3 The Irrationality of $\log 2$

Next, we show that $\log 2$ and $\zeta(3)$ are irrational. The main purpose of proving that $\log 2$ is irrational here is that the proof given is similar to the proof we will give for the irrationality of $\zeta(3)$. In particular, it will be convenient for both arguments to have the following lemma.

Lemma 1. Let $\epsilon>0$. Then there is an $N=N(\epsilon)$ such that if $n \geq N$, then

$$
d_{n}=\operatorname{lcm}(1,2,3, \ldots, n)<e^{(1+\epsilon) n} .
$$

Proof. Observe that if p^{r} divides a number in $\{1,2, \ldots, n\}$, then $p^{r} \leq n$ so that $r \leq \log n / \log p$. On the other hand, $p^{[\log n / \log p]}$ does divide one such number (namely itself). Thus,

$$
d_{n}=\prod_{p \leq n} p^{[\log n / \log p]} .
$$

Explain how the rest follows from the Prime Number Theorem.
Theorem 9. The number $\log 2$ is irrational.
Proof. Assume $\log 2=a / b$ for some integers a and b with $b>0$. We will obtain a contradiction by showing there are integers c and d for which $0<|c+d \log 2|<1 / b$. We use that, from Lemma 1, $d_{n}<3^{n}$ for n sufficiently large.

Define

$$
I_{n}=\int_{0}^{1} \frac{x^{n}(1-x)^{n}}{(1+x)^{n+1}} d x
$$

Observe that the numerator of the integrand is

$$
x^{n}(1-x)^{n}=((1+x)-1)^{n}(2-(1+x))^{n}=\sum_{j=0}^{2 n} a_{j}(1+x)^{j}
$$

for some integers a_{j}. When the product of the $2 n$ factors $((1+x)-1)^{n}(2-(1+x))^{n}$ is expanded to get the last sum above, $(1+x)^{j}$ occurs when we multiply $\pm(1+x)$ from precisely j of the $2 n$ factors together with the constants -1 and 2 from the remaining $2 n-j$ factors. In particular, if $j \leq n$, then each such multiplication includes a product of at least $n-j$ of the 2 's appearing in this product. In other words, for $j \leq n$, we have $a_{j}=2^{n-j} a_{j}^{\prime}$ for some integer a_{j}^{\prime}.

For $j<n$, we have

$$
\int_{0}^{1} a_{j}(1+x)^{j-n-1} d x=\left.\frac{2^{n-j} a_{j}^{\prime}(1+x)^{j-n}}{j-n}\right|_{0} ^{1}=\frac{b_{j}}{j-n}
$$

for some integer b_{j}. Also, $\int_{0}^{1} a_{j}(1+x)^{j-n-1} d x=b_{j} /(j-n)$, for $j>n$ and some integers b_{j}, and $\int_{0}^{1} a_{n}(1+x)^{-1} d x=a_{n} \log 2$. We deduce that there are integers u_{n} and v_{n} such that

$$
I_{n}=\int_{0}^{1} \sum_{j=0}^{2 n} a_{j}(1+x)^{j-n-1} d x=\frac{u_{n}+v_{n} \log 2}{d_{n}} .
$$

One checks that the maximum of $x(1-x)$ on $[0,1]$ is $1 / 4$. It follows that

$$
0<\left|u_{n}+v_{n} \log 2\right|=\left|I_{n} d_{n}\right|<(1 / 4)^{n} d_{n}<(1 / 4)^{n} 3^{n}<(3 / 4)^{n} .
$$

Taking n so that $(3 / 4)^{n}<1 / b, c=u_{n}$, and $d=v_{n}$, we obtain the contradiction we sought.

