Newton polygons and the Prouhet-Tarry-Escott problem

by Michael Filaseta and Maria Markovich
Department of Mathematics
University of South Carolina
Columbia, SC 29063

1 Introduction

For $n \geq 2$, we consider two lists of integers

$$
X=\left[x_{1}, x_{2}, \ldots, x_{n}\right] \quad \text { and } \quad Y=\left[y_{1}, y_{2}, \ldots, y_{n}\right],
$$

where, for this section only, we view these as ordered so that $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$ and $y_{1} \leq y_{2} \leq$ $\cdots \leq y_{n}$. We also require $x_{j} \neq y_{j}$ for at least one $j \in\{1,2, \ldots, n\}$. The Prouhet-Tarry-Escott problem (the PTE problem) asks for such X and Y satisfying

$$
\begin{equation*}
\sum_{i=1}^{n} x_{i}^{e}=\sum_{i=1}^{n} y_{i}^{e} \quad \text { for } e=\{1,2, \ldots, k\} \tag{1}
\end{equation*}
$$

where k is an integer in the interval [2, n-1]. If X and Y satisfy (1) then the pair is called a solution of the PTE problem, denoted as $X={ }_{k} Y$. A solution is ideal if $k=n-1$. The significance of the case $k=n-1$ is that with X and Y distinct as required above, it is impossible for (1) to hold if $k \geq n$. Thus, the largest possible value for k in (1) is $n-1$.

Literature on the PTE problem is extensive. The problem is a focus of an entire chapter (Chapter 24) of L. E. Dickson's classical volumes "History of the Theory of Numbers" [9] and numerous early references can be found there. The problem is also discussed in G. H. Hardy and E. M. Wright's well-known "An Introduction to the Theory of Numbers" [12], undoubtedly in part due to Wright's own interest in the problem (cf. [21, 22, 23]). We note that for the first half of the twentieth century, the problem was referred to as the Tarry-Escott problem, until Wright [22] pointed out that E. Prouhet [17] first discussed the problem in 1851. A few of the more recent investigations on the PTE problem include [4, 5, 8, 14, 18]. Interesting work on generalizations of the PTE problem can be found in [1,6]. For applications arising from the PTE problem see [2, 11, 13, 16, 19].

An important open problem in the area is a conjecture of Wright [21] that for every natural number $n \geq 3$, an ideal solution exists. Despite its long history, ideal solutions are only known to exist for $3 \leq n \leq 10$ and $n=12$. In particular, no ideal solution is known for $n=11$.

To help formulate further discussion, we note that the following result and its corollary are fairly simple consequences of properties of elementary symmetric functions (see [3, 4]).

Lemma 1. Let n and k be integers with $1 \leq k<n$. Let x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} denote arbitrary integers. The following are equivalent:

$$
\begin{aligned}
& \text { - } \sum_{i=1}^{n} x_{i}^{e}=\sum_{i=1}^{n} y_{i}^{e}, \quad \text { for } e \in\{1,2, \ldots, k\} \\
& \text { - } \operatorname{deg}\left(\prod_{i=1}^{n}\left(z-x_{i}\right)-\prod_{i=1}^{n}\left(z-y_{i}\right)\right) \leq n-k-1, \\
& \text { - }(z-1)^{k+1} \mid\left(\sum_{i=1}^{n} z^{x_{i}}-\sum_{i=1}^{n} z^{y_{i}}\right)
\end{aligned}
$$

Corollary 1. The lists $X=\left[x_{1}, \ldots, x_{n}\right]$ and $Y=\left[y_{1}, \ldots, y_{n}\right]$ give an ideal PTE solution if and only if

$$
\begin{equation*}
\prod_{i=1}^{n}\left(z-x_{i}\right)-\prod_{i=1}^{n}\left(z-y_{i}\right)=C \tag{2}
\end{equation*}
$$

for some real constant C.
In this paper, we will view ideal PTE solutions as being lists X and Y satisfying (2). For computational reasons (see $[4,7,18]$), information on possible values of C and, in particular, on the factorization of C given (2), has played an important role in arriving at examples of ideal PTE solutions. As C depends on n, X and Y, we define, for $X={ }_{n-1} Y$, the constant

$$
C_{n}=C_{n}(X, Y)=\prod_{i=1}^{n}\left(z-x_{i}\right)-\prod_{i=1}^{n}\left(z-y_{i}\right)
$$

We clarify that what is of interest here then is the value of

$$
\bar{C}_{n}=\prod_{j=1}^{\infty} p_{j}^{e_{j}}
$$

where

$$
e_{j}=\min \left\{e: p_{j}^{e} \| C_{n}(X, Y) \text { for some } X \text { and } Y \text { as above with } X={ }_{n-1} Y\right\}
$$

In other words, \bar{C}_{n} can be viewed as the greatest common divisor over all constants $C_{n}(X, Y)$ where X and Y vary over distinct ordered lists of n integers satisfying $X={ }_{n-1} Y$. So we would like to know, for a given n, how \bar{C}_{n} factors.

With the notation above, we state the following result that plays a role throughout the paper; it is an easy consequence of Corollary 1 or Lemma 1.

Corollary 2. Let $a \in \mathbb{Z}$. The pair of lists $X=\left[x_{1}, \ldots, x_{n}\right]$ and $Y=\left[y_{1}, \ldots, y_{n}\right]$ form an ideal PTE solution if and only if the pair of lists $X^{\prime}=\left[x_{1}+a, \ldots, x_{n}+a\right]$ and $Y^{\prime}=\left[y_{1}+a, \ldots, y_{n}+a\right]$ form an ideal PTE solution. Furthermore, if these are ideal solutions, then $C_{n}(X, Y)=C_{n}\left(X^{\prime}, Y^{\prime}\right)$.

The values of \bar{C}_{n} for $3 \leq n \leq 7$ are known (see [7]):

$$
\begin{aligned}
& \bar{C}_{3}=2^{2} \\
& \bar{C}_{4}=2^{2} \cdot 3^{2} \\
& \bar{C}_{5}=2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \\
& \bar{C}_{6}=2^{5} \cdot 3^{2} \cdot 5^{2} \\
& \bar{C}_{7}=2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7 \cdot 11 .
\end{aligned}
$$

In this paper, we pay particular attention to ideal solutions of sizes 8 and 9 . For these, according to [7], it is known that

$$
\begin{aligned}
& \bar{C}_{8}=2^{e_{1}} \cdot 3^{3} \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13, \quad \text { where } 4 \leq e_{1} \leq 8 \\
& \bar{C}_{9}=2^{e_{2}} \cdot 3^{e_{3}} \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17^{e_{4}} \cdot 23^{e_{5}} \cdot 29^{e_{6}}, \quad \text { where } 7 \leq e_{2} \leq 9,3 \leq e_{3} \leq 4 \\
& 0 \leq e_{j} \leq 1, \text { for } j \in\{4,5,6\} .
\end{aligned}
$$

There are two noteworthy examples that pertain to this paper. L. E. Dickson [9] reports that, in 1913, G. Tarry [20] observed that

$$
\left(x^{2}-5^{2}\right)\left(x^{2}-14^{2}\right)\left(x^{2}-23^{2}\right)\left(x^{2}-24^{2}\right)-\left(x^{2}-2^{2}\right)\left(x^{2}-16^{2}\right)\left(x^{2}-21^{2}\right)\left(x^{2}-25^{2}\right)=C
$$

where $C=2^{8} \cdot 3^{3} \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13$. According to E. M. Wright [23], in 1942, A. Létac [15] gave the example

$$
\begin{aligned}
& (z-1)(z-25)(z-31)(z-84)(z-87)(z-134)(z-158)(z-182)(z-198) \\
& -(z-2)(z-18)(z-42)(z-66)(z-113)(z-116)(z-169)(z-175)(z-199) \\
& \quad=3377425033382400=2^{9} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \cdot 23 \cdot 29 \cdot 41
\end{aligned}
$$

These imply

$$
\nu_{2}\left(\bar{C}_{8}\right) \leq 8 \quad \text { and } \quad \nu_{2}\left(\bar{C}_{9}\right) \leq 9
$$

where $\nu_{2}(m)$ refers to the 2 -adic value of m, that is the largest integer j for which $2^{j} \| m$. These somewhat old examples then give the upper bounds described above for e_{1} and e_{2}.

Our interest in this paper is to explain how the classical theory of Newton polygons can be used to obtain information about the 2-adic values of \bar{C}_{n}. In particular, we show that $\nu_{2}\left(\bar{C}_{9}\right)=9$. For $n=8$, we only provide the inequality $\nu_{2}\left(\bar{C}_{8}\right) \geq 6$.

The arguments we give take advantage of working modulo small powers of 2 and substituting values for z in (2) to show smaller values for $\nu_{2}\left(\bar{C}_{9}\right)$ and $\nu_{2}\left(\bar{C}_{8}\right)$ cannot exist. We have found the example

$$
X=[31914804930538,392011859134314,414199788923609,
$$

and

$$
\begin{aligned}
& Y=[226375709153429,382003430459158,502458387218286, \\
& 690280771238587,750383096702563,764464731978500, \\
&790357673966989,870082337037308]
\end{aligned}
$$

which has the property that

$$
\prod_{i=1}^{8}\left(z-x_{i}\right)-\prod_{i=1}^{8}\left(z-y_{i}\right) \equiv 954668492881984 \quad\left(\bmod 2^{50}\right)
$$

Of interest here is that the number 954668492881984 is exactly divisible by 2^{6}. Thus, there is no real hope that working modulo small powers of 2 will enable one to show 2^{7} must divide C in (2). Further, substituting any $z \in \mathbb{Z}$ into the expression on the left above results in an integer exactly divisible by 2^{6}, so such substitutions will not provide us with a means to show 2^{7} must divide C. Perhaps examples like the above exist for the obvious reason that $2^{6} \| \bar{C}_{8}$, and an appropriate example, different from the one of Tarry's indicated above, is needed then to show that $\nu_{2}\left(\bar{C}_{8}\right)=6$.

The example above raises some natural questions. Is it possible to show that a 2 -adic ideal solution exists for the PTE problem for every $n \geq 3$? Let p be a prime. Does a p-adic ideal solution necessarily exist for $n=11$? Is it possible to have a p-adic solution to

$$
\prod_{i=1}^{n}\left(z-x_{i}\right)-\prod_{i=1}^{n}\left(z-y_{i}\right)=C
$$

for which $\nu_{p}(C)<\nu_{p}\left(\bar{C}_{n}\right)$, where ν_{p} is the usual p-adic valuation and n is some integer ≥ 3 ?

2 Further preliminaries

We write

$$
f(z)=\prod_{j=1}^{n}\left(z-x_{j}\right)=\sum_{j=0}^{n} a_{j} z^{j} \quad \text { and } \quad g(z)=\prod_{j=1}^{n}\left(z-y_{j}\right)=\sum_{j=0}^{n} b_{j} z^{j}
$$

where $x_{j}, y_{j} \in \mathbb{Z}$ are chosen so that

$$
\begin{equation*}
f(z)-g(z)=C_{n} \tag{3}
\end{equation*}
$$

and so that the exact power of 2 dividing C_{n} is equal to the exact power of 2 dividing \bar{C}_{n}. Thus, by Corollary 1, we have that $X=\left[x_{1}, \ldots, x_{n}\right]$ and $Y=\left[y_{1}, \ldots, y_{n}\right]$ is an ideal solution. We write $C=C_{n}$, where n should be clear from the context.

For fixed n, we consider the two sets of points in the extended plane

$$
S_{1}=\left\{\left(j, \nu_{2}\left(a_{n-j}\right)\right): 0 \leq j \leq n\right\} \quad \text { and } \quad S_{2}=\left\{\left(j, \nu_{2}\left(b_{n-j}\right)\right): 0 \leq j \leq n\right\} .
$$

Since $f(z)-g(z)=C$, a constant, we see that $a_{n-j}=b_{n-j}$ for $0 \leq j \leq n-1$. Thus, S_{1} and S_{2} have at least n of $n+1$ points in common.

Recalling Corollary 2, we translate $f(z)$ and $g(z)$ by the same translation, if necessary, so that $a_{0} \neq 0$ and $b_{0} \neq 0$. Thus, $\nu_{2}\left(a_{0}\right) \neq+\infty$ and $\nu_{2}\left(b_{0}\right) \neq+\infty$. Note that (3) still holds. This ensures that the right-most points $\left(n, \nu_{2}\left(a_{0}\right)\right)$ and $\left(n, \nu_{2}\left(b_{0}\right)\right)$, which may differ in S_{1} and S_{2}, are in the finite plane.

We will be interested in Newton polygons, and in particular to a result that goes back to work of G. Dumas [10].

Definition 1. Let $F(z)=\sum_{j=0}^{n} c_{j} z^{j} \in \mathbb{Z}[z]$ with $c_{0} c_{n} \neq 0$. Let p be a prime. For $j \in\{0, \cdots, n\}$, we define $x_{j}=j$ and define $y_{j}=\nu_{p}\left(c_{n-j}\right)$. We consider the lower edges along the convex hull of the points in $S=\left\{\left(x_{0}, y_{0}\right), \cdots,\left(x_{n}, y_{n}\right)\right\}$. The polygonal path formed by these edges is called the Newton polygon associated with $F(z)$ with respect to p.

Thus, the Newton polygon of $f(z)$ with respect to the prime 2 is the lower convex hull of the points in S_{1}, and the Newton polygon of $g(z)$ with respect to 2 is the lower convex hull of the points in S_{2}. Note that the slopes of the edges of the Newton polygons increase from left to right. We state next an important property of Newton polygons based on the set-up in this paper.

Lemma 2. The Newton polygons of $f(z)$ and $g(z)$ will each pass through $n+1$ lattice points (including the endpoints), which we denote respectively as

$$
T_{1}=\left\{\left(j, t_{j}\right): 0 \leq j \leq n\right\} \quad \text { and } \quad T_{2}=\left\{\left(j, t_{j}^{\prime}\right): 0 \leq j \leq n\right\} .
$$

After possibly rearranging the x_{j} and y_{j}, we have $2^{t_{j}-t_{j-1}}$ exactly divides x_{j} and $2^{t_{j}^{\prime}-t_{j-1}^{\prime}}$ exactly divides y_{j} for each $j \in\{1,2, \cdots, n\}$.

This lemma follows directly from a theorem of Dumas [10] which asserts that the Newton polygon of a product of two polynomials with respect to a prime p can be obtained by translating the edges of the Newton polygons for each polynomial with respect to p. Since $f(z)$ and $g(z)$ are a product of n linear factors, we have that the Newton polygons associated with $f(z)$ and $g(z)$ each consists of n line segments translated so that $n+1$ lattice points (including endpoints) are along its edges. Each translated segment will have the x-coordinates of its endpoints differing by 1.

As a consequence of Lemma 2, the slope of each edge of the Newton polygon of $f(z)$ and $g(z)$ is an integer. In the last statement of Lemma 2, observe that the values $\nu_{2}\left(x_{j}\right)$ and $\nu_{2}\left(y_{j}\right)$ are increasing as j ranges from 1 to n. We will want to use such an ordering throughout the remainder of the paper. In particular, the values of the x_{j} and the values of the y_{j} themselves are not necessarily increasing as in the introduction.

To illustrate, we consider $n=9$ and take the example of A. Létac [15] mentioned in the introduction, so

$$
X=[1,25,31,87,134,158,182,198,84] \quad \text { and } \quad Y=[113,169,175,199,2,18,42,66,116]
$$

where we have taken an ordering of the x_{j} and y_{j} corresponding to the last statement in Lemma 2. In this case,
$f(z) \equiv g(z) \equiv z^{9}+124 z^{8}+70 z^{7}+24 z^{6}+33 z^{5}+12 z^{4}+72 z^{3}+32 z^{2}+80 z+64 \quad(\bmod 128)$,
so that the Newton polygons of $f(z)$ and of $g(z)$ with respect to 2 look the same and are as shown in Figure 1.

Figure 1: Newton polygon for A. Létac's example
The solid circles represent the points of S_{1} and S_{2} with the bottom left-hand endpoint equal to $(0,0)$ in each case (since the polynomials are monic). The open circles refer to the lattice points in T_{1} and T_{2} as mentioned in Lemma 2. Thus, for this example,

$$
T_{1}=T_{2}=\{(0,0),(1,0),(2,0),(3,0),(4,0),(5,1),(6,2),(7,3),(8,4),(9,6)\} .
$$

As implied by Lemma 2, the height differences between two consecutive lattice points in T_{1} indicates that there are exactly four odd x_{j} 's, four x_{j} 's that are exactly divisible by 2 , and one x_{j} exactly divisible by 4 . As $T_{1}=T_{2}$, the y_{j} 's satisfy analogous conditions. We note that despite this example, in general, unlike S_{1} and S_{2} which have all but possibly their right-most points in common, the points other than $(0,0)$ belonging to T_{1} and T_{2} can be different.

Lemma 3. If the points $\left(n, \nu_{2}\left(a_{0}\right)\right)$ in S_{1} and $\left(n, \nu_{2}\left(b_{0}\right)\right)$ in S_{2} are distinct and

$$
k=\min \left\{\nu_{2}\left(a_{0}\right), \nu_{2}\left(b_{0}\right)\right\}
$$

then $2^{k} \| C$.
Proof. Since $C=a_{0}-b_{0}$ and $\nu_{2}\left(a_{0}\right) \neq \nu_{2}\left(b_{0}\right)$, we see that

$$
\nu_{2}(C)=\nu_{2}\left(a_{0}-b_{0}\right)=\min \left\{\nu_{2}\left(a_{0}\right), \nu_{2}\left(b_{0}\right)\right\}=k .
$$

Thus, $2^{k} \| C$.
We develop some notation that we will be using in the subsequent sections. Let k_{1} be the number of odd x_{j} and k_{1}^{\prime} be the number of odd y_{j}; thus, the 2 -valuation of each of these x_{j} and y_{j} is equal to 0 . Further, we let k_{2} be the number of x_{j} which are congruent to $2(\bmod 4)$ and k_{2}^{\prime} be
the number of y_{j} that are congruent to $2(\bmod 4)$; thus, the 2 -valuation of each of these x_{j} and y_{j} is equal to 1 .

By translating $f(z)$ and $g(z)$ by 1 (or some odd number to guarantee that a_{0} and b_{0} are not equal to 0), we may suppose $k_{1}^{\prime} \leq\lfloor n / 2\rfloor$. Furthermore, we may now translate by 2 (or some other number that is congruent to $2(\bmod 4)$) if needed to obtain that $k_{2}^{\prime} \geq\left\lceil\left(n-k_{1}^{\prime}\right) / 2\right\rceil$ of the y_{j} are congruent to $2(\bmod 4)$.

Using the following proposition from [4], we deduce that if C is even, then $k_{1}=k_{1}^{\prime}$.
Lemma 4. Let $\left[x_{1}, \ldots, x_{n}\right]={ }_{n-1}\left[y_{1}, \ldots, y_{n}\right]$ be two lists of integers that constitute an ideal PTE solution, and suppose that a prime p divides the constant C associated with this solution. Then we can reorder the integers y_{i} so that

$$
x_{j} \equiv y_{j}(\bmod p) \quad \text { for } j \in\{1, \ldots, n\} .
$$

As noted, we can deduce now that the number of odd x_{j} must equal the number of odd y_{j}, that is, $k_{1}=k_{1}^{\prime}$. Further, we can interchange the roles of $f(z)$ and $g(z)$, if necessary, so that $k_{2}^{\prime} \geq k_{2}$. Since there are n elements in the lists X and Y, it must be the case that $k_{1}+k_{2} \leq n$ and $k_{1}^{\prime}+k_{2}^{\prime} \leq n$.

Before ending this section, we establish the following.
Lemma 5. Let $n \geq 8$. Suppose $\left[x_{1}, \ldots, x_{n}\right]={ }_{n-1}\left[y_{1}, \ldots, y_{n}\right]$. For $1 \leq j \leq n$, let x_{j} and y_{j} be such that x_{1}, \ldots, x_{t} and y_{1}, \ldots, y_{t} are odd and otherwise x_{j} and y_{j} are even. Then

$$
x_{1}^{k}+\cdots+x_{t}^{k} \equiv y_{1}^{k}+\cdots+y_{t}^{k} \quad(\bmod 16), \quad \text { for } k \geq 1 .
$$

and

$$
\begin{equation*}
x_{t+1}^{k}+\cdots+x_{n}^{k} \equiv y_{t+1}^{k}+\cdots+y_{n}^{k} \quad(\bmod 16), \quad \text { for } k \geq 1 \tag{4}
\end{equation*}
$$

Proof. Since x_{1}, \ldots, x_{t} and y_{1}, \ldots, y_{t} are odd, we obtain

$$
x_{j}^{4} \equiv y_{j}^{4} \equiv 1 \quad(\bmod 16), \quad \text { for } 1 \leq j \leq t
$$

Thus,

$$
x_{1}^{k}+\cdots+x_{t}^{k} \equiv x_{1}^{k+4}+\cdots+x_{t}^{k+4} \quad(\bmod 16)
$$

and

$$
y_{1}^{k}+\cdots+y_{t}^{k} \equiv y_{1}^{k+4}+\cdots+y_{t}^{k+4} \quad(\bmod 16) .
$$

As $x_{j}^{k+4} \equiv y_{j}^{k+4} \equiv 0(\bmod 16)$ for $t+1 \leq j \leq n$, we deduce that

$$
\begin{aligned}
& x_{1}^{k}+\cdots+x_{t}^{k} \equiv x_{1}^{k+4}+\cdots+x_{t}^{k+4} \equiv x_{1}^{k+4}+\cdots+x_{n}^{k+4} \\
& \quad \equiv y_{1}^{k+4}+\cdots+y_{n}^{k+4} \equiv y_{1}^{k+4}+\cdots+y_{t}^{k+4} \equiv y_{1}^{k}+\cdots+y_{t}^{k} \quad(\bmod 16),
\end{aligned}
$$

provided $1 \leq k+4 \leq n-1$. Since $n \geq 8$, the above holds for $1 \leq k \leq 3$. On the other hand,

$$
x_{1}^{k}+\cdots+x_{n}^{k}=y_{1}^{k}+\cdots+y_{n}^{k} \quad \text { for } 1 \leq k \leq 3
$$

Hence,

$$
x_{t+1}^{k}+\cdots+x_{n}^{k} \equiv y_{t+1}^{k}+\cdots+y_{n}^{k} \quad(\bmod 16) \quad \text { for } 1 \leq k \leq 3
$$

The lemma follows since for $k \geq 4$, both sides of the congruence in (4) are divisible by 16 .

Corollary 3. Let $n \geq 8$. Suppose $\left[x_{1}, \ldots, x_{n}\right]={ }_{n-1}\left[y_{1}, \ldots, y_{n}\right]$. Let $k_{1}, k_{1}^{\prime}, k_{2}$ and k_{2}^{\prime} be as above. Then $k_{2} \equiv k_{2}^{\prime}(\bmod 4)$.
Proof. Recall $k_{1}=k_{1}^{\prime}$. From Lemma 5, we have

$$
x_{k_{1}+1}^{2}+x_{k_{1}+1}^{2}+\cdots+x_{n}^{2} \equiv x_{k_{1}+1}^{2}+x_{k_{1}+1}^{2}+\cdots+x_{n}^{2} \quad(\bmod 16) .
$$

As an even integer m squared is 4 modulo 16 if $m \equiv 2(\bmod 4)$ and otherwise is 0 modulo 16 , the above congruence can be rewritten as $4 k_{2} \equiv 4 k_{2}^{\prime}(\bmod 16)$. The result follows.

3 The 2-adic value of \bar{C}_{9}

Recall that it is known that $2^{7} \mid \bar{C}_{9}$ and $2^{10} \nmid \bar{C}_{9}$. Our goal in this section is to increase the lower bound of the valuation of 2 in \bar{C}_{9}. With the aid of Newton polygons, we establish $2^{9} \mid \bar{C}_{9}$ from which we can deduce that $2^{9} \| \bar{C}_{9}$.

We make use of the notation in the previous section with $n=9$ and deal with two cases, each involving multiple subcases, depending on the values of k_{1}^{\prime} and k_{2}^{\prime}.

Case 1. $k_{1}^{\prime}+k_{2}^{\prime}=9$

In this case, we are assuming that there are no elements in the list Y that are congruent to 0 $(\bmod 4)$. We consider possibilities for the Newton polygon of $f(z)$. From Lemma 4, we know that $k_{1}=k_{1}^{\prime}$ odd x_{j} 's are in the list X. We recall that $k_{2} \leq k_{2}^{\prime}$, which implies that X contains at most k_{2}^{\prime} elements that are divisible by 2 and not 4 . Combining these facts, we have that each point $\left(j, \nu_{2}\left(a_{9-j}\right)\right)$ in S_{1} is on or above the corresponding point $\left(j, \nu_{2}\left(b_{9-j}\right)\right)$ in S_{2}.

Case 1.1. $k_{2}=k_{2}^{\prime}$
Recall that we have translated $f(z)$ and $g(z)$ so that $k_{1}^{\prime} \leq\lfloor n / 2\rfloor=\lfloor 9 / 2\rfloor=4$. Therefore, in this subcase, k_{2} and k_{2}^{\prime} are both greater than or equal to 5 . Substituting $z=2$ in (3), we obtain

$$
\prod_{j=1}^{9}\left(2-x_{j}\right)-\prod_{j=1}^{9}\left(2-y_{j}\right)=f(2)-g(2)=C
$$

where at least five of the x_{j} 's and at least five of the y_{j} 's are 2 modulo 4 . Thus, 2^{10} divides each product, and therefore, their difference. This implies a contradiction, since $2^{10} \nmid C$. In other words, it is impossible for $f(z)-g(z)=C$ with $\nu_{2}(C)=\nu_{2}\left(\bar{C}_{9}\right)$ in this case.

Case 1.2. $k_{2}<k_{2}^{\prime}$
In this subcase, X must contain some elements that are congruent to $0(\bmod 4)$ but Y cannot. We deduce that the right-most point of the Newton polygon of $f(z)$ is above the point $\left(9, \nu_{2}\left(b_{0}\right)\right)$. Since these endpoints are distinct, by Lemma 3 we have $2^{\nu_{2}\left(b_{0}\right)} \| C$. Since all of the even elements in Y are congruent to $2(\bmod 4)$ (thus have valuation equal to 1 with respect to the prime 2), we have that $\nu_{2}\left(b_{0}\right)=k_{2}^{\prime}$. In the case under consideration, $\nu_{2}\left(b_{0}\right)=k_{2}^{\prime}=9-k_{1}^{\prime}$. Since we know that $2^{7} \mid C$, we have $k_{2}^{\prime} \geq 7$ and $k_{1}^{\prime} \leq 2$.

Case 1.2.1. $k_{1}^{\prime}=2$
In this case $k_{2}^{\prime}=7$. By Corollary 3, we deduce $k_{2} \in\{3,7\}$. Thus, $2-x_{j}$ and $2-y_{j}$ are divisible by 4 for $2 \leq j \leq 4$, and $2-x_{j}$ and $2-y_{j}$ are divisible by 2 for $5 \leq j \leq 8$. Letting $z=2$ in (3), we see that $2^{10} \mid C$, giving a contradiction in this case.

Case 1.2.2. $k_{1}^{\prime}=1$
As $k_{2}^{\prime}=8$ in this subcase, Corollary 3 implies $k_{2} \in\{0,4,8\}$. If $k_{2} \geq 4$, then setting $z=2$ in (3) leads to $2^{12} \mid C$, giving a contradiction. We are left with considering $k_{2}=0$. Thus, for $j \in\{2,3, \ldots, 9\}$, we have $4 \mid x_{j}$.

Observe that setting $z=2$ in (3) implies $2^{8} \| C$. If we now take $z=x_{1}$ in (3), we obtain

$$
C=f\left(x_{1}\right)-g\left(x_{1}\right)=-g\left(x_{1}\right)=-\prod_{j=1}^{9}\left(x_{1}-y_{j}\right) .
$$

As $x_{1}-y_{j}$ is odd for $2 \leq j \leq 9$ and $2^{8} \mid C$, we deduce that

$$
x_{1} \equiv y_{1} \quad\left(\bmod 2^{8}\right)
$$

Next, we use that $X=\left[x_{1}, x_{2}, \ldots, x_{9}\right]$ and $Y=\left[y_{1}, y_{2}, \ldots, y_{9}\right]$ being an ideal PTE solution implies

$$
x_{1}^{4}+x_{2}^{4}+\cdots+x_{9}^{4}=y_{1}^{4}+y_{2}^{4}+\cdots+y_{9}^{4} .
$$

Since $x_{1} \equiv y_{1}\left(\bmod 2^{8}\right)$, we easily obtain

$$
\begin{equation*}
x_{2}^{4}+x_{3}^{4}+\cdots+x_{9}^{4} \equiv y_{2}^{4}+y_{3}^{4}+\cdots+y_{9}^{4} \quad\left(\bmod 2^{8}\right) . \tag{5}
\end{equation*}
$$

For $j \in\{2,3, \ldots, 9\}$, we can write $y_{j}=2\left(2 y_{j}^{\prime}+1\right)$ for some $y_{j}^{\prime} \in \mathbb{Z}$. As $\left(2 y_{j}^{\prime}+1\right)^{4} \equiv 1(\bmod 16)$, we obtain

$$
\left(2 y_{2}^{\prime}+1\right)^{4}+\left(2 y_{3}^{\prime}+1\right)^{4}+\cdots+\left(2 y_{9}^{\prime}+1\right)^{4} \equiv 8 \quad(\bmod 16),
$$

from which it follows that $y_{2}^{4}+y_{3}^{4}+\cdots+y_{9}^{4}$ is exactly divisible by 2^{7}. On the other hand, $4 \mid x_{j}$ for $j \in\{2,3, \ldots, 9\}$, so $x_{2}^{4}+x_{3}^{4}+\cdots+x_{9}^{4}$ is divisible by 2^{8}. We obtain a contradiction now from (5), so $f(z)-g(z)=C$ with $\nu_{2}(C)=\nu_{2}\left(\bar{C}_{9}\right)$ is impossible in this case.

Case 1.2.3. $k_{1}^{\prime}=0$
From (3),

$$
C_{9}=f(0)-g(0)=-\prod_{j=1}^{9} x_{j}+\prod_{j=1}^{9} y_{j}
$$

is divisible by 2^{9}. This is what we set out to show, so we are done in this case. (Alternatively, one can use that the $18 x_{j}$'s and y_{j} 's cannot all have a common prime divisor p in (3) if $\nu_{p}\left(C_{9}\right)$ is minimal. From this point of view, this subcase cannot occur.)

Case 2. $k_{1}^{\prime}+k_{2}^{\prime}<9$

Since $k_{1}^{\prime} \leq 4$, we have

$$
k_{2}^{\prime} \geq\left\lceil\frac{9-k_{1}^{\prime}}{2}\right\rceil \geq 3
$$

We also have $k_{2}^{\prime} \geq k_{2}$. We note the importance of the condition $k_{1}^{\prime}+k_{2}^{\prime}<9$. This implies $k_{2}^{\prime}<9-k_{1}^{\prime}$. Hence, $\left(k_{1}^{\prime}, 0\right)$ and $\left(k_{1}^{\prime}+k_{2}^{\prime}, k_{2}^{\prime}\right)$ are points in S_{2} with x-coordinates <9. Therefore, $\left(k_{1}^{\prime}, 0\right)$ and $\left(k_{1}^{\prime}+k_{2}^{\prime}, k_{2}^{\prime}\right)$ are points in S_{1}. Since there are exactly $k_{1}=k_{1}^{\prime}$ odd x_{j} and the Newton polygon of $f(z)$ has integer slopes, we deduce that the segment joining $\left(k_{1}^{\prime}, 0\right)$ and $\left(k_{1}^{\prime}+k_{2}^{\prime}, k_{2}^{\prime}\right)$ is part of the Newton polygon of $f(z)$. In particular, $k_{2} \geq k_{2}^{\prime} \geq 3$. Since $k_{2}^{\prime} \geq k_{2}$, we deduce $k_{2}=k_{2}^{\prime} \geq 3$.

Case 2.1. $k_{1}^{\prime} \leq 3$
If $k_{1}^{\prime} \leq 3$, then there are at least six even x_{j} and six even y_{j}. Out of the six even x_{j} 's and the six even y_{j} 's, at least three x_{j} 's and three y_{j} 's are $2(\bmod 4)$. Thus, setting $z=2$ in (3), we obtain $2^{9} \mid C$, as desired.

Case 2.2. $k_{1}^{\prime}=4$
We lastly consider $k_{1}^{\prime}=k_{1}=4$ and $k_{2}=k_{2}^{\prime} \geq 3$. Since we are in the case where $k_{1}^{\prime}+k_{2}^{\prime}<9$ and $k_{1}^{\prime}=4$, we have $k_{2}^{\prime}<5$. Thus, either $k_{2}=k_{2}^{\prime}=4$ or $k_{2}=k_{2}^{\prime}=3$.

Case 2.2.1. $k_{2}=k_{2}^{\prime}=4$
If $k_{2}=k_{2}^{\prime}=4$, then out of the five even x_{j} 's and the five even y_{j} 's, there are four x_{j} 's and four y_{j} 's that are $2(\bmod 4)$. Setting $z=2$ in (3), we obtain $2^{9} \mid C$ and are done as before.

Case 2.2.2. $k_{2}=k_{2}^{\prime}=3$
Recall that the slopes of the Newton polygons of $f(z)$ and $g(z)$ are integers and the slopes increase from left to right. For each of these Newton polygons, the edge with slope 1 ends at the point $\left(k_{1}+k_{2}, k_{2}\right)=(7,3)$. Thus, the remaining edge(s) to the right have slope at least 2 , and therefore, the right-most point on each of the Newton polygons must be on or above $(9,7)$.

If the right-most points on the Newton polygons, $\left(9, \nu_{2}\left(a_{0}\right)\right)$ and $\left(9, \nu_{2}\left(b_{0}\right)\right)$, are on or above $(9,9)$, then we take $z=0$ in (3) to see that $2^{9} \mid C$. This finishes the argument in this case.

If exactly one of the Newton polygons has the right-most point (9, 7), then we set $z=2$ in (3) to get $2^{8} \mid C$. However, Lemma 3 implies that $2^{7} \| C$, a contradiction.

If both of the Newton polygons have right-most endpoint (9, 7), then by setting $z=4$ in (3), we see that $2^{9} \mid C$, giving us the conclusion we want.

We now know that one of the Newton polygons has right-most point $(9,8)$, and the other has right-most endpoint either $(9,8)$ or above $(9,8)$. If the right-most endpoint is $(9,8)$ for one of these Newton polygons, then its two right-most edges consist of the segment joining $(7,3)$ to $(8,5)$ and the segment joining $(8,5)$ to $(9,8)$. In particular, if $(9,8)$ is the right-most endpoint for both of the

Newton polygons, then $x_{8} \equiv y_{8} \equiv 8(\bmod 16)$. Setting $z=8$ in (3) for this case, we obtain $2^{9} \mid C$, as desired.

Finally, we consider the case that one of the Newton polygons has right-most endpoint $(9,8)$ and the other Newton polygon has right-most endpoint above $(9,8)$. Recall that the two points $\left(j, \nu_{2}\left(a_{9-j}\right)\right)$ and $\left(j, \nu_{2}\left(b_{9-j}\right)\right)$ agree for $j \in\{0,1, \ldots, 8\}$. We deduce that $(8,5)$ is a point in either S_{1} or S_{2}, and thus in both. Hence the edge joining $(7,3)$ and $(8,5)$ is common to both Newton polygons. As each of $x_{5}, x_{6}, x_{7}, y_{5}, y_{6}$, and y_{7} is 2 modulo 4 , each is either 2 or 6 modulo 8 . If $x_{j} \equiv y_{j}(\bmod 8)$ for some $j \in\{5,6,7\}$, then by setting $z=x_{j}$ in (3), we see that $2^{9} \mid C$, and we are done.

Hence, we only need to consider the case that each of x_{5}, x_{6}, and x_{7} is congruent modulo 8 , each of y_{5}, y_{6}, and y_{7} is congruent modulo 8 , and $x_{5} \not \equiv y_{5}(\bmod 8)$. As a consequence, one of the sums $x_{5}+x_{6}+x_{7}$ or $y_{5}+y_{6}+y_{7}$ is equivalent to $2+2+2 \equiv 6(\bmod 8)$ and the other is $6+6+6 \equiv 2(\bmod 8)$. Further, since $(7,3)$ and $(8,5)$ are points on the Newton polygon of $f(z)$ and on the Newton polygon of $g(z)$, we obtain from Lemma 2 that

$$
x_{8} \equiv y_{8} \equiv 4 \quad(\bmod 8)
$$

Further, since the right-most points of the Newton polygons are on or above (9, 8), by Lemma 2 we have

$$
x_{9} \equiv y_{9} \equiv 0 \quad(\bmod 8)
$$

Since $x_{5}+x_{6}+x_{7} \not \equiv y_{5}+y_{6}+y_{7}(\bmod 8), x_{8} \equiv y_{8}(\bmod 8)$, and $x_{9} \equiv y_{9}(\bmod 8)$, we obtain that

$$
x_{5}+x_{6}+x_{7}+x_{8}+x_{9} \not \equiv y_{5}+y_{6}+y_{7}+y_{8}+y_{9} \quad(\bmod 8) .
$$

This contradicts (4) in Lemma 5 with $t=4, n=9$ and $k=1$. Thus, we are done in this case.

4 Lower bound for $\nu_{2}\left(\bar{C}_{8}\right)$

In this section, we show that $2^{6} \mid C$. Recall, with $n=8$, we know $2^{9} \nmid C$. For possible future analysis, we show in all but one case of conditions on $X=\left[x_{1}, \ldots, x_{8}\right]$ and $Y=\left[y_{1}, \ldots, y_{8}\right]$ that we consider, one has $2^{8} \mid \bar{C}_{8}$.

As before, we work with (3), and set $n=8$ and $C=C_{n}$. Recall $f(z)$ and $g(z)$ have been translated, if necessary, so that $a_{0} \neq 0, b_{0} \neq 0$ and $k_{1}, k_{1}^{\prime}, k_{2}$, and k_{2}^{\prime} are as before. Thus, $k_{1}^{\prime}=k_{1} \leq 4, k_{2}^{\prime} \geq\left\lceil\left(8-k_{1}^{\prime}\right) / 2\right\rceil \geq 2$ and $k_{2}^{\prime} \geq k_{2}$. Since here the lists X and Y have eight elements, $k_{1}+k_{2} \leq 8$ and $k_{1}^{\prime}+k_{2}^{\prime} \leq 8$.

Case 1. $k_{1}^{\prime}=4$ and $k_{2}^{\prime}=4$
From Corollary 3, we have $k_{2} \equiv k_{2}^{\prime}(\bmod 4)$. Thus, either $k_{2}=0$ or $k_{2}=4$. In the second case, letting $z=2$ in (3) shows $2^{8} \mid C$, as we want. So suppose $k_{2}=0$. In this case, the edges of the Newton polygon of $f(z)$ with positive slope have slope ≥ 2. In particular, this implies

$$
\nu_{2}\left(a_{8-j}\right) \geq 2(j-4) \quad \text { for } 5 \leq j \leq 8
$$

As the points $\left(j, \nu_{2}\left(a_{8-j}\right)\right)$ on S_{1} and $\left(j, \nu_{2}\left(b_{8-j}\right)\right)$ on S_{2} agree for $0 \leq j \leq 7$, we deduce

$$
\begin{equation*}
\nu_{2}\left(b_{8-j}\right) \geq 2(j-4) \quad \text { for } 5 \leq j \leq 7 \tag{6}
\end{equation*}
$$

Define $u_{j} \in \mathbb{Z}$ by the equation

$$
\left(z-y_{5}\right)\left(z-y_{6}\right)\left(z-y_{7}\right)\left(z-y_{8}\right)=\sum_{j=0}^{4} u_{j} z^{j}
$$

Next, we obtain information on the 2 -adic values of the u_{j}. As $y_{j} \equiv 2(\bmod 4)$ for $5 \leq j \leq 8$, we have

$$
u_{0}=y_{5} y_{6} y_{7} y_{8} \Longrightarrow \nu_{2}\left(u_{0}\right)=4
$$

Also, u_{1} is the sum of 4 terms that are exactly divisible by 8 , so $\nu_{2}\left(u_{1}\right) \geq 4$. Assume $\nu_{2}\left(u_{1}\right)=4$. We make use of the congruence

$$
\begin{equation*}
\left(z-y_{1}\right)\left(z-y_{2}\right)\left(z-y_{3}\right)\left(z-y_{4}\right) \equiv(z+1)^{4} \equiv z^{4}+1 \quad(\bmod 2) \tag{7}
\end{equation*}
$$

Thus, the product on the left when expanded is a quartic with odd constant term and an odd coefficient for z^{4} but otherwise has even coefficients. Thus, there are integers r and s satisfying

$$
b_{1}=u_{1}(2 r+1)+u_{0}(2 s) .
$$

Since $\nu_{2}\left(u_{0}\right)=\nu_{2}\left(u_{1}\right)=4$, we deduce $\nu_{2}\left(b_{1}\right)=4$. This contradicts (6) with $j=7$. Thus,

$$
\nu_{2}\left(u_{1}\right) \geq 5
$$

Writing $y_{j}=2\left(2 y_{j}^{\prime}+1\right)$ for $5 \leq j \leq 8$, we see that

$$
u_{1}=-2^{3}\left(2 y_{5}^{\prime}+1\right)\left(2 y_{6}^{\prime}+1\right)\left(2 y_{7}^{\prime}+1\right)\left(2 y_{8}^{\prime}+1\right)\left(\frac{1}{2 y_{5}^{\prime}+1}+\frac{1}{2 y_{6}^{\prime}+1}+\frac{1}{2 y_{7}^{\prime}+1}+\frac{1}{2 y_{8}^{\prime}+1}\right)
$$

We note that every odd square is $1(\bmod 8)$. In particular, $\left(2 y_{k}^{\prime}+1\right)^{2} \equiv 1(\bmod 8)$. Therefore, for each $k \in\{5,6,7,8\}$, we have

$$
\begin{aligned}
\left(2 y_{5}^{\prime}+1\right)\left(2 y_{6}^{\prime}+1\right) & \left(2 y_{7}^{\prime}+1\right)\left(2 y_{8}^{\prime}+1\right) \frac{1}{2 y_{k}^{\prime}+1} \\
& \equiv\left(2 y_{5}^{\prime}+1\right)\left(2 y_{6}^{\prime}+1\right)\left(2 y_{7}^{\prime}+1\right)\left(2 y_{8}^{\prime}+1\right) \frac{1}{2 y_{k}^{\prime}+1} \cdot\left(2 y_{k}^{\prime}+1\right)^{2} \\
& \equiv\left(2 y_{5}^{\prime}+1\right)\left(2 y_{6}^{\prime}+1\right)\left(2 y_{7}^{\prime}+1\right)\left(2 y_{8}^{\prime}+1\right)\left(2 y_{k}^{\prime}+1\right) \quad(\bmod 8)
\end{aligned}
$$

We deduce that

$$
-\frac{u_{1}}{2^{3}} \equiv\left(2 y_{5}^{\prime}+1\right)\left(2 y_{6}^{\prime}+1\right)\left(2 y_{7}^{\prime}+1\right)\left(2 y_{8}^{\prime}+1\right) \sum_{j=5}^{8}\left(2 y_{j}^{\prime}+1\right) \quad(\bmod 8)
$$

Since $\nu_{2}\left(u_{1}\right) \geq 5$, we deduce that the last sum above must be divisible by 4 . Hence,

$$
u_{3}=-y_{5}-y_{6}-y_{7}-y_{8}=-2 \sum_{j=5}^{8}\left(2 y_{j}^{\prime}+1\right) \Longrightarrow \nu_{2}\left(u_{3}\right) \geq 3 .
$$

Observe that

$$
\begin{equation*}
u_{3}^{2}=2^{2} \sum_{j=5}^{8}\left(2 y_{j}^{\prime}+1\right)^{2}-2 u_{2} . \tag{8}
\end{equation*}
$$

Since

$$
\sum_{j=5}^{8}\left(2 y_{j}^{\prime}+1\right)^{2} \equiv 4 \quad(\bmod 8)
$$

we see that $2^{2} \sum_{j=5}^{8}\left(2 y_{j}^{\prime}+1\right)^{2}$ is exactly divisible by 2^{4}. On the other hand, $\nu_{2}\left(u_{3}\right) \geq 3$ implies u_{3}^{2} is divisible by 2^{6}. Hence, (8) implies

$$
\nu_{2}\left(u_{2}\right)=3
$$

From (7), there exist integers r, s and t such that

$$
b_{2}=u_{2}(2 r+1)+u_{1}(2 s)+u_{0}(2 t) .
$$

The values and estimates obtained above on $\nu_{2}\left(u_{j}\right)$, with $j \in\{0,1,2\}$, imply now that $\nu_{2}\left(b_{2}\right)=3$. This contradicts (6) with $j=6$, completing this case.

Case 2. $k_{1}^{\prime} \leq 3$
We can suppose $k_{1}^{\prime} \geq 1$ (see Case 1.2 .3 of the previous section). Since $k_{1}^{\prime} \leq 3$, we obtain $k_{2}^{\prime} \geq$ $\lceil(8-3) / 2\rceil=3$. Suppose first that $k_{2}^{\prime}<8-k_{1}^{\prime}$. Since the points $\left(j, \nu_{2}\left(a_{8-j}\right)\right)$ on S_{1} and $\left(j, \nu_{2}\left(b_{8-j}\right)\right)$ on S_{2} agree for $0 \leq j \leq 7$, we deduce that $k_{2}=k_{2}^{\prime}$. In this case, letting $z=2$ in (3), we see that $2^{8} \mid C$, as we want. Now, suppose $k_{2}^{\prime}=8-k_{1}^{\prime}$. From Corollary 3, we have $k_{2} \equiv k_{2}^{\prime}$ $(\bmod 4)$. Hence, $k_{2} \geq 1$ and, in particular, $x_{k_{1}^{\prime}+1} \equiv 2(\bmod 4)$. Let $z=x_{k_{1}^{\prime}+1}$ in (3). As $f(z)=0$ and $g(z)$ is divisible by 2^{10}, we get $2^{10} \mid C$, contradicting that $2^{9} \nmid C$.

Case 3. $k_{1}^{\prime}=4$ and $k_{2}^{\prime}<4$
Given that $k_{1}^{\prime}+k_{2}^{\prime}<8$ in addition to knowing $k_{1}=k_{1}^{\prime}$ and $k_{2}^{\prime} \geq k_{2}$, we deduce $k_{1}+k_{2} \leq k_{1}+k_{2}^{\prime}=$ $k_{1}^{\prime}+k_{2}^{\prime}<8$. Since the points $\left(j, \nu_{2}\left(a_{8-j}\right)\right)$ on S_{1} and $\left(j, \nu_{2}\left(b_{8-j}\right)\right)$ on S_{2} agree for $0 \leq j \leq 7$, we conclude that $k_{2}=k_{2}^{\prime}$ in this case. Note that $k_{2}^{\prime} \geq\lceil(8-4) / 2\rceil=2$. Setting $z=2$, one checks in this case that $2^{8+k_{2}^{\prime}-k_{1}^{\prime}}$ divides C. As $8+k_{2}^{\prime}-k_{1}^{\prime} \geq 8+2-4=6$, we obtain $2^{6} \mid C$ in this case, giving us the desired conclusion.

References

[1] Andreas Alpers and Robert Tijdeman, The two-dimensional Prouhet-Tarry-Escott problem, J. Number Theory 123 (2007), 403-412.
[2] Bernd Borchert, Pierre McKenzie, and Klaus Reinhardt, Few Product Gates But Many Zeros, Mathematical foundations of computer science 2009, Lecture Notes in Computer Science No. 5734, Springer, Berlin, 2009,162-174.
[3] Peter Borwein, Computational Excursions in Analysis and Number Theory, CMS Books in Mathematics 10, Springer-Verlag, New York, 2002.
[4] Peter Borwein, Petr Lisoněk and Colin Percival, Computational investigations of the Prouhet-Tarry-Escott problem, Math. Comp. 72 (2003), 2063-2070.
[5] Peter Borwein and Colin Ingalls, The Prouhet-Tarry-Escott Problem revisited, Enseign. Math. 40 (1994), 3-27.
[6] Timothy Caley, The Prouhet-Tarry-Escott problem for Gaussian integers, Mathematics of Computation, 282 (2013), 1121-1137.
[7] Timothy Caley, The Prouhet-Tarry-Escott problem, Doctor of Philosophy thesis, Waterloo, Ontario, Canada, 2012.
[8] Ajai Choudhry, Ideal solutions of the Tarry-Escott problem of degrees four and five and related Diophantine systems, Enseign. Math. 49 (2003), 101-108.
[9] Leonard Eugene Dickson, History of the Theory of Numbers, Vol. II, Chapter 24, Chelsea, New York, 1971.
[10] Gustave Dumas, Sur quelques cas d'irréductibilité des polynômes à coefficients rationnels, Journal de Math. Pure et Appl. 2 (1906), 191-258.
[11] Kálmán Győry, Lajos Hajdu and Robert Tijdeman, Irreducibility criteria of Schur-type and Pólya-type, Monatsh. Math. 163 (2011), 415-443.
[12] Godfrey Harold Hardy and Edward Maitland Wright, An Introduction to the Theory of Numbers, 3rd ed. Oxford, at the Clarendon Press, 1954.
[13] Santos Hernández and Florian Luca, Integer Roots Chromatic Polynomials of Non-Chordal Graphs and the Prouhet-Tarry-Escott Problem, Graphs and Combinatorics 21 (2005), 319323.
[14] Howard Kleiman, A note on the Tarry-Escott problem, J. Reine Angew. Math. 278/279 (1975), 48-51.
[15] Adolphe Létac, Gazeta Mathematică 48 (1942), 68-69.
[16] Roy Maltby, Pure product polynomials and the Prouhet-Tarry-Escott problem, Math. Comp. 66 (1997), 1323-1340.
[17] Eugène Prouhet, Mémoire sur quelques relations entre les puissances des nombres, C. R. Acad. Sci. Paris, srie I, 33 (1851) p. 225.
[18] Elmer Rees and Christopher Smyth, On the constant in the Tarry-Escott Problem, Lecture Notes in Mathematics 1415, Springer, Berlin, 1990, 196-208.
[19] Arto Salomaa, Subword balance, position indices and power sums, J. Comput. System Sci. 76 (2010), 861-871.
[20] Gaston Tarry, L’intermédiaire des mathématiciens vol. 19 (1912) pp. 200, 219-221; vol. 20 (1913) pp. 68-70.
[21] Edward Maitland Wright, On Tarry's problem (I), Quart. J. Math. 6 (1935) 261-267.
[22] Edward Maitland Wright, Prouhet's 1851 solution of the Tarry-Escott problem, Amer. Math. Monthly 66 (1959), 199-201.
[23] Edward Maitland Wright, The Tarry-Escott and the "easier" Waring problems, J. Reine Angew. Math. 311/312 (1979), 170-173.

