
5 The Beginning of Transcendental Numbers

We have defined a transcendental number (see Definition 3 of the Introduction), but so far we have
only established that certain numbers are irrational. We now turn to the beginnings of transcen-
dental numbers. Our first theorem is

Theorem 11. Transcendental numbers exist.

Like many of our results so far, this will of course be a consequence of later results. The first
proof that there exist transcendental numbers was given by Liouville. Before we give his proof,
we give a proof due to Cantor.

Proof 1. The essence of this proof is that the real algebraic numbers are countable whereas the set
of all real numbers is uncountable, so there must exist real transcendental numbers. Define

P (n) =

{
f(x) =

n∑
j=0

ajx
j ∈ Z[x] : 1 ≤

n∑
j=0

|aj| ≤ n

}
.

Observe thatP (n) is finite. Also, every non-zero polynomial inZ[x] belongs to someP (n). By
considering the real roots of polynomials inP (1), P (2), . . . (at thekth stage, consider the real roots
of polynomials inP (k) which have not occurred as a root of a polynomial inP (j) for j < k), we
can order the algebraic numbers; hence, they are countable. Next, give the usual proof that the real
numbers are uncountable.

For Liouville’s proof, we define

Definition 4. A real numberα is a Liouville number if for every positive integern, there are
integersa andb with b > 1 such that

0 <
∣∣∣α− a

b

∣∣∣ < 1

bn
.

In a moment, we will show that Liouville numbers exist. The second proof of Theorem 11 will
then follow from our next result.

Theorem 12. All Liouville numbers are transcendental.

Lemma 1. Let α be an irrational number which is a root off(x) =
∑n

j=0 ajx
j ∈ Z[x] with

f(x) 6≡ 0. Then there is a constantA = A(α) > 0 such that ifa and b are integers withb > 0,
then ∣∣∣α− a

b

∣∣∣ > A

bn
. (6)

Proof. Let M be the maximum value of|f ′(x)| on [α−1, α+1]. Letα1, α2, . . . , αm be the distinct
roots off(x) which are different fromα. Fix

A < min{1, 1/M, |α− α1|, |α− α2|, . . . , |α− αm|}.

Assume (6) does not hold for somea andb integers withb > 0. Then∣∣∣α− a

b

∣∣∣ ≤ A

bn
≤ A < min{1, |α− α1|, |α− α2|, . . . , |α− αm|}.
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Hence,
a

b
∈ [α− 1, α + 1] and

a

b
6∈ {α1, . . . , αm}.

By the Mean Value Theorem, there is anx0 betweena/b andα such that

f(α)− f(a/b) = (α− a/b)f ′(x0)

so that ∣∣∣α− a

b

∣∣∣ =

∣∣∣∣f(a/b)− f(α)

f ′(x0)

∣∣∣∣ =
|f(a/b)|
|f ′(x0)|

.

Sincef(a/b) 6= 0, we deduce that

|f(a/b)| =

∣∣∣∣∣
n∑

j=0

aja
jbn−j

∣∣∣∣∣ /bn ≥ 1/bn.

Thus, since|f ′(x0)| ≤ M, we obtain∣∣∣α− a

b

∣∣∣ ≥ 1

Mbn
>

A

bn
≥
∣∣∣α− a

b

∣∣∣ ,
giving a contradiction. Thus, the lemma follows.

Proof of Theorem 12.Let α be a Liouville number. First, we show thatα must be irrational.
Assumeα = c/d for some integersc andd with d > 0. Let n be a positive integer with2n−1 > d.
Then for any integersa andb with b > 1 anda/b 6= c/d, we have that∣∣∣α− a

b

∣∣∣ =
∣∣∣ c
d
− a

b

∣∣∣ ≥ 1

bd
>

1

2n−1b
≥ 1

bn
.

It follows from the definition of a Liouville number thatα is not a Liouville number, giving a
contradiction. Thus,α is irrational.

Now, assumeα is an irrational algebraic number. By the lemma, there exist a real number
A > 0 and a positive integern such that (6) holds for all integersa andb with b > 0. Let r be a
positive integer for which2r ≥ 1/A. Sinceα is a Liouville number, there are integersa andb with
b > 1 such that ∣∣∣α− a

b

∣∣∣ < 1

bn+r
≤ 1

2rbn
≤ A

bn
.

This contradicts (6) and, hence, establishes thatα is transcendental.

Example: We show thatα =
∑∞

j=0 1/2j! is a Liouville number. First, observe that the binary
expansion ofα has arbitrarily long strings of0’s and so it cannot be rational. Fix a positive

integern and consider
a

b
=
∑n

j=0

1

2j!
with a andb = 2n! > 1 integers. Then

0 <
∣∣∣α− a

b

∣∣∣ =
∞∑

j=n+1

1

2j!
<

∞∑
j=(n+1)!

1

2j
=

1

2(n+1)!−1
≤ 1

2n(n!)
=

1

bn
.

This proves thatα is Liouville and also gives a second proof of Theorem 11.
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There are stronger versions of Theorem 12. In particular, we note (without proof) that

Theorem 13 (Thúe-Siegel-Roth).Let α be an algebraic number withα 6∈ Q. Let ε > 0. Then
there are at most finitely many pairs of integers(a, b) with b > 0 such that∣∣∣α− a

b

∣∣∣ < 1

b2+ε
.

It is not known whether or not the right-hand side above can be replaced byA/b2 whereA =
A(α) is a positive constant depending only onα.

Theorem 14. The set of Liouville numbers in[0, 1] has measure 0.

Proof. Let ε > 0. It suffices to show that the (Lebesgue) measure of the Liouville numbers in[0, 1]
is < ε. Let n be a positive integer for which

∑∞
b=2 4/bn−1 < ε (observe that this is possible since∑∞

b=2 4/bn−1 < (4/2n−3)
∑∞

b=2 1/b2). If α is a Liouville number in[0, 1], then there are integersa
andb with b > 1 such that ∣∣∣α− a

b

∣∣∣ < 1

bn
.

Since the right-hand side is≤ 1/2 andα ∈ [0, 1], we deduce thata/b ∈ (−1/2, 3/2) so that
−b/2 < a < 3b/2 (a is in an open interval of length2b). In particular, for a given integerb > 1,
there are≤ 2b possible values ofa for which the above inequality can hold. For eachb > 1, we get
thatα must be in one of≤ 2b intervals of length2/bn. Thus, the measure of the Liouville numbers
must be

≤
∞∑

b=2

4b

bn
< ε,

giving the desired result.

Corollary 1. There are transcendental numbers which are not Liouville numbers.

We now turn to a related discussion. Suppose that we have an sequence of positive integers
{ak}∞k=1 with a1 < a2 < · · · . When will the argument given in the example above lead to a proof
that

∑∞
k=0 1/2ak is transcendental? It is not too difficult to see that what one essentially wants is

thatak increases “fast enough” where fast enough means that

lim inf
k→∞

ak+1

ak

= ∞.

On the other hand, it can be shown that sequences which increase much slower also lead to tran-
scendental numbers, an observation apparently first noticed by Erdős. The next theorem illustrates
the basic idea by showing a certain number of this form is transcendental; it can be shown also that
this number is not a Liouville number.

Theorem 15. The number
∑∞

k=0 1/22k
is transcendental.

To prove Theorem 15, for positive integersk andm, we definec(k,m) to be the number of
m−tuples(j1, . . . , jm) of non-negative integers for which

k = 2j1 + 2j2 + · · ·+ 2jm .
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Lemma 1. With the notation above,c(k,m) ≤ m2m.

Proof. We do induction onm. Form = 1, c(k,m) ∈ {0, 1} for all k, so the result is clear. Suppose
m > 1. If k has more thanm non-zero binary digits, then it is not too hard to see thatc(k,m) = 0
(note that the sum of two like powers of 2 is a power of 2). Ifk has exactlym non-zero binary
digits, thenc(k,m) = m! ≤ mm ≤ m2m (j1 can correspond to any one of them non-zero digits,
j2 to any one of the remainingm − 1 non-zero digits, and so on). Ifk has fewer thanm non-zero
binary digits, then for some integersr ands with 1 ≤ r < s ≤ m, jr = js. Since in this case,
2jr + 2js = 2jr+1, we deduce that

c(k, m) ≤
(

m

2

)
c(k,m− 1) ≤ m2(m− 1)2m−2 ≤ m2m,

establishing the lemma.

Lemma 2. Let t andm be positive integers. Thenc(k,m) = 0 for every integerk ∈ (2t+1 + · · ·+
2t+m, 2t+m+1).

Proof. This follows since each suchk has> m non-zero binary digits (see the proof of Lemma
1).

Proof of Theorem 15.Let α =
∑∞

k=0 1/22k
. Let m be a positive integer. Then the definition of

c(k, m) implies that

αm =

(
∞∑

k=0

1

22k

)m

=
∞∑

k=1

c(k,m)

2k
.

Let t be a positive integer. Using Lemma 2 and then Lemma 1, we obtain{
22t+1+···+2t+m

αm
}
≤ 22t+1+···+2t+m

∞∑
k=2t+1+···+2t+m+1

c(k, m)

2k

≤ 22t+1+···+2t+m
∞∑

k=2t+m+1

c(k,m)

2k

≤ 22t+1+···+2t+m

m2m

∞∑
k=2t+m+1

1

2k

≤ 22t+1+···+2t+m

m2m2−2t+m+1+1 = 21−2t+1

m2m.

If we view m as being fixed and lett approach infinity, we see that the binary expansion ofαm has
arbitrarily long strings of0’s. By the same reasoning, we see that more generally ifb0, b1, . . . , bm

are non-negative integers, then the binary expansion ofb0 + b1α + · · ·+ bmαm has arbitrarily long
strings of0’s. In fact, if b0, b1, . . . , bm andc0, c1, . . . , cm are non-negative integers and if we have
the following binary expansions

{b0 + b1α + · · ·+ bmαm} = (0.d1d2d3 . . . )2

and
{c0 + c1α + · · ·+ cmαm} = (0.d′1d

′
2d
′
3 . . . )2,
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then for any positive integerN , there is a positive integerj for which

dj+1 = dj+2 = · · · = dj+N = d′j+1 = d′j+2 = · · · = d′j+N = 0.

Furthermore, we can takeN andj so that

N = 2t and j = 2t+1 + · · ·+ 2t+m

with t an integer as large (but perhaps not as small) as we wish.
Now, assumeα is a root off(x) =

∑n
j=0 ajx

j ∈ Z[x] with an > 0 (which would be possible
if α were algebraic). Then we can writef(x) in the form

f(x) =
n∑

j=0

bjx
j −

n∑
j=0

cjx
j,

where thebj andcj are non-negative integers withbjcj = 0 for eachj. In particular,bn = an > 0
andcn = 0. Takem = n−1, and letN = 2t wheret is a positive integer to be chosen momentarily
andj = j(t) is as above. Then

2j+2t−2
n−1∑
i=0

biα
i and 2j+2t−2

n−1∑
i=0

ciα
i

both differ from an integer by≤ 1/2N−2t−2
= 1/22t−1+2t−2

. If we write

2j+2t−2
n−1∑
i=0

biα
i = m1 + θ1 and 2j+2t−2

n−1∑
i=0

ciα
i = m2 + θ2,

wherem1 andm2 are the greatest integers in the above expressions, then we see that sincef(α) =
0,

2j+2t−2

bnα
n = m3 + θ3 with m3 ∈ Z and|θ3| = |θ1 − θ2| ≤

1

22t−1+2t−2 . (7)

On the other hand, sincej has the form given above, we get from the definition ofc(k,m) that
c(j +2t−1, n) ≥ 1 andc(k, n) = 0 for all k ∈ (j +2t−2, j +2t−1). Fort sufficiently large, we have
that

2j+2t−2

bn

∞∑
k=j+2t−2+1

c(k, n)

2k
= 2j+2t−2

bn

∞∑
k=j+2t−1

c(k, n)

2k

≤ 2j+2t−2

bnn
2n2−j−2t−1+1 = 21−2t−2

bnn
2n <

1

22t−3

and

2j+2t−2

bn

∞∑
k=j+2t−2+1

c(k, n)

2k
≥ 2j+2t−2

bn2−j−2t−1

= 2−2t−2

bn ≥
1

22t−2 .

It follows that (7) cannot hold, giving a contradiction and completing the proof.

Homework:

1. Prove that the set of Liouville numbers in[0, 1] is uncountable.
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