3 The Irrationality of log 2

Next, we show that $\log 2$ and $\zeta(3)$ are irrational. The main purpose of proving that $\log 2$ is irrational here is that the proof given is similar to the proof we will give for the irrationality of $\zeta(3)$. In particular, it will be convenient for both arguments to have the following lemma.

Lemma 1. Let $\epsilon > 0$. Then there is an $N = N(\epsilon)$ such that if $n \ge N$, then

 $d_n = \operatorname{lcm}(1, 2, 3, \dots, n) < e^{(1+\epsilon)n}.$

Proof. Observe that if p^r divides a number in $\{1, 2, ..., n\}$, then $p^r \le n$ so that $r \le \log n / \log p$. On the other hand, $p^{\lfloor \log n / \log p \rfloor}$ does divide one such number (namely itself). Thus,

$$d_n = \prod_{p \le n} p^{[\log n / \log p]}.$$

Explain how the rest follows from the Prime Number Theorem.

Theorem 9. *The number* $\log 2$ *is irrational.*

Proof. Assume $\log 2 = a/b$ for some integers a and b with b > 0. We will obtain a contradiction by showing there are integers c and d for which $0 < |c + d \log 2| < 1/b$. We use that, from Lemma 1, $d_n < 3^n$ for n sufficiently large.

Define

$$I_n = \int_0^1 \frac{x^n (1-x)^n}{(1+x)^{n+1}} \, dx.$$

Observe that the numerator of the integrand is

$$x^{n}(1-x)^{n} = \left((1+x)-1\right)^{n} \left(2-(1+x)\right)^{n} = \sum_{j=0}^{2n} a_{j}(1+x)^{j},$$

for some integers a_j . When the product of the 2n factors $((1+x)-1)^n (2-(1+x))^n$ is expanded to get the last sum above, $(1+x)^j$ occurs when we multiply $\pm (1+x)$ from precisely j of the 2nfactors together with the constants -1 and 2 from the remaining 2n - j factors. In particular, if $j \leq n$, then each such multiplication includes a product of at least n - j of the 2's appearing in this product. In other words, for $j \leq n$, we have $a_j = 2^{n-j}a'_j$ for some integer a'_j .

For j < n, we have

$$\int_0^1 a_j (1+x)^{j-n-1} \, dx = \frac{2^{n-j} a_j' (1+x)^{j-n}}{j-n} \bigg|_0^1 = \frac{b_j}{j-n},$$

for some integer b_j . Also, $\int_0^1 a_j (1+x)^{j-n-1} dx = b_j/(j-n)$, for j > n and some integers b_j , and $\int_0^1 a_n (1+x)^{-1} dx = a_n \log 2$. We deduce that there are integers u_n and v_n such that

$$I_n = \int_0^1 \sum_{j=0}^{2n} a_j (1+x)^{j-n-1} \, dx = \frac{u_n + v_n \log 2}{d_n}$$

One checks that the maximum of x(1-x) on [0,1] is 1/4. It follows that

$$0 < |u_n + v_n \log 2| = |I_n d_n| < (1/4)^n d_n < (1/4)^n 3^n < (3/4)^n.$$

Taking n so that $(3/4)^n < 1/b$, $c = u_n$, and $d = v_n$, we obtain the contradiction we sought.