x1 ≡ y1 (mod 28), we easily obtain

x42 + x43 + · · ·+ x49 ≡ y42 + y43 + · · ·+ y49 (mod 28). (5)

For j ∈ {2, 3, . . . , 9}, we can write yj = 2(2y′j+1) for some y′j ∈ Z. As (2y′j+1)4 ≡ 1 (mod 16),
we obtain

(2y′2 + 1)4 + (2y′3 + 1)4 + · · ·+ (2y′9 + 1)4 ≡ 8 (mod 16),

from which it follows that y42 + y43 + · · · + y49 is exactly divisible by 27. On the other hand, 4|xj
for j ∈ {2, 3, . . . , 9}, so x42 + x43 + · · ·+ x49 is divisible by 28. We obtain a contradiction now from
(5), so f(z)− g(z) = C with ν2(C) = ν2(C9) is impossible in this case.

Case 1.2.3. k′1 = 0

From (3),

C9 = f(0)− g(0) = −
9∏
j=1

xj +
9∏
j=1

yj

is divisible by 29. This is what we set out to show, so we are done in this case. (Alternatively,
one can use that the 18 xj’s and yj’s cannot all have a common prime divisor p in (3) if νp(C9) is
minimal. From this point of view, this subcase cannot occur.)



Case 2. k′1 + k′2 < 9

Since k′1 ≤ 4, we have

k′2 ≥
⌈
9− k′1

2

⌉
≥ 3.

We also have k′2 ≥ k2. We note the importance of the condition k′1 + k′2 < 9. This implies
k′2 < 9− k′1. Hence, (k′1, 0) and (k′1 + k′2, k

′
2) are points in S2 with x-coordinates < 9. Therefore,

(k′1, 0) and (k′1 + k′2, k
′
2) are points in S1. Since there are exactly k1 = k′1 odd xj and the Newton

polygon of f(z) has integer slopes, we deduce that the segment joining (k′1, 0) and (k′1 + k′2, k
′
2)

is part of the Newton polygon of f(z). In particular, k2 ≥ k′2 ≥ 3. Since k′2 ≥ k2, we deduce
k2 = k′2 ≥ 3.

Case 2.1. k′1 ≤ 3

If k′1 ≤ 3, then there are at least six even xj and six even yj . Out of the six even xj’s and the six
even yj’s, at least three xj’s and three yj’s are 2 (mod 4). Thus, setting z = 2 in (3), we obtain
29|C, as desired.

Case 2.2. k′1 = 4

We lastly consider k′1 = k1 = 4 and k2 = k′2 ≥ 3. Since we are in the case where k′1 + k′2 < 9 and
k′1 = 4, we have k′2 < 5. Thus, either k2 = k′2 = 4 or k2 = k′2 = 3.

Case 2.2.1. k2 = k′2 = 4

If k2 = k′2 = 4, then out of the five even xj’s and the five even yj’s, there are four xj’s and four
yj’s that are 2 (mod 4). Setting z = 2 in (3), we obtain 29|C and are done as before.

Case 2.2.2. k2 = k′2 = 3

Recall that the slopes of the Newton polygons of f(z) and g(z) are integers and the slopes increase
from left to right. For each of these Newton polygons, the edge with slope 1 ends at the point
(k1 + k2, k2) = (7, 3). Thus, the remaining edge(s) to the right have slope at least 2, and therefore,
the right-most point on each of the Newton polygons must be on or above (9, 7).

If the right-most points on the Newton polygons, (9, ν2(a0)) and (9, ν2(b0)), are on or above
(9, 9), then we take z = 0 in (3) to see that 29|C. This finishes the argument in this case.

If exactly one of the Newton polygons has the right-most point (9, 7), then we set z = 2 in (3)
to get 28|C. However, Lemma 3 implies that 27‖C, a contradiction.

If both of the Newton polygons have right-most endpoint (9, 7), then by setting z = 4 in (3),
we see that 29|C, giving us the conclusion we want.

We now know that one of the Newton polygons has right-most point (9, 8), and the other has
right-most endpoint either (9, 8) or above (9, 8). If the right-most endpoint is (9, 8) for one of these
Newton polygons, then its two right-most edges consist of the segment joining (7, 3) to (8, 5) and
the segment joining (8, 5) to (9, 8). In particular, if (9, 8) is the right-most endpoint for both of the



Newton polygons, then x8 ≡ y8 ≡ 8 (mod 16). Setting z = 8 in (3) for this case, we obtain 29|C,
as desired.

Finally, we consider the case that one of the Newton polygons has right-most endpoint (9, 8)
and the other Newton polygon has right-most endpoint above (9, 8). Recall that the two points
(j, ν2(a9−j)) and (j, ν2(b9−j)) agree for j ∈ {0, 1, . . . , 8}. We deduce that (8, 5) is a point in either
S1 or S2, and thus in both. Hence the edge joining (7, 3) and (8, 5) is common to both Newton
polygons. As each of x5, x6, x7, y5, y6, and y7 is 2 modulo 4, each is either 2 or 6 modulo 8. If
xj ≡ yj (mod 8) for some j ∈ {5, 6, 7}, then by setting z = xj in (3), we see that 29|C, and we
are done.

Hence, we only need to consider the case that each of x5, x6, and x7 is congruent modulo 8,
each of y5, y6, and y7 is congruent modulo 8, and x5 6≡ y5 (mod 8). As a consequence, one of
the sums x5 + x6 + x7 or y5 + y6 + y7 is equivalent to 2 + 2 + 2 ≡ 6 (mod 8) and the other is
6 + 6 + 6 ≡ 2 (mod 8). Further, since (7, 3) and (8, 5) are points on the Newton polygon of f(z)
and on the Newton polygon of g(z), we obtain from Lemma 2 that

x8 ≡ y8 ≡ 4 (mod 8).

Further, since the right-most points of the Newton polygons are on or above (9, 8), by Lemma 2
we have

x9 ≡ y9 ≡ 0 (mod 8).

Since x5 + x6 + x7 6≡ y5 + y6 + y7 (mod 8), x8 ≡ y8 (mod 8), and x9 ≡ y9 (mod 8), we obtain
that

x5 + x6 + x7 + x8 + x9 6≡ y5 + y6 + y7 + y8 + y9 (mod 8).

This contradicts (4) in Lemma 5 with t = 4, n = 9 and k = 1. Thus, we are done in this case.

4 Lower bound for ν2
(
C8

)
In this section, we show that 26|C. Recall, with n = 8, we know 29 - C. For possible future
analysis, we show in all but one case of conditions on X = [x1, . . . , x8] and Y = [y1, . . . , y8] that
we consider, one has 28|C8.

As before, we work with (3), and set n = 8 and C = Cn. Recall f(z) and g(z) have been
translated, if necessary, so that a0 6= 0, b0 6= 0 and k1, k′1, k2, and k′2 are as before. Thus,
k′1 = k1 ≤ 4, k′2 ≥ d(8 − k′1)/2e ≥ 2 and k′2 ≥ k2. Since here the lists X and Y have eight
elements, k1 + k2 ≤ 8 and k′1 + k′2 ≤ 8.

Case 1. k′1 = 4 and k′2 = 4
From Corollary 3, we have k2 ≡ k′2 (mod 4). Thus, either k2 = 0 or k2 = 4. In the second case,
letting z = 2 in (3) shows 28|C, as we want. So suppose k2 = 0. In this case, the edges of the
Newton polygon of f(z) with positive slope have slope ≥ 2. In particular, this implies

ν2(a8−j) ≥ 2(j − 4) for 5 ≤ j ≤ 8.

As the points
(
j, ν2(a8−j)

)
on S1 and

(
j, ν2(b8−j)

)
on S2 agree for 0 ≤ j ≤ 7, we deduce

ν2(b8−j) ≥ 2(j − 4) for 5 ≤ j ≤ 7. (6)



Define uj ∈ Z by the equation

(z − y5)(z − y6)(z − y7)(z − y8) =
4∑
j=0

ujz
j.

Next, we obtain information on the 2-adic values of the uj . As yj ≡ 2 (mod 4) for 5 ≤ j ≤ 8, we
have

u0 = y5y6y7y8 =⇒ ν2(u0) = 4.

Also, u1 is the sum of 4 terms that are exactly divisible by 8, so ν2(u1) ≥ 4. Assume ν2(u1) = 4.
We make use of the congruence

(z − y1)(z − y2)(z − y3)(z − y4) ≡ (z + 1)4 ≡ z4 + 1 (mod 2). (7)

Thus, the product on the left when expanded is a quartic with odd constant term and an odd coef-
ficient for z4 but otherwise has even coefficients. Thus, there are integers r and s satisfying

b1 = u1(2r + 1) + u0(2s).

Since ν2(u0) = ν2(u1) = 4, we deduce ν2(b1) = 4. This contradicts (6) with j = 7. Thus,

ν2(u1) ≥ 5.

Writing yj = 2(2y′j + 1) for 5 ≤ j ≤ 8, we see that

u1 = −23(2y′5 + 1)(2y′6 + 1)(2y′7 + 1)(2y′8 + 1)

(
1

2y′5 + 1
+

1

2y′6 + 1
+

1

2y′7 + 1
+

1

2y′8 + 1

)
.

We note that every odd square is 1 (mod 8). In particular, (2y′k + 1)2 ≡ 1 (mod 8). Therefore,
for each k ∈ {5, 6, 7, 8}, we have

(2y′5 + 1)(2y′6 + 1)(2y′7 + 1)(2y′8 + 1)
1

2y′k + 1

≡ (2y′5 + 1)(2y′6 + 1)(2y′7 + 1)(2y′8 + 1)
1

2y′k + 1
· (2y′k + 1)2

≡ (2y′5 + 1)(2y′6 + 1)(2y′7 + 1)(2y′8 + 1)(2y′k + 1) (mod 8).

We deduce that

−u1
23
≡ (2y′5 + 1)(2y′6 + 1)(2y′7 + 1)(2y′8 + 1)

8∑
j=5

(2y′j + 1) (mod 8).

Since ν2(u1) ≥ 5, we deduce that the last sum above must be divisible by 4. Hence,

u3 = −y5 − y6 − y7 − y8 = −2
8∑
j=5

(2y′j + 1) =⇒ ν2(u3) ≥ 3.



Observe that

u23 = 22
8∑
j=5

(2y′j + 1)2 − 2u2. (8)

Since
8∑
j=5

(2y′j + 1)2 ≡ 4 (mod 8),

we see that 22
∑8

j=5(2y
′
j +1)2 is exactly divisible by 24. On the other hand, ν2(u3) ≥ 3 implies u23

is divisible by 26. Hence, (8) implies
ν2(u2) = 3.

From (7), there exist integers r, s and t such that

b2 = u2(2r + 1) + u1(2s) + u0(2t).

The values and estimates obtained above on ν2(uj), with j ∈ {0, 1, 2}, imply now that ν2(b2) = 3.
This contradicts (6) with j = 6, completing this case.

Case 2. k′1 ≤ 3

We can suppose k′1 ≥ 1 (see Case 1.2.3 of the previous section). Since k′1 ≤ 3, we obtain k′2 ≥
d(8 − 3)/2e = 3. Suppose first that k′2 < 8 − k′1. Since the points

(
j, ν2(a8−j)

)
on S1 and(

j, ν2(b8−j)
)

on S2 agree for 0 ≤ j ≤ 7, we deduce that k2 = k′2. In this case, letting z = 2 in
(3), we see that 28|C, as we want. Now, suppose k′2 = 8− k′1. From Corollary 3, we have k2 ≡ k′2
(mod 4). Hence, k2 ≥ 1 and, in particular, xk′1+1 ≡ 2 (mod 4). Let z = xk′1+1 in (3). As f(z) = 0
and g(z) is divisible by 210, we get 210|C, contradicting that 29 - C.

Case 3. k′1 = 4 and k′2 < 4

Given that k′1+k
′
2 < 8 in addition to knowing k1 = k′1 and k′2 ≥ k2, we deduce k1+k2 ≤ k1+k

′
2 =

k′1 + k′2 < 8. Since the points
(
j, ν2(a8−j)

)
on S1 and

(
j, ν2(b8−j)

)
on S2 agree for 0 ≤ j ≤ 7, we

conclude that k2 = k′2 in this case. Note that k′2 ≥ d(8− 4)/2e = 2. Setting z = 2, one checks in
this case that 28+k′2−k′1 divides C. As 8 + k′2 − k′1 ≥ 8 + 2 − 4 = 6, we obtain 26|C in this case,
giving us the desired conclusion.
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