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ON THE IRREDUCIBILITY OF A POLYNOMIAL
ASSOCIATED WITH THE STRONG FACTORIAL CONJECTURE

BY

MICHAEL FILASETA and BRADY ROCKS (Columbia, SC)

Abstract. Asymptotically, more than 2/3 of the polynomials from a sequence of poly-
nomials in Z[x], arising from an example associated with the Strong Factorial Conjecture,
are shown to be irreducible in Z[x].

1. Introduction. The Strong Factorial Conjecture of E. Edo and A. van
den Essen [3] is concerned with the linear functional L on the space of
complex polynomials defined by sending a monomial generator za11 · · · zann
to (a1!) · · · (an!). The conjecture asserts that for a non-zero multi-variable
complex polynomial F , the maximum number of consecutive zeroes that
may appear in the sequence {L(Fn) : n ≥ 1} is N(F ) − 1, where N(F ) is
the number of monomials appearing in F with non-zero coefficient.

In [12], the second author considered the irreducibility in Z[x] of the
polynomials

fn,m(x) =

n∑
j=0

(
n

j

)
(mj)!xj

in connection with his studies on the Strong Factorial Conjecture, specifi-
cally in the case F = 1 + λzm where λ ∈ C. Among other results, fn,m(x)
was established in [12] to be irreducible when n = pr where p is a prime
> m and r is a positive integer.

In this paper, we prove the following.

Theorem 1.1. Fix a positive integer m. Then

lim inf
X→∞

|{n ≤ X : fn,m(x) is irreducible}|
X

≥ log 2.

As log 2 = 0.693147 . . . , we deduce that more than 2/3 of the polynomials
fn,m(x) are irreducible in Z[x] for a fixed positive integer m. We do not know
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of an instance where fn,m(x) is reducible, so presumably a much stronger
result than Theorem 1.1 holds.

2. Preliminaries on Newton polygons. Let

f(x) =

n∑
j=0

ajx
j ∈ Z[x] with a0an 6= 0.

Let p be a prime. For an integer m 6= 0, we denote by νp(m) the exponent
in the largest power of p dividing m. We define νp(0) = ∞. Let S be the
set of lattice points (j, νp(an−j)), for 0 ≤ j ≤ n, in the extended plane. We
consider the lower edges along the convex hull of these points. The left-most
edge has an endpoint (0, νp(an)) and the right-most edge has (n, νp(a0)) as
an endpoint. The polygonal path along the lower edges of the convex hull
from (0, νp(an)) to (n, νp(a0)) is called the Newton polygon of f(x) with
respect to the prime p. The endpoints of every edge belong to the set S, and
each edge has a distinct slope that increases as we move along the Newton
polygon from left to right.

The following important theorem due to G. Dumas [2] connects the New-
ton polygon of f(x) with respect to a prime p with the Newton polygon of
its factors with respect to the same prime.

Theorem 2.1. Let g(x) and h(x) be in Z[x] with g(0)h(0) 6= 0, and
let p be a prime. Let k be a non-negative integer such that pk divides the
leading coefficient of g(x)h(x) but pk+1 does not. Then the edges of the
Newton polygon for g(x)h(x) with respect to p can be formed by constructing
a polygonal path beginning at (0, k) and using translates of the edges in
the Newton polygons for g(x) and h(x) with respect to the prime p, using
exactly one translate for each edge of the Newton polygons for g(x) and h(x).
Necessarily, the translated edges are translated in such a way as to form a
polygonal path with the slopes of the edges increasing.

As a particular consequence of Theorem 2.1, we have the following. Let
f(x) ∈ Z[x] with f(0) 6= 0. Let

(x0, y0), (x1, y1), . . . , (xr, yr), with 0 = x0 < x1 < · · · < xr = deg f,

denote the lattice points along the edges of the Newton polygon of f(x)
with respect to a prime p. Set dj = xj − xj−1 for 1 ≤ j ≤ r. Then the set
{1, . . . , r} can be written as a disjoint union of sets S1, . . . , St where t is
the number of irreducible factors of f(x) (counted with multiplicities) and
the t numbers

∑
u∈Sj

du, for 1 ≤ j ≤ t, are the degrees of the irreducible

factors of f(x). Note that it is important here to consider all lattice points
along the edges of the Newton polygon of f(x) with respect to p and not
just lattice points of the form (j, νp(an−j)) used in the construction of the
Newton polygon.
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Before applying Theorem 2.1 to obtain information about the factoriza-
tion of fn,m(x), we first obtain information on Newton polygons of fn,m(x).
We begin with a classical result on the largest power of a prime dividing a
binomial coefficient that we use to compute νp(aj) where aj =

(
n
j

)
(mj)! is

the coefficient of xj in fn,m(x).

Lemma 2.2. Let n and j be non-negative integers with n > 0, and let p
be a prime. If b is the number of borrows needed when j is subtracted from
n in base p, then

νp

((
n

j

))
= b.

Lemma 2.2 is due to E. E. Kummer [7] but originally stated in the
form of carries when adding j and n − j in base p. Kummer uses another
classical result due to A.-M. Legendre [8], connecting the largest power of p
dividing n! with the sum of the base p digits of n.

The next lemma can be found in [12]. The proof given here is based on
a somewhat different analysis.

Lemma 2.3. Let k, m and r be positive integers, and let q be a prime
> mk. Let n = kqr. Then the Newton polygon of fn,m(x) with respect to q
consists of a single edge which has slope −m(qr − 1)/(qr(q − 1)).

Proof. For 0≤ j ≤ n, we set aj =
(
n
j

)
(mj)! so that fn,m(x) =

∑n
j=0 ajx

j .
In particular,

νq(a0) = νq(1) = 0.

Since q > mk, we have

νq(an) = νq((mn)!) =

∞∑
u=1

⌊
mn

qu

⌋
=

r∑
u=1

⌊
mkqr

qu

⌋
=

r∑
u=1

mkqr

qu
=
mk(qr − 1)

q − 1
.

We deduce that the line through (0, νq(an)) and (n, νq(a0)) has slope equal
to −m(qr − 1)/(qr(q − 1)) and equation

y =
−m(qr − 1)

qr(q − 1)
· x+

mk(qr − 1)

q − 1
.

We want to prove that, for 0 < j < n, the point (n− j, νq(aj)) is above this
line, that is,

νq(aj) ≥
−m(qr − 1)

qr(q − 1)
· (n− j) +

mk(qr − 1)

q − 1
=
mj(qr − 1)

qr(q − 1)
.

Note that n in base q consists of the single digit mk followed by r zeroes. Fix
j ∈ (0, n), and let t = νq(j). Then j < n implies t ∈ [0, r], and j in base q
ends with exactly t digits that are zero. It follows that when j is subtracted
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from n in base q, exactly r − t borrows are required. Hence,

νq

((
n

j

))
= r − t.

Using the fact that qt | j, we now deduce that

νq(aj) ≥ νq
((

n

j

)
(mj)!

)
= νq

((
n

j

))
+ νq((mj)!)

= r − t+
∞∑
u=1

⌊
mj

qu

⌋
= r − t+

t∑
u=1

⌊
mj

qu

⌋
+

r∑
u=t+1

⌊
mj

qu

⌋

= r − t+
t∑

u=1

mj

qu
+

r∑
u=t+1

⌊
mj

qu

⌋

≥ r − t+
t∑

u=1

mj

qu
+

r∑
u=t+1

(
mj

qu
− 1

)
=

r∑
u=1

mj

qu
=
mj(qr − 1)

qr(q − 1)
.

The lemma follows.

Lemma 2.4. Let k and m be positive integers, and let q be a prime
number ≥ (m+1)2/(km). Let p be a prime in the interval (kqm/(m+1), kq],
and let n = kq. Then the Newton polygon of fn,m(x) with respect to p has
an edge with slope −m/p.

Comment. Though not needed for this paper, the statement of Lem-
ma 2.4 seemingly holds for a larger range of primes p.

Proof of Lemma 2.4. Again, we set fn,m(x) =
∑n

j=0 ajx
j where aj =(

n
j

)
(mj)! for 0 ≤ j ≤ n. Observe that

2p >
2kqm

m+ 1
≥ kq ≥ n,

so νp(n!) = 1. One checks that

(2.1) νp

((
n

j

))
=

{
1 if n− p < j < p,

0 otherwise.

If the expression (mj)! is divisible by p, then j ≥ p/m. On the other hand,
the condition p > kqm/(m+ 1) is equivalent to p/m > n− p. Thus,

νp

((
n

j

)
(mj)!

)
= 0 for 0 ≤ j ≤ n− p.

The inequality q ≥ (m+ 1)2/(km) implies

p2 >

(
mn

m+ 1

)2

≥ mn.
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From p ∈ (kqm/(m+ 1), kq], we have

m ≤ mn/p < m+ 1.

Hence,

νp(an) = νp((mn)!) = bmn/pc+ bmn/p2c+ · · · = bmn/pc = m.

We justify that the Newton polygon of fn,m(x) with respect to p consists
of the segment s from (0,m) to (p, 0) together with the segment from (p, 0)
to (n, 0). What is left to establish is that the points (n − j, νp(aj)), for
n− p < j < n, lie on or above the segment s. Since the line through (0,m)
and (p, 0) has equation y = (−m/p)x+m, we want to prove

(2.2) νp(aj) ≥ −m(n− j)/p+m

for n− p < j < n. As p ≤ n, we have

−m(n− j)/p+m = −mn/p+mj/p+m ≤ −m+mj/p+m = mj/p.

Thus, for j ∈ (n− p, n), it suffices to show that either (2.2) holds or

(2.3) νp(aj) ≥ mj/p.

For n− p < j < p, using (2.1), we see that

νp(aj) = νp

((
n

j

)
(mj)!

)
= 1 + νp((mj)!) ≥ 1 + bmj/pc > mj/p,

so that (2.3) holds for such j. For p ≤ j < n, we have

νp(aj) = νp((mj)!) ≥ bmj/pc ≥ bmp/pc = m,

implying (2.2) for these j. The lemma follows.

3. Proof of Theorem 1.1. H. Cramér [1] showed that if the Rie-
mann Hypothesis holds and pn is the nth prime number, then pn+1 − pn =
O(
√
pn log pn). According to C. J. Moreno [10], P. Erdős posed the related

problem of establishing that, for every ε > 0, almost all numbers n are a
distance ≤ n(1/2)+ε from a prime. More specifically, Erdős asked whether
there is a constant c < 1 such that∑

pn+1−pn>x(1/2)+ε

pn+1≤x

(pn+1 − pn)� xc.

Moreno establishes this asymptotic in a weaker form with xc replaced nev-
ertheless by a function which is small compared to x as x tends to infinity.
D. Wolke [13] resolved the problem of Erdős in the affirmative, and a num-
ber of other authors (cf. [5, 6, 9, 11]) have since improved on the value of c
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in the asymptotic. In particular, K. Matomäki’s work [9] implies that

(3.1)
∑

pn+1−pn>
√
pn

pn≤x

(pn+1 − pn)� x2/3.

For our purposes, the weaker result of Moreno would suffice, but we use (3.1).

Fix a positive integer m. Let M = (m+ 1)2/m. Note that M ≥ 4. Let A
be the set of positive integers n that have a prime factor q >

√
Mn. Let B

be the set of positive integers n for which there exists a prime p satisfying
n −
√
n < p ≤ n. Set C = A ∩ B. We next obtain the asymptotic densities

of the sets A and B in the set of integers, that is, the values of

lim
x→∞

|{n ≤ x : n ∈ A}|
x

and lim
x→∞

|{n ≤ x : n ∈ B}|
x

.

The asymptotic density ofA is connected with the distribution of smooth
numbers (numbers with only small prime factors) and is easily explained.
Using the notation π(x) for the number of primes ≤ x, and p to represent a
prime, observe that

|{x < n ≤ 2x : n ∈ A}|

=
∑

√
Mx<p≤2x

(⌊
2x

p

⌋
−
⌊
x

p

⌋)
+O

( ∑
√
Mx<p≤

√
2Mx

(⌊
2x

p

⌋
−
⌊
x

p

⌋))

=

( ∑
√
Mx<p≤2x

x

p

)
+O(π(2x)) +O

( ∑
√
Mx<p≤

√
2Mx

x

p

)
.

Using Mertens’ estimate for the sum of the reciprocals of the primes (cf.
[4, Theorem 427]) and a Chebyshev estimate (cf. [4, Theorem 7]), we can
deduce from the above that

(3.2) lim
x→∞

|{n ≤ x : n ∈ A}|
x

= log 2.

For the asymptotic density of B, we consider first the asymptotic density
of the complement of B in the set of positive integers. Fix a positive integer
n in the complement of B. Let p′ and p′′ be the consecutive primes for which
p′ ≤ n < p′′. Since n 6∈ B, we have p′ ≤ n−

√
n. Thus,

p′′ − p′ > n− (n−
√
n) =

√
n ≥

√
p′.

Therefore, such n lie in an interval [p′, p′′) where p′ and p′′ are consecutive
primes for which p′′−p′ >

√
p′. By (3.1), the n in the complement of B have

asymptotic density 0. Therefore,

(3.3) lim
x→∞

|{n ≤ x : n ∈ B}|
x

= 1.
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Combining (3.2) and (3.3), we deduce that

lim
x→∞

|{n ≤ x : n ∈ C}|
x

= log 2.

Thus, to establish Theorem 1.1, it suffices to show that if n is a sufficiently
large element of C, then fn,m(x) is irreducible.

Consider such an n. Then n ∈ A implies that we can write n = kq where
k is a positive integer and q is a prime satisfying

q >
√
Mn =

√
Mkq ⇒ q > Mk > mk.

By Lemma 2.3, we deduce that the Newton polygon of fn,m(x) with respect
to the prime q consists of a single edge with slope −m/q. Since q is a prime
> m, the fraction −m/q is reduced. As a consequence of Theorem 2.1, we
can deduce that each irreducible factor of fn,m(x) has degree divisible by q
(as noted in [12]).

Next, we apply Lemma 2.4. Since q > Mk where M = (m + 1)2/m, we
see that

q >
(m+ 1)2k

m
≥ (m+ 1)2

km
.

We set p to be the largest prime ≤ n. To apply Lemma 2.4, we want to show
that

p >
nm

m+ 1
.

Since n is sufficiently large and m is fixed, this inequality is an easy conse-
quence of the Prime Number Theorem (i.e., that there is a prime number in
the interval ((1− ε)n, n], where ε = 1/(m+ 1)). Lemma 2.4 implies that the
Newton polygon of fn,m(x) with respect to the prime p has an edge with
slope −m/p. Theorem 2.1 now shows that fn,m(x) has an irreducible factor
of degree ≥ p.

To establish that fn,m(x) is irreducible, it is now sufficient to show that
the smallest multiple of q that is ≥ p is n = kq. This is equivalent to
establishing that n− q < p. Since q >

√
Mn >

√
n, we need only show that

n−
√
n < p. The latter inequality follows from n ∈ B, completing the proof

of Theorem 1.1.

Acknowledgments. The first author expresses his gratitude to the
NSA for grant support during the period of this research.

REFERENCES

[1] H. Cramér, Some theorems concerning prime numbers, Ark. Mat. Astronom. Fys. 15
(1920), no. 5, 33 pp.
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