
Collaborative Research:
Distribution of multiplicative functions and primes

1. Mean Values of Multiplicative functions

A central theme of multiplicative number theory is the estimation of mean-values of
multiplicative functions. Many of the main results and conjectures of number theory can
be viewed as results and conjectures on this kind of question, indeed everything from the
Riemann Hypothesis, to the recently proved Taniyama Conjecture, to the mysterious eigen-
value distribution problems of Sato-Tate and Lang-Trotter, and recently to the growing
circle of ideas in quantum chaos. Rather than focusing on these applications we are more
interested in building a general body of theory, which may lead to proofs of some of the
outstanding questions in the area. Although the task of building a general body of theory
has been around for a long time there have been several interesting recent advances that
lead one to believe that significant progress may soon be made on the central problems of
the field.

We describe below some of these recent advances. The PIs have been involved in several
of these new directions (and thus the “results from prior NSF support” are mixed into the
text below) and, as we shall describe, we have plans to go further. By collaborating we
hope that we will be able to combine some of these methods and move forward in new
ways.

1a. The absolute value of the mean value.
Unless otherwise stated we assume that f is a multiplicative function with |f(n)| ≤ 1

for all n. It is easy to show that ∑
n≤x

f(n) ∼ cfx

where
cf =

∏
p

(1− 1/p)(1 + f(p)/p+ f(p2)/p2 + f(p3)/p3) + . . . ),

if
∑
p(1−<f(p))/p converges; but what if this sum diverges? In 1967 Wirsing showed the

remarkable result that if f is real-valued then, in this case,
∑
n≤x f(n) = o(x). However

Wirsing’s result does not directly generalize to the complex case, for in the example f(n) =
nit we have (1/x)

∑
n≤x f(n) does not converge while

∑
p(1−<f(p))/p diverges. In 1975

Halasz showed the beautiful, unexpected result that the above provides, essentially, the
only counterexample to generalizing Wirsing’s Theorem. More precisely that if

∑
p(1 −

<(f(p)/pit))/p diverges for every real t, then
∑
n≤x f(n) = o(x). Halasz also provided

an quantitative version of his result, and there has been considerable subsequent effort
dedicated to giving a “best possible” version. Moreover several important technical tools
of analytic number theory (such as the Halasz-Montgomery lemma) were created for this
quest. In recent work, Granville and Soundararajan have (for the first time) made the
main term in such results entirely explicit, and showed that these are best possible up to



a factor of 10 (as a function of mint≤T
∑
p≤x(1 − <(f(p)/pit))/p). This should be quite

valuable in applications of this result.
The function used in the above upper bound is hard to compute. It has become tradi-

tional to try to give bounds in terms of the more accessible
∑
p≤x(1−<f(p))/p. In order

to get interesting results in this case we now restrict f(p) to be in a closed convex subset
S of the unit circle. Granville and Soundararajan have (for the first time) made the main
term in such results, and Hall has shown that such results would be best possible up to a
constant. Again this is useful for applications, for example in hybrid sieve problems. In
[GS5] they gave, for each integer m ≥ 2 a constant πm > 0 such that if x is sufficiently
large then, for any prime p, there are at least πmx integers n ≤ x for which n is an mth
power residue mod p.

1b. Determining mean values.
In the literature there seem to be two situations in which authors have been able to

determine the mean values of multiplicative functions:
• When there is sufficient convergence (as above) so that the mean value is asymptoti-

cally equal to the Euler product∏
p≤x

(1− 1/p)(1 + f(p)/p+ f(p2)/p2 + . . . ).

• When the values of f are very special and the function can be “modeled” by an
integral delay equation. The best known example is where f(p) = 1 for all p ≤ y and
f(p) = 0 otherwise, and the mean value is ∼ ρ(u) where x = yu (in an appropriate range),
and ρ(u) = 1 for u ≤ 1, with ρ(u) = (1/u)

∫ 1

0
ρ(u− t)dt for u > 1.

Most research in the subject has focussed on getting sharp error terms in examples
of the above two cases, sometimes for fascinating applications (especially in certain sieve
problems), sometimes for the sake of it (which is not very often interesting), and sometimes
because a sharp enough error term would imply the Riemann Hypothesis. As we shall
explain in the next subsection, it has recently been shown how mean values, in typical
questions, can be broken as the product of two mean values, one of each of the two types
above.

1c. Mean values in the complex plane.
A question of longstanding interest has been to determine, for a given closed convex

subset S of the unit circle, the “spectrum”, Γ(S), of possible mean-values (1/x)
∑
n≤x f(n)

in the complex plane, where we restrict each f(p) ∈ S. Perhaps due to the fact that so
little was known on explicit versions of Halasz’s theorem, this sort of problem often came
up but there seem to be few results on it in the literature (except if S = [0, 1]). The “main
result” of [GS4] is that mean values can be determined for all f ∈ F(S) (where F(s) is the
set of multiplicative functions f such that f(p) ∈ S for all primes p), and asymptotically
equal the product of such an Euler product and the value of the solution to such an integral
delay equation (essentially we use the Euler product for the “contribution” of the “small”
primes, and the delay equation for the contribution of the “large” primes). Such an idea
appears implicitly in older works of Wirsing and Hildebrand, but ours seems to be the



first attempt to prove it in such generality. We also proved a converse to the above result:
Given an Euler product value and a solution to an integral delay equation we could find
a multiplicative function with the above property. Since the values taken by such Euler
products are relatively easy to understand, our focus became solutions to integral delay
equations. To be precise, above we referred to Λ(S), the integral delay equations spectrum,
the set of values σ(v), where χ : [0,∞)→ S is any measurable function, with χ(t) = 1 for
t ≤ 1, and σ(u) is the solution to uσ(u) =

∫ u
0
σ(t)χ(u− t)dt with initial condition σ(u) = 1

for u ≤ 1. Thus we can now “translate” results and conjectures about mean values of
multiplicative functions into results and conjectures about integral delay equations. In
general the theory of integral delay equations is cleaner so that it is easier to progress with
them. Thus for example we were able to improve on the Halász-Montgomery lemma, and
have actually been able to significantly shorten several difficult arguments in the literature
(for example Hildebrand’s bounds on F([0, 1])). Many results and techniques of classical
analytic number theory translate into techniques for studying these delay equations (for
example the inclusion-exclusion principle and the large sieve). We most desire, though,
techniques of analysis which translate back to new number theory results.

Granville and Soundararajan have been discussing with experts in integral delay equa-
tions (Volterra equations) what techniques of that field might be applied here. The feeling
of Professor L.A. Peletier of Leiden U. is that these are very interesting questions but not
quite attackable by familiar results. They are now beginning to explore the area (both
above and the next few subsections) with Professor J. Hale of Georgia Tech.

1d. The shape of the “spectrum”.
It can be showed that if 1 6∈ S then Γ(S) = {0} so we assume that 1 ∈ S. If 1 is not

isolated in S intersected with the unit circle then one can show that Γ(S) is the whole unit
circle, so we assume that 1 is isolated. Although we have made several discoveries about
the shape and size of Γ(S) we have only precisely determined it when S is a subset of the
reals (see below).

The spectrum must be a subset of the unit disc, it contains 0 and 1, and is connected.
In [GS4] we prove that if S contains a real point other than 1 then its spectrum contains a
small disc centered around the origin. In general we show that the spectrum is contained
inside a circle, centered at A of radius 1−A for some real number A ∈ (0, 1/2), so that it
touches the unit circle only at 1. We define the angle of a set S to be the maximum value
of arg(1−s), s ∈ S \{1}. The hypothesis above implies that the angle of S lies in [0, π/2).
We conjecture that the angle of the spectrum equals the angle of the set; it is easy to
show that it is greater than or equal to the angle of the set, and we also show it cannot be
much more than the average of π/2 and the angle of the set. We also are interested in the
projection of the spectrum onto S, defined as the maximum of Re(sz) over all s ∈ S \ {1}
and z in the spectrum. We will see below (in section 1e) that for S = [−1, 1] the projection
is 1− 2δ where

δ = 1− log(1 +
√
e) + 2

∫ √e
1

log t
t+ 1

dt = .1715004930 . . . .

We make the risky conjecture that the projection is always 1− 2δ cos2(Angle(S)). In fact
the projection is always between this and 1− .1362 cos2(Angle(S)).



1e. When S is a subset of the reals.
If f(p) = 0 or 1 for every prime p then the mean value question is the same as a

sieve problem; it is easy to show Γ([0, 1]) = [0, 1]. More interesting is to “fix” the size
of the relevant Euler product and get good upper and lower bounds for the mean value;
and Hildebrand showed that the smallest mean value occurs when the primes for which
f(p) = 0 are the large ones. Hall gave the famous upper bound of twice the Euler product,
which was slightly improved by Hildebrand but still the optimal value is not yet known (or
even conjectured). We can study this problem in the context of integral delay equations,
via our “translation theorem” and hope to improve Hildebrand’s result,

The case S = [−1, 1] has been of some interest. One application is to the following
question: Fix large N and let m(N) be the minimum possible number of quadratic residues
(mod p) up to N , as we vary over all primes p. Proving a conjecture of Hall, Heath-Brown
and Montgomery we showed [GS4] that m(N) = {δ+o(1)}N . Thus if N is sufficiently large
then, for any prime p, more than 17.15% of the integers up to N are quadratic residues
(mod p). This result is “best possible” since the proportion δ is attained when (q/p) = 1
for each prime q < N1/(1+

√
e), and (q/p) = −1 when N1/(1+

√
e) < q < N , and such p can

be found by applying the law of quadratic reciprocity and Dirichlet’s Theorem for primes
in arithmetic progressions. We also have Γ[−1, 1] = [2δ − 1, 1].

In our proof we showed that if, up to x > xδ0 , one has less than a proportion (1 − δ0)
of the integers being quadratic residues, then the proportion will be < 1 − δ/4 + δ2/16
thereafter. It would be nice to get a sharper version of this result. If δ0 = 1 we got the
improved bound ≤ 1− 2δ but would like to know what is the best possible in this case.

Fix 0 ≤ α ≤ 1 and consider the set Sα of real-valued multiplicative functions f(n) with
|f(n)| ≤ 1 for all n, for which limx→∞(1/x)

∑
n≤x f(n) = α. Then what is

lim
x→∞

min
f∈Sα

(1/x)
∑
n≤x

f(n)?

We hope to answer this question by developing the methods used above.

1f. Determining other spectra.
There are several appealing avenues to go down to improve our knowledge of spectra.

Perhaps the most appealing is to fix χ(t) for t ≤ u/2 but to vary the values of χ(t) ∈ S
for u/2 < t ≤ u. We have already noted that this gives us translated, rotated and
shrunken copies of S around certain points, all of which are in the spectrum. We hope
other such simple variants will allow us to determine further spectra. We have also shown
the “projection conjecture” for S = {1,−1, i,−i} and so we wish to put more effort into
the spectrum corresponding to the cube roots of unity.

1g. An attack on Vinogradov’s conjecture.
Let np be the least quadratic non-residue mod p. Vinogradov’s conjecture states that

np �ε p
ε. The best result known is Burgess’s upper bound np ≤ p1/4

√
e+o(1) proved in

[Bu1], back in 1957. This follows from Burgess’s character sum bound (as modified by
Hildebrand),

(1)
∑
n≤N

χ(n) = o(N) for N ≥ p1/4−o(1),



simply by noting that if np ≥ p1/4
√
e+ε then, since significantly more than half of the

integers up to p1/4 are made up of integers whose prime factors are all ≤ p1/4
√
e+ε, we

have a contradiction to (1) for χ(n) = (n/p). The most ambitious plan in this proposal is
to try to improve the exponent 1/4

√
e here, by a method motivated in part by our proof of

the Hall-Montgomery conjecture. The idea is as follows: Let z = zp := p1/4
√
e, and suppose

that we have an infinite sequence of primes p such that np ≥ z1+o(1)
p . It is easy to show that,

in order that (1) holds for N = p1/4 we must have
∑
np≤q≤p1/4{1+(q/p)} log p/p = o(log p);

that is, (q/p) = −1 for ‘most’ primes q in the range np ≤ q ≤ p1/4. Moreover, if (1) holds
for N > p1/4, then this forces more such statements about the distribution of (q/p) for
larger q. For example, we must have (q/p) = 1 for ‘most’ primes q, p1/4 < q ≤ z2; and,
for ‘most’ N in the range z2 < N < zp1/4, we must have

(1/N)
∑
q≤N

(q/p) log q ∼ 1− 4 log(log(N/z)/ log z).

We can use our “translation theorem” to study

χ(t) = (1/θ(zt))
∑
p≤zt

(q/p) log q,

since σ(u) = 0 for all u ≥
√
e and the delay equation uσ(u) =

∫ u
0
χ(t)σ(u − t)dt is

satisfied. With a little work we re-organize this to find that χ(u) =
∫ u
u−1

χ(t)/2(u − t)dt
for all u > 1. It remains to give a good asymptotic for χ. On the other hand χ(u) can
also be obtained from the zeros of the associated Dirichlet L-function, the above should
tell us something strange about the distribution of the zeros of the L-function; hopefully
something sufficiently strange that we can force a contradiction.

2. Multiplicative Functions in Short Intervals

There are various methods one can use to obtain upper and lower bounds or asymptotics
on the mean value of multiplicative functions in short intervals.

2a. The methods of section 1.
One cannot get, in general, a Lipschitz type estimate on mean-values of multiplicative

functions, as the example f(n) = nit exhibits. However Elliott [El] showed one can do so
for the absolute value of the mean values: Indeed he showed that

(1/x)
∣∣∣∑
n≤x

f(n)
∣∣∣− (w/x)

∣∣∣ ∑
n≤x/w

f(n)
∣∣∣� (log 2w/ log x)1/19.

The methods of [GS] allow us to improve “1/19” to 1 − 2
π = 0.36338 . . . . It is unclear

what the right constant should be; a priori there is no reason that it is not 1, and this
subject deserves further exploration. One can use the translation theorem to make this
into a question about Lipschitz conditions on integral delay equations; in this context it
may be easier to make progress on this question.



2b. Applications of differencing techniques.
Classical use of exponential sums have been applied to give a variety of results about the

distribution of multiplicative functions in short intervals. Among the contributions to the
subject are the works of S. W. Graham and G. Kolesnik [GK], D. R. Heath-Brown [HB2],
H. Li [HLi], A. Ivić [Iv], C.-H. Jia [Ji1,Ji2], E. Krätzel [Kr], H. Liu [Liu1,Liu2], M. Nair and
G. Tenenbaum [help] R. A. Rankin [Ra], H. E. Richert [Ri], K. F. Roth [Ro], P. G. Schmidt
[Sc1,Sc2,Sc3], and P. Shiu [Sh1,Sh2]. These results have seen recent advances through the
use of finite difference techniques developed by M. N. Huxley [Hu1-HT], S. Konyagin [Ko],
Sargos [HS], and both independently and jointly by the two PI’s Filaseta and Trifonov
(cf. [Fi1-FT4,Tr1-Tr5]). For example, they have investigated estimates for the sums

(2)
∑

x<n≤x+h

f(n)

where h is small (h = xθ for some θ ∈ (0, 1) with the goal of minimizing θ) and f(n)
represents one of the three characteristic functions for the set of k-free numbers, for the
set of squarefull numbers, and for the set of n for which the number of non-isomorphic
abelian groups of order n is a given fixed number k. In fact, each of the papers indicated
as applications of exponential sums listed above (from the paper by Graham and Kolesnik
[GK] to the papers by Shiu [Sh1,Sh2]) give estimates for (2) for one of these three char-
acteristic functions. In [FT4], Filaseta and Trifonov show how differences can be used
in each of these three cases to establish improvements over these known exponential sum
estimates.

One problem the Filaseta and Trifonov would pursue is to generalize the applications of
finite differences to more general functions f(n). More precisely, we propose that, using the
recently developed differencing techniques, we obtain an estimate for (2) for general f(n)
(subject to as few constraints as possible). Such f(n) need not necessarily be multiplicative
functions, but clearly such a constraint might lead to a better estimate or be advantageous
to the approaches. That a general result of some sort should exist is already suggested
by the treatment of the non-isomorphic abelian group problem by Filaseta and Trifonov
in [FT4]. Further recent evidence includes the observation by Anguel Kumchev [Ku], a
current student of Filaseta, that differences can be used to obtain a short interval result
when f(n) denotes the number of squarefree divisors of n.

2c. Squarefree and squarefull numbers.
Problems involving short interval results of the type in (2) are closely related to esti-

mating the size of the set

(3) S = {n ∈ (N, 2N ] ∩ Z : ‖f(n)‖ ≤ δ},

where f is a function satisfying certain conditions on its derivatives, δ > 0, and ‖x‖ =
min{|x − m| : m ∈ Z}. When δ is small, the finite difference approaches, as in the
applications discussed above, produce upper bounds that improve on estimates obtainable
by current exponential sum techniques. Different differencing techniques apply to different
problems depending on the function f and the size of N . As an example, we consider the



case that f(n) is the characteristic function for the squarefree numbers. One estimates (2)
by showing that typically f(n) = 1 unless n is divisible by the square of a small prime.
This is obvious if one considers a full range of n up to some number x, but treating the case
of n in a short interval (x, x+h] is a more difficult problem. This short interval problem for
squarefree numbers boils down to establishing that there are o(h) primes p > h such that
p2|n for some n ∈ (x, x+ h]. For each p > h such that p2|n, we have n = p2m ∈ (x, x+ h]
for some integer m and, hence, x/p2 < m ≤ x/p2 +h/p2. Thus, if we consider f(u) = x/u2

and δ = h/N2, then the size of the set S in (3) gives an upper bound for the number of
primes p ∈ (N, 2N ] satisfying p2|n for some n ∈ (x, x+ h]. As N varies, the short interval
problem for squarefree numbers is reduced to an estimate for |S|.

In [G3] Granville showed that the abc-conjecture can be used to study the distribution
of squarefree numbers, proving several of the outstanding conjectures in the area, under
this (big) assumption, including the questions asked above. It would be interesting to
know whether this technique can be applied to other problems in this area.

In the case of the characteristic function for squarefull numbers, improvements over the
work in [FT4] by further differencing methods have been made by Huxley and Trifonov
[HT] and by Konyagin and Trifonov (in progress). The first of these showed how a divided
difference approach of H. P. F. Swinnerton-Dyer [Sw] for estimating the number of points
on a curve could be extended to an estimate for the number of lattice points close to
a curve. In other words, Swinnerton-Dyer obtained estimates in the case δ = 0 in (3)
above, and Huxley and Trifonov extended his approach to δ > 0 to give an improvement
in the short interval result for squarefull numbers. Swinnerton-Dyer’s method relies on
the use of a third order divided difference and certain convexity conditions. Extending
the approach to divided differences of higher order required a bit of work largely because
of issues associated with handling the convexity condition. Making use of some ideas of
Huxley [Hu3], Konyagin and Trifonov have bypassed the issues of convexity and extended
the work of Swinnerton-Dyer to fourth order divided differences.

2d. Extending this approach to all multiplicative functions.
We would like to generalize the approach of Konyagin and Trifonov to divided differences

of an arbitrary order and apply the new estimates to short interval results for multiplicative
functions.

One arithmetic problem that arises in the Konyagin-Trifonov approach is to estimate
the number of 8-tuples (D1, D2, D3, D4, z1, z2, z3, z4) where the Dj are integers satisfying
0 < |Dj | ≤ B and D1 + D3 6= D2 + D4 and the zj are integers with 0 < z1 < z2 < z3 <
z4 ≤ A satisfying

D1z1 −D2z2 +D3z3 −D4z4 = 0
and

D1z
2
1 −D2z

2
2 +D3z

2
3 −D4z

2
4 = 0.

With a little work one can obtain the bound O(A1+εB4), but one expects something closer
to O(AB2). We know how to decrease the exponent on B from 4 to 11/3, but more work
is needed on this problem as any improvement on this estimate leads to a sharper estimate
for |S| in (3). Such an estimate would in turn lead to an improvement in the application



of differences to the squarefull problem for short intervals. In fact, these results also give
improvements to Swinnerton-Dyer’s original work where δ = 0. Thus we would like to make
further progress on estimates for the number of 8-tuples (D1, D2, D3, D4, z1, z2, z3, z4) as
described above. More generally, higher order divided differences lead to the problem of
estimating the number of 2n-tuples of integersD1, . . . , Dn and z1, . . . , zn with 0 < |Dj | ≤ B
for each j, 0 < z1 < z2 < · · · < zn ≤ A,

∑n
k=1(−1)kDk 6= 0, and

∑n
k=1(−1)kDkz

j
k = 0

for j = 1, 2, . . . , n− 2. In each of these cases, we are mainly interested in an upper bound
when B is “small” compared to A.

2e. Circles, ellipses and hyperbolas.
Suppose f(n) = 1 if and only if n is the sum of two squares. Again, f is multiplicative.

It would be of particular interest in this case to find a lower bound for the sum in (2).
A lower bound result would correspond to a short interval result for numbers which are
the sum of two squares. In this case, a very simple argument shows that between x and
x + O(x1/4) there is a number which is the sum of two squares and, although this result
dates back to R. P. Bambah and S. Chowla [BC] in 1947, no improvement on the exponent
1/4 has ever been obtained.

A related question concerning gaps between lattice points on circles and ellipses has
been more recently considered by J. Cilleruelo and A. Córdoba [CC1, CC2]. For example
if p1, p2, . . . pk are distinct lattice points on x2 + y2 = N2 then the arc containing them
has length � Nm/(2m+1) when k = 2m + 1 or 2m + 2. This is sharp for k = 3, 4
and Cilleruelo and Granville have recently shown that it is sharp for k = 5 through a
complicated construction. This problem corresponds to upper bound estimates for sums
of the type given in (2), and Filaseta and Trifonov plan to consider possible applications
of the recent differencing approaches to this. One can also consider other curves, some of
which lead into classical problems, such as xy = N (divisors close together). A related
problem is to look at how many solutions there are of x2 ≡ 1 (mod n) with x < n1/2+δ,
which has many applications.

2f. Higher dimension.
Filaseta and Trifonov also plan to lead investigations concerning the use of differences

to estimate the size of the set

S′ = {(u, v) ∈ Z2 : u ∈ (N, 2N ], v ∈ (M, 2M ], ||f(u, v)|| < δ}

for some appropriately behaved function f(u, v). In other words, we will consider the
possibility of extending the current differencing techniques to obtain multi-dimensional
versions of the type already investigated. We wish to find a good upper bound (using
differences) for the size of the set S′ mentioned above or, more generally, obtain estimates
for the number of lattice close to a surface in higher dimensions.

It is anticipated that such estimates would then be applied to obtain new short interval
results for multiplicative functions.

2g. Multiplicative functions in short intervals, on average.
Using the large sieve one can get good results for this, in many situations. One appli-

cation is to prove, via the “translation theorem”, a “deviation” theorem for solutions to



integral delay equations, something which seems to be new to that area. In particular, we
show that for σ as above

∫ u
0
|σ(u)− χ(t)σ(u− t)|2/tdt ≤ 3/2, which is best possible up to

the constant. It would be interesting to have a direct proof from analytic methods; and if
that is possible to see if such methods could be used to give upper bounds for higher mo-
ments. This might have extraordinary consequences for understanding of the distribution
of multiplicative functions.

3. Multiplicative functions constructed from shifted primes

For fixed nonzero integer a, let Pa denote the set of numbers of the form p+a where p is
prime. These are often referred to as sets of “shifted primes”. Determining the multiplica-
tive structure of numbers in the sets Pa has been the subject of numerous investigations.
In particular, there is a close connection between properties of Pa and properties of certain
multiplicative functions, such as Euler’s function φ(n) (φ(p) = p− 1 for primes p) and the
sum of divisors function σ(n) (σ(p) = p+1 for primes p). The structure of P−1 also plays a
crucial role in the recent proof that there are infinitely many Carmichael numbers [AGP],
and in the work by Gupta and Murty [GM] and Heath-Brown [HB1] on Artin’s primitive
root conjecture.

Let Pa(x) = Pa ∩ [1, x]. It is expected that in a multiplicative setting, the sets Pa(x)
should behave very much like a “random” set of π(x) integers ≤ x, where π(x) is the
number of primes ≤ x. This heuristic of course has limits, for example Pa will have
at most one number in each residue class −a (mod p) for each prime p. But for many
arithmetic functions, such as P+ (the largest prime factor function), the distribution of
P+(p+ a) should correspond roughly to the distribution of P+(n) over all n ≤ x. Current
knowledge for this particular function is scant. For instance, Baker and Harman [BHa]
have proved that P+(p+ a)� p0.677 for infinitely many p, and that P+(p+ a)� p0.2961

for infinitely many p. These statements are expected to be true with exponents 1− ε and
ε, respectively, where ε > 0 is arbitrary.

3a. The number of images of a multiplicative function.
Denote by Ω(n) the number of prime factors of n counted with multiplicity (note that

eitΩ(n) is a multiplicative function). Let fa be a multiplicative function defined by fa(p) =
p + a and fa(pb) = 0 if b ≥ 2. One can show, by sieve methods (e.g. [Er1], [F1,§2]), that
the distribution of Ω(p+ a) is similar to the distribution of Ω(n) over n ≤ x. Applications
of this observation are key to bounding the number of positive integers ≤ x which can
be written as a product of numbers of the form p + a (that is, are in the image of fa);
and such bounds, in turn, provide bounds on Imagef (x), the number of values taken by
f(n) that are ≤ x, for various multiplicative functions f such as φ and σ. Several authors,
including Erdős [Er1] and recently Maier and Pomerance [MP], have developed bounds
for Imageφ(x) (and the methods work to give identical bounds for Imagefa(x)). Still, a
sizeable gap remained between upper and lower bounds until, recently, Ford proved ([F1,
Theorems 1,14]) that Imagefa(x) � Z(x) where

Z(x) =
x

log x
exp{C(log3 x− log4 x)2 +D log3 x− (D + 1/2− 2C) log4 x},

with C = 0.817 . . . and D = 2.176 . . . being specific constants and logk x denoting the
kth iterated logarithm of x. Furthermore the same result holds for for a large class of



integer-valued multiplicative functions f with f(p) = p + a for primes p and f(pb) “not
too small” for b ≥ 2 (in particular for φ and σ). One significant improvement to this result
would be to find out whether there exists a constant c for which Imagefa(x) ∼ cZ(x), and
to determine it if it exists.

3b. The distribution of multiplicities of the pre-images of a multiplicative
function.

Let |f−1(m)| denote the number of integers n for which f(n) = m, in other words
the number of pre-images of m under the map f : N → N. Erdős [Er3] showed that
(for the same f as above) for any given positive integer k, if there is one integer m with
|f−1(m)| = k then there are infinitely many. Using similar methods to those above, Ford
[F1,Theorems 2 and 14] showed that if there is one integer m with |f−1(m)| = k then
there are �f,k Imagef (x) integers m ≤ x with |f−1(m)| = k, that is, at least a positive
proportion of the integers have exactly k pre-images under the map f . However few integers
have many pre-images: To be precise, a proportion � exp(O(

√
logN))/N of the images

m ≤ x have more than N pre-images.

3c. What multiplicities occur?.
Carmichael’s famous conjecture [C1,C2] claims that, for f = φ, the multiplicity k = 1 is

not possible; in other words, for all integers n there exists a different integer N with φ(N) =
φ(n). This remains open, although large lower bounds on a possible counterexample are
easy to obtain, the latest being 101010

[F1,Theorem 6]. We can ask for more general f ,
what multiplicities do in fact occur? One can construct trivial examples of f for which
multiplicity 1 is impossible (for example, multiplicative f with f(p) = 1 for some prime p,
and f(pb) = 0 for all b ≥ 2), but can we come up with any non-trivial examples other than
φ?

In the 1950’s, Sierpiński conjectured that for f = φ and f = σ that all multiplicities
k ≥ 2 are possible [S1, Er3]; and, in 1961, Schinzel [S2] deduced this conjecture from his
well-known Hypothesis H [SS]. Recently, Ford has proven the Sierpiński conjecture for φ(n)
[F3] and, with S. Konyagin [FK], for σ(n), the proofs being rather different. In the proof
for φ(n) the proof involves taking an integer m for which |φ−1(m)| = k and constructing a
number m′, via Chen’s results on almost-primes, with |φ−1(mm′)| = k+2. More generally
the method gives, for f as above, if f(p2) = pf(p) for all primes p, and if |f−1(m)| = k,
then there is a number m′ such that |f−1(mm′)| = k+|f−1(1)|. The proof of the Sierpiński
Conjecture for σ(n) uses almost primes in a simpler though trickier way; and the proof
carries over to other such f provided multiplicity 1 is possible.

3d. Attacking Carmichael’s conjecture.
Let gf (m) be the gcd of the integers n for which f(n) = m if f−1(m) is non-empty.

In the proof of the lower bound for Imagef (x) in [F1, Theorems 2,14], it is proven that if
|f−1(m)| = k ≥ 1 and f(n1) = · · · = f(nk) = m then f−1(f(u)m) = {un1, . . . , unk} for
� Imagef (x) square-free numbers u ≤ x with (u,m) = 1. In particular either k - gf (m) for
all m, or k|gf (m) for � Imagef (x) values of m ≤ x. Our plan of attack on Carmichael’s
conjecture is to show that 6 never divides gf (m) (as appears from computation); this
implies Carmichael’s conjecture since one can show that if φ−1(m) = {n} then n is divisible



by 6. In general we propose investigating the possible values of gf (m), in particular for
f = φ and f = σ.

3e. Constructing counterexamples to primality tests.
Alford, Granville and Pomerance [AGP1] showed recently that there are infinitely many

Carmichael numbers, that is numbers n for which an ≡ a (mod n) for all integers a (which
has nothing to do with Carmichael’s conjecture!). Another characterization of Carmichael
numbers is, squarefree integers n for which p− 1 divides n− 1 for all primes p dividing n,
and thus we see we are led to understanding the multiplicative structure of p− 1. Indeed
their construction involved p − 1 divisible only by small primes with special properties.
There are many “pseudoprime” tests which “almost certainly” identify prime numbers in
random polynomial time; however the problem with these tests is that they don’t guarantee
that the number is indeed prime. It is hoped that non-random variants will provide
deterministic primality tests. For example some people hoped for (and some computer
languages implemented) a test based on strong pseudoprimes, though counterexamples
to such tests were given in [AGP2] by modifying their earlier methods. There are various
other proposed primality tests that are presumably wrong, but have not as yet been proved
to be wrong by these same methods. For example, when examining primality tests based
on the arithmetic of quadratic fields (or second order linear recurrence sequences) certain
substantial difficulties arise from studying the function f1 as opposed to f−1 as before.
These difficulties are not technicalities, but really require new ideas, particularly in the
applications of group theory in the proof. We propose to look further at this problem.

4. Character sums and L-functions

Most work on character sums |
∑
n≤N χ(n)| has been on obtaining non-trivial upper

bounds when N is a small power of the conductor q of χ; there has been little improvement
since the work of Burgess [Bu1] forty years ago! In [GS1] Granville and Soundararajan
examined the distribution of such character sums. One motivation was to discover for what
N one might conjecture that the character sum is o(N). Several authors have remarked
that it should be so for N = log2+o(1) q, which is now known to be wrong. Indeed Granville
and Soundararajan have shown that for all fixed A > 0, for all primes q, there are more
than q1−o(1) characters χ (mod q) for which the character sum is ≥ {1−o(1)}ρ(A)N when
N = logA q. They conjecture though that this is the maximum possible size for such a
character sum. Assuming GRH they modified an argument from [MV1] to show that this
character sum is � ρ(A/2 − ε)N . Therefore they believe that the character sum is o(N)
when logN/ log log q → ∞ and that this result is best possible. There are several other
main themes in [GS1]. One important one is that if a character sum is large then it must be
because

∑
n≤N, p|N =⇒ p≤log2 q χ(n), the character sum over “smooth numbers”, is large.

This is “almost always true”, and they prove a version of it assuming GRH. They believe
that the distribution of character sums can be modeled on the distribution of

∑
n≤N X(n)

where X is a multiplicative function and each X(p) is an independent random variable
equi-distributed on the unit circle; they have shown that the moments of each agree in a
wide range of uniformity. This allows to prove various lower bounds for character sums.
For example that Paley’s lower bound � √q log log q, obtained for a (sparse) sequence of



quadratic character sums, actually holds for more than q1−o(1) characters χ (mod q).
Littlewood [Li2] showed that

{1/2 + o(1)}(π2/6)/(eγ log log q) ≤ |L(1, χ)| ≤ {2 + o(1)}eγ log log q,

when q is prime assuming GRH. Subsequently, Chowla showed that there are infinitely
many q, such that for the primitive quadratic character χ mod q these bounds are almost
obtained, though removing the factors ‘1/2’ and ‘2’ from the two sides, respectively. In
[GS2] Granville and Soundararajan obtained Chowla’s bounds for q1−o(1) characters χ mod
q, and then proceeded to obtain distribution results for |L(1, χ)|, showing that |L(1, χ)| > τ
for a proportion

exp
(
−
{

2eγ/e1+C1 + oτ (1)
}
ee
−γτ/τ

)
of the characters χ (mod q) for any prime q, for

1 < τ < eγ log log q − 6 log log log q.

(A similar result holds for 1/|L(1, χ)|.) They obtain such a strong result as a consequence of
proving that the mean value of L(1, χ)z1L(1, χ)z2 as one varies over characters χ (mod q),
equals E

(
L(1, X)z1L(1, X)z2

)
+ o(1), for each |zj | ≤ log q/(log log q)3, where X are the

random variables above (though with X(q) = 0). They obtain similar results for quadratic
L-functions, improving results of Erdős and Elliott. They also show that

{(arg(χ(2))/2π, arg(χ(3))/2π, . . . , arg(χ(pk))/2π) : χ (mod q)}

are equidistributed as vectors in (R/Z)k, in a reasonable range of uniformity.

4a. Paley’s theorem “in all directions”.
Paley [Pa] showed that ∑

n≤N

χ(n)� √q log log q,

for some N , for infinitely many quadratic characters χ (mod q). Granville and Soundarara-
jan showed that for all primes q there are > q1−o(1) such characters χ (mod q), with
N = q/2 and implicit constant eγ/π in [GS2]. The idea in the proof is that, via a Fourier
transform as noted by Polya, this character sum equals the value of the Gauss sum times
the value of L(1, χ), times a small easily controlled factor. Of course the Gauss sum has
size
√
q, and as we saw above, we can get L(1, χ) as big as eγ log log q. We are now inter-

ested in obtaining character sums of this size, with N = q/2 but now pointing in any given
pre-specified direction. The idea is that Deligne’s estimates on Kloosterman sums [De]
should allow us to control the arguments of the Gauss sums, while we must control the
argument of the L(1, χ) by moment arguments. Katz [Ka] has already shown that Gauss
sums are equi-distributed around the circle of radius

√
q and results from [GS2] show that

the argument of the L(1, χ) has its own, more complicated, distribution function. The
problem here is we have to manage these simultaneously though we have accomplished
this in a weak form (see [GS6]). Now we wish to prove this with a stronger error term,
and extend the method to N = cq for any rational c with small denominator.



4b. Distribution of Character Sums.
In [GS1] Granville and Soundararajan investigated large values of character sums, and

showed that high moments are well-approximated by high moments of the appropriate
random variables X, as above. However we have not yet established the desired result
that the character sums themselves are distributed in the same way as the sum of the
random variables. Proceeding in a similar way to 4a, there is some hope of establishing
such a result for character sums with N = q/2.

The next step is to actually find the distribution function of
∑
n≤N X(n) (which pre-

sumably tends to some limiting distribution when correctly normalized). Finally, perhaps
by using Poisson summation in a different form from Polya’s identity, we can equate this
to the more general distribution of character sums.

4c. Distribution of the character sums for a given character.
If |L(1, χ)| is large with χ(−1) = −1 then

∑
n≤N χ(n) is large for almost all N ≤ q.

In fact it stays close to
∑
n≤q/2 χ(n). One proves this by computing the second moment.

It would be nice to gain a better understanding of the dynamics of this function of N .
Computing the fourth moment is generally tough (as it ends up as a function of fourth
order Dedekind sums), so we would like to do some computations on this question. There
is some old inspiring work of D.H. Lehmer [Le] showing that quadratic character sums
have beautiful dynamics on the complex plane.

4d. Distribution of values of Dirichlet L-functions.
In [GS2] Granville and Soundararajan showed that {L(1, χ)}χ (mod q) behaves in dis-

tribution like L(1, X), though without much uniformity. We would like to extend this to
a result that is uniform in | log |z|| ≤ log log log q + O(1) which is as wide a range as can
be true. Given our results in [GS2] on moments with high uniformity, this probably only
requires some better complex analysis. The stumbling block to proving this is that, as we
saw above, L(1, χ) decays double exponentially so that simple variants of Perron’s formula
can’t work since the error terms corresponding to the integrand from the innermost edge
of the area of the integration, dominate the main term.

4e. Upper bounds on L(1, χ)-values for fixed order characters.
Stephens [St] proved that if χ is a quadratic character of conductor q then

L(1, χ) ≤ (2− 2/
√
e+ o(1)) log q.

The key tools are Burgess’s theorem and then an optimization technique. In fact Stephen’s
result follows easily from our methods [GS4], and so we have started to look at what kind
of bounds one can get for cubic, quartic and higher order characters. The key seems
to be that to get pseudo-“inclusion-exclusion” formulas. That is, the inclusion-exclusion
formula is based on truncations of the binary expansion for 0 = (1 − 1)n giving upper
and lower bounds for 0. We are trying to develop analogous bounds from the expansion
of (1 + ω + ω2)n, where ω is a primitive cube root of unity, and have already proved
L(1, χ) ≤ log q for χ of order 3 (mod q).



4f. Distribution of values of other L-functions.
Granville and Soundararajan propose investigating many of the problems considered in

[GS1] and [GS2] in the context of modular forms. Here are some concrete examples of the
problems that arise:

Consider the family Fk of all Hecke eigenforms forms over Γ = SL(2,Z) with weight
2k. Suppose f(z) =

∑∞
n=1 a(n)e(nz) is a typical such form. One question concerns the

distribution of the a(p)’s. This is expected to be as predicted by Sato-Tate but seems
intractable. As evidence to this, Conrey, Duke and Farmer, investigated the distribution
of a(p) for fixed p, and varying f ∈ Fk. They found that the a(p) are uniformly distributed
with reference to the p-adic Plancherel measure, which tends to the Sato-Tate distribution
as p→∞. One might extend this by asking how {a(p1), . . . a(pl)} are distributed, given the
primes pi, and varying once again over f ∈ Fk. Questions like this for Dirichlet characters
are addressed in [GS2], and this seems a natural extension. The key technicality will be
to replace our previous use of “orthogonality of character sums” by the appropriate trace
formula. If we obtain precise information on this problem (that is, results uniform in k)
then we will be able to exhibit modular forms with prescribed eigenvalues on the small
primes which should have several applications.

The analogue to the character sum problems considered in [GS1] is to look for large
values of

∑
n≤N a(n), given N , and varying f over Fk. These sums exhibit a “square-root

cancellation” for fixed f , and N sufficiently large. Are there ranges where square-root can-
cellation fails to hold? Are there ranges where the sum is of size N? We will also consider
the distribution of values of L(1, sym2f). This has been investigated recently by Luo [Luo]
(in the context of Maass cusp forms), who shows the existence of a distribution function,
by computing the (fixed) moments of L(1, sym2f). In the spirit of [GS2], one would like to
evaluate the moments as uniformly as possible, so as to gain an understanding of the true
maximal, and minimal sizes of L(1, sym2f). At first sight there are no insurmountable
technical obstructions, especially given the (known) non-existence of Siegel zeros.

5. Zeros of L-functions and the comparative distribution of primes

Denote by π(x) the number of prime numbers ≤ x, and for q > 2 and (a, q) = 1, let
πq,a(x) denote the number of primes ≤ x in the progression a (mod q). Chebyshev [Cheb]
observed that there are “more” primes in the progression 3 mod 4 than in the progression 1
mod 4 (meaning π4,3(x) ≥ π4,1(x) most of the time). As noted by later authors, for many
such triples q, a, b there appears to be a bias in the sign of ∆q,a,b(x) := πq,a(x) − πq,b(x).
In general, if a is a quadratic non-residue modulo q and b is a quadratic residue, then
∆q,a,b(x) tends to be more often positive than negative. In some cases, the first sign
change is quite large, especially if q|24, b = 1 and a 6= 1. For example, computations by
Bays and Hudson ([BH1], [BH2]) have shown that the first sign change in ∆3,1,2(x) occurs
at 608981813029. The biases “against” quadratic residues can be explained analytically
via the explicit formulae for πq,a(x) in terms of zeros of Dirichlet L-functions (e.g. [RS]),
or combinatorially ([H2]). These problems are also closely related to the bias in the sign
of Li(x)− π(x), where Li(x) =

∫ x
2
dt/ log t is the natural smooth approximation to π(x).



5a. Sign changes for ∆q,a,b(x).
On the theoretical side, it is widely believed that for any modulus q and numbers a and

b coprime to q, the function ∆q,a,b(x) changes sign infinitely often. The first such proof was
by Littlewood in 1914 [Li1] for the cases q = 3, a = 1, b = 2 and q = 4, a = 1, b = 3, as well
as showing that Li(x) − π(x) also changes sign infinitely often. An extensive program by
Knapowski and Turán in the 1960’s ([KT1,KT2]) addressed this question. They established
infinitely many sign changes for a wide class of q, a, b, some results of which required the
hypothesis that the corresponding L-functions have no real non-trivial zeros (easy to verify
for a given modulus q), and some which required that the L-functions have no non-trivial
zeros off the critical line up to a certain height T (given as cq10 for an unspecified c).
We would like to make explicit the height T required to prove that for a given fixed q, all
functions ∆q,a,b(x) with (a, q) = (b, q) = 1 have infinitely many sign changes, thus reducing
the problem for a given q to a finite (and reasonable) computation.

It is also of interest to locate sign changes, or obtain upper bounds on the first sign
change. Although Littlewood’s proofs provided no particular x for which Li(x) − π(x) is
negative, Skewes ([Sk1],[Sk2]) in 1955 showed unconditionally that a sign change occurs

before 101010103

. A major breakthrough was made in 1966 by R. S. Lehman [Le], who
showed that Li(x)− π(x) is negative somewhere between 1.53× 101165 and 1.65× 101165.
His method involved approximating a weighted average of Li(x) − π(x) and using the
computed values of the first 12,000 zeros of the Riemann zeta function ζ(s) lying above
the real axis. The upper bound has since been lowered twice ([tR], [BH3]) using Lehman’s
theorem together with more extensive computations of the zeros of ζ(s).

In joint work with R. Hudson [FH], Ford has successfully generalized Lehman’s method
to obtain a method of locating sign changes of any ∆q,a,b(x), provided that sufficiently
many small zeros of the corresponding L-functions are known. The zeros ρ with |=ρ| ≤
10000 for many small q have been computed by R. Rumely [Ru], and with these we have
shown that each ∆8,b,1(x) < 0 for some x < 1024, each ∆12,b,1(x) < 0 for some x < 10429,
and each ∆24,b,1(x) < 0 for some x < 10353.

5b. Many progressions mod q.
In addition to comparing counts of primes in pairs of arithmetic progressions modulo

q, one can compare any m ≤ φ(q) progressions and ask whether all m! possible orderings
occur (or occur for arbitrarily large x). Recently Kaczorowski [K1] showed, assuming the
Generalized Riemann Hypothesis, that πq,1(x) > πq,b(x) for all (b, q) = 1, for a positive
proportion of x, and likewise πq,1(x) runs behind all the others for a positive proportion
of x. In [K2] and [K3] he extends this to other (but not all) orderings.

Assuming the Generalized Riemann Hypothesis and the Simplicity Hypothesis (that
the imaginary parts of the zeros of all Dirichlet L-functions are linearly independent over
Q), Rubinstein and Sarnak [RS] have shown that the set of values x for which a certain
ordering of the functions πq,ai(x) (1 ≤ i ≤ k) occurs has a logarithmic density, and this
provides numerical values for the biases [RS, p. 188]. They show that this bias is always
positive, and give a method of computing it. For example, the logarithmic density of the
set of x giving Li(x)− π(x) > 0 is about 0.99999973.

For more than two progressions, the procedure becomes quite complex, although G.
Martin and A. Feuerverger at the University of Toronto have succeeded in the cases q =



8, a1 = 3, a2 = 5, a3 = 7 and q = 12, a1 = 5, a2 = 7, a3 = 11. Bays and Hudson have
developed a less rigorous, but easier to implement, method of approximating the densities
by using a truncated version of explicit formulas for πq,a(x).

Using this method, Ford has computed biases for the six orderings for triples of progres-
sions of quadratic non-residues modulo q = 8, q = 12 and q = 24. In every case there is a
significant deviation from 1/6 for the six bias numbers, although the bias when comparing
any two of the progressions is exactly 1

2 . While combinatorial arguments can explain the
bias against quadratic residues, we as yet do not have a combinatorial explanation (one
not using the specific values of zeros of L-functions) to explain this, and so more work is
necessary to understand it.

5c. Computing zeros of L-functions.
For the above subsections it is necessary to compute the zeros of Dirichlet L -functions

for small moduli up to various heights. This is a difficult task and needs to be done as a
separate project. Moreover due to its wide applicability it is important to produce these
results in a very accessible form. To date the PI Rumely has produced almost all of the
computations known and does propose to go even further.

In [Ru] Rumely wrote a series of programs to check the Extended Riemann Hypothesis
for Dirichlet L-series. For moduli Q ≤ 13, they were used to compile lists of zeros and
check the ERH to height 10000; for moduli in the range 13 < Q ≤ 72, and certain other
moduli, this was done to height 2500. These computations were used, as mentioned above,
by Sarnak and Rubinstein, by Bays, Ford and Hudson, and more recently by Feueberger
and Martin in investigating the Chebyshev bias. An obvious application is to obtain
quantitative error bounds in the prime number theorem for arithmetic progressions; this
was done by Ramaré and Rumely [RR] for all moduli q ≤ 72, all composite q ≤ 112, and
certain other moduli.

Recently Rumely has checked the ERH to height 100000 for moduli in the range 1 ≤
Q ≤ 9; and, with W. Galway, plans to check the ERH to height 50000 for 11 ≤ Q ≤ 32, to
height 25000 for 33 ≤ Q ≤ 72, and to height 2500 for all moduli up to 500.

Timelines and Dissemination of Material

It is hard to give a precise timeline for the proposed research. The more predictable av-
enues have more predictable timelines, but we are far more interested in the unpredictable
avenues we have described that might have big pay-offs (such as to proving Vinogradov’s
conjecture or Carmichael’s conjecture). Of course we shall disseminate results, as usual,
mailing paper preprints to selected interested researchers around the world, by making
preprints available electronically on the web, and by submitting completed manuscripts to
top quality journals.

Training and Participation

Several of the world’s leading researchers in this field, namely Pomerance, Konyagin,
Schinzel and Soundararajan, have agreed to participate in this project. We expect that
other leading people may get involved out of interest for the material; and we will invite



other young mathematicians, such as Greg Martin, for shorter visits. Other people who
have made significant contributions to this area in recent years and would be considered
as speakers include Bombieri, Iwaniec, Sarnak, Friedlander, Vaughan, Montgomery, Hall,
Tenenbaum, Hildebrand and Elliott. We also expect to train several postdocs and graduate
students in this area. Below we give brief biographical sketches of recent Ph. D. students.

Recent and current doctoral students of the PIs

At Georgia.

Jon Grantham (Ph.D.’97) developed the notion of a “Frobenius pseudoprime”, of which
most known pseudorimes are special cases. This allowed him to combine previous com-
binations of pseudoprime tests into one test. He now works for the Institute for Defense
Analyses, MD.

Kevin James (Ph.D.’97) used Waldspurger’s Theorem on Shimura lifts, together with clever
computations and results on distribution of class numbers to find modular forms f such
that a positive proportion of the quadratic twists of L(f, s) do not vanish at the critical
point. He is now a Chowla postdoc at Penn. State and is active in this busy area.

Glenn Fox (Ph.D.’97) created a p-adic L-function in two variables that interpolates val-
ues of Bernoulli polynomials. This allowed him to reprove several interesting divisibility
properties. He is now at Emory.

Dina Khalil (Ph.D.’00) has constructed families of dihedral extensions of the rationals, of
orders 6, 10, 14 which are subfields of Hilbert class fields. This allows her to prove new
results on p-divisibility of class numbers. She also can construct families of quadratic fields
with class number divisible by any given prime p.

Pam Cutter (Ph.D.’00) has shown how to find, in practice, consecutive primes with any
given difference; and thus was the first to find the long sought after pair of difference 1000.
She is now studying the distribution of {f(n) (mod Q2)} for given polynomial f .

Ernie Croot (Ph.D.’00) has improved known bounds for smooth numbers in short intervals,
and has proved a ($ 500) conjecture of Erdős and Graham: Every r-coloring of the natural
numbers > 1 contains a finite monochromatic subset whose sum of reciprocals is 1.

Mark Watkins (Ph.D.’00) has improved techniques used to determine all imaginary quadra-
tic fields of given class number. In particular he has found all of class number 8. He is
now developing an idea of Montgomery and Weinberger on the pair correlation function
forced by a small class number.

Gang Yu (Ph.D.’00) has developed the method of Heath-Brown [HB], used for families of
quadratic twists, to compute the average size of the 2-Selmer group for elliptic curves with
all rational 2-torsion, to more general families of elliptic curves. Surprisingly the average
size is bounded, contradicting a conjecture of Brumer, whereas it is unbounded in certain
subfamilies.



Stephen Donnelly (Ph.D. ’01) is voraciously reading in various areas. For a while he was
interested in consequences of Shouwu Zhang’s theorem on lower bounds for heights of
points on curves. Now he is looking into generalizations of Hilbert’s Tenth Problem.

The following have all completed their written prelims: Milton Nash, Michael Beck, Eric
Pine and Jim Blair.

At South Carolina.

Brian Beasley (Ph.D.,’95) has worked on a generalization of a problem of Erdős concerning
moments of gaps between k-free numbers. The generalization is to the moments of gaps
between integers m for which f(m) is k-free where f(x) denotes an irreducible polynomial.
The case f(x) = x corresponds to the problem of Erdős, and Beasley’s approach in this
case leads to improvements over the original results of Erdős. He is currently an Associate
Professor and Chair of the Mathematics Department at Presbyterian College in Clinton,
South Carolina.

Ikhalfani Solan (Ph.D.,’96) has published two joint papers with Filaseta associated with
the factorization of polynomials. In one, they establish that if f(x) ∈ Z[x] does not have
cyclotomic factors and g(x) ∈ Z[x] is such that f(x)g(x) has “small” Euclidean norm, then
so does g(x). In the second, they establish that the non-reciprocal part of xa+xb+xc+xd+1
is irreducible for arbitrary integers a > b > c > d. He is currently an Assistant Professor
at the University of the West Indies in Jamaica.

Rich Williams (Ph.D.,’00) is working on irreducibility results associated with the gener-
alized Laguerre polynomials. In particular, he is establishing results associated with their
Galois groups.

Anguel Kumchev (Ph.D.,’01) already has nine papers published or in press and a tenth joint
paper with J. Brudern submitted for publication. He is working on problems in Analytic
Number Theory that make use of a variety of exponential sum and sieve techniques. For
example, he has recently obtained new estimates associated with primes of the form [nc]
for certain ranges of real c > 1.

Martha Allen (Ph.D. ’01) is working on generalizations of several irreducibility results of
I. Schur that were used by Schur to establish the irreducibility of the classical polynomials
of Hermite and Laguerre.


