Test 2, Math 785

1. (a) Define what it means for a sequence of real numbers $\left\{a_{n}\right\}_{n=1}^{\infty}$ to be uniformly distributed modulo 1.
(b) State Weyl's Theorem associated with the sequence $\{n \alpha\}_{n=1}^{\infty}$.
(c) Let $A(x)$ denote the number of positive integers $n \leq x$ such that the leading digit of 2^{n} is 1. Explain why Weyl's Theorem implies that

$$
\lim _{x \rightarrow \infty} \frac{A(x)}{x}=\log _{10} 2 .
$$

Your explanation should be self-contained.
2. Using the lemma below, prove Weyl's theorem.

Lemma: Let $\alpha \in \mathbb{R}$ with α irrational. Suppose $f: \mathbb{R} \rightarrow \mathbb{C}$ satisfies:
(i) $f(x)$ is continuous over the reals.
(ii) $f(x+2 \pi)=f(x)$ for all real x.

Then $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{r=1}^{n} f(2 \pi r \alpha)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) d x$.
3. Using the theorem below, prove that $2^{a}=3^{b}+1$ has finitely many solutions in integers a and b. Clearly indicate in your argument the values of r, d, A, B, the α_{j} 's, and the β_{j} 's.

Theorem: Let $\alpha_{1}, \ldots, \alpha_{r}$ be non-zero algebraic numbers with degrees at most d and heights at most A. Let $\beta_{0}, \beta_{1}, \ldots, \beta_{r}$ be algebraic numbers with degrees at most d and heights at most $B>1$. Suppose that

$$
\Lambda=\beta_{0}+\beta_{1} \log \alpha_{1}+\cdots+\beta_{r} \log \alpha_{r} \neq 0
$$

Then there are numbers $C=C(r, d)>0$ and $w=w(r) \geq 1$ such that

$$
|\Lambda|>B^{-C(\log A)^{w}}
$$

4. Give a short answer for each of the following. You may make use of results from class.
(a) Let $\gamma=\frac{1}{\sqrt{3}}$. Calculate with justification $\operatorname{den}(\gamma)$ (the denominator, as defined in class, of the algebraic number γ).
(b) Explain why if α is an algebraic number and d is a rational integer for which $d \alpha$ is an algebraic integer, then the denominator of α divides d.
(c) Explain why the number $\sum_{k=0}^{\infty} \frac{1}{2^{3 \cdot 2^{k+1}+7 \cdot 2^{k}}}$ is transcendental.
