TEST 2, MATH 785

- (a) Define what it means for a sequence of real numbers {a_n}_{n=1}[∞] to be uniformly distributed modulo 1.
 - (b) State Weyl's Theorem associated with the sequence $\{n\alpha\}_{n=1}^{\infty}$.

(c) Let A(x) denote the number of positive integers $n \le x$ such that the leading digit of 2^n is 1. Explain why Weyl's Theorem implies that

$$\lim_{x \to \infty} \frac{A(x)}{x} = \log_{10} 2.$$

Your explanation should be self-contained.

2. Using the lemma below, prove Weyl's theorem.

Lemma: Let $\alpha \in \mathbb{R}$ with α irrational. Suppose $f : \mathbb{R} \to \mathbb{C}$ satisfies:

- (i) f(x) is continuous over the reals.
- (ii) $f(x+2\pi) = f(x)$ for all real x.

Then
$$\lim_{n \to \infty} \frac{1}{n} \sum_{r=1}^{n} f(2\pi r\alpha) = \frac{1}{2\pi} \int_{0}^{2\pi} f(x) \, dx.$$

3. Using the theorem below, prove that $2^a = 3^b + 1$ has finitely many solutions in integers a and b. Clearly indicate in your argument the values of r, d, A, B, the α_i 's, and the β_i 's.

Theorem: Let $\alpha_1, \ldots, \alpha_r$ be non-zero algebraic numbers with degrees at most d and heights at most A. Let $\beta_0, \beta_1, \ldots, \beta_r$ be algebraic numbers with degrees at most d and heights at most B > 1. Suppose that

 $\Lambda = \beta_0 + \beta_1 \log \alpha_1 + \dots + \beta_r \log \alpha_r \neq 0.$ Then there are numbers C = C(r, d) > 0 and $w = w(r) \ge 1$ such that $|\Lambda| > B^{-C(\log A)^w}.$

4. Give a short answer for each of the following. You may make use of results from class.

(a) Let $\gamma = \frac{1}{\sqrt{3}}$. Calculate with justification **den**(γ) (the denominator, as defined in class, of the algebraic number γ).

(b) Explain why if α is an algebraic number and d is a rational integer for which $d\alpha$ is an algebraic integer, then the denominator of α divides d.

(c) Explain why the number $\sum_{k=0}^{\infty} \frac{1}{2^{3 \cdot 2^{k+1} + 7 \cdot 2^k}}$ is transcendental.