5 The Beginning of Transcendental Numbers

We have defined a transcendental number (see Definition 3 of the Introduction), but so far we have
only established that certain numbers are irrational. We now turn to the beginnings of transcen-
dental numbers. Our first theorem is

Theorem 11. Transcendental numbers exist.

Like many of our results so far, this will of course be a consequence of later results. The first
proof that there exist transcendental numbers was given by Liouville. Before we give his proof,
we give a proof due to Cantor.

Proof 1. The essence of this proof is that the real algebraic numbers are countable whereas the set
of all real numbers is uncountable, so there must exist real transcendental numbers. Define

P(n) = {f(x) = Zigajxj €Zx] 1< Z:|aj| < n}

Observe thaf(n) is finite. Also, every non-zero polynomial i[z] belongs to somé(n). By
considering the real roots of polynomialsitl), P(2), ... (atthekth stage, consider the real roots

of polynomials inP (k) which have not occurred as a root of a polynomiaFity) for j < k), we

can order the algebraic numbers; hence, they are countable. Next, give the usual proof that the real
numbers are uncountable. O

For Liouville’s proof, we define

Definition 4. A real numbera is a Liouville number if for every positive integer there are
integersa andb with b > 1 such that

a 1
0< ‘ — —‘ < —.
TS
In a moment, we will show that Liouville numbers exist. The second proof of Theorem 11 will
then follow from our next result.
Theorem 12. All Liouville numbers are transcendental.

Lemma 1. Let o be an irrational number which is a root of(z) = 77 ja;2? € Z[x] with
f(x) #£ 0. Then there is a constant = A(«) > 0 such that ifa and b are integers withh > 0,
then

> —. (6)

Proof. Let M be the maximum value ¢f'(x)| on[a—1, a+1]. Letay, ay, . . ., ay, be the distinct
roots of f (x) which are different fromw. Fix

A <min{l,1/M,|a — aq],|a — az|,...,|a — an|}.
Assume (6) does not hold for somendb integers withh > 0. Then
A

‘a—%‘ §b—n§A<min{l,|a—a1|,|oz—a2|,...,|oz—ozm\}.
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Hence,

%e la—1,a+1 and %Q{al,...,am}.

By the Mean Value Theorem, there is apbetweern: /b anda such that

f(@) = fla/b) = (a —a/b) f'(x))

so that
o= ’f(a/b) — f()| _ |f(a/p)]
b f'(xo) [ (o)

Sincef(a/b) # 0, we deduce that

|f(a/b)| = zn:ajajbn—j /bn > 1/bn

7=0
Thus, since f'(xzq)| < M, we obtain
‘O&—g‘z 1 >é2 Oé—g),
bl = Mbr ~ bn b

giving a contradiction. Thus, the lemma follows. O

Proof of Theorem 12Let o be a Liouville number. First, we show that must be irrational.
Assumen = ¢/d for some integers andd with d > 0. Letn be a positive integer with"~! > d.
Then for any integerg andb with b > 1 anda/b # ¢/d, we have that

a c a S 1 1 S 1
o b‘ - ‘d bl = bd 21y T
It follows from the definition of a Liouville number that is not a Liouville number, giving a
contradiction. Thusy is irrational.
Now, assumeyx is an irrational algebraic number. By the lemma, there exist a real number
A > 0 and a positive integet such that (6) holds for all integersandb with b > 0. Letr be a
positive integer for whicl2” > 1/A. Sincea is a Liouville number, there are integersindb with
b > 1 such that

‘ a‘ - 1 < 1 < A
TV S e S =
This contradicts (6) and, hence, establishesdhattranscendental. O

Example: We show thatr = >3 1/27" is a Liouville number. First, observe that the binary
expansion oty has arbitrarily long strings df's and so it cannot be rational. Fix a positive

. ., a N " .
integern and con5|derg = ZFO o with ¢ andb = 2" > 1 integers. Then

a =1 =1 1 1 1
0<‘a_3’: Z o < Z EZQ(nJrl)!flSQn(n!):b_n'

j=n+1 j=(n+1)!

This proves thatv is Liouville and also gives a second proof of Theorem 11.
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There are stronger versions of Theorem 12. In particular, we note (without proof) that

Theorem 13 (Thue-Siegel-Roth).Let o be an algebraic number with ¢ Q. Lete > 0. Then
there are at most finitely many pairs of integédsb) with b > 0 such that

1
h2+e '

ol
a__
b

It is not known whether or not the right-hand side above can be replacédBywhere A =
A(«) is a positive constant depending only @n

Theorem 14. The set of Liouville numbers jf, 1] has measure 0.

Proof. Lete > 0. It suffices to show that the (Lebesgue) measure of the Liouville numbérslin

is < e. Letn be a positive integer for which",, 4/b"~! < e (observe that this is possible since
S oo, 4/bm T < (4/273) 300, 1/6%). If ais a Liouville number in0, 1], then there are integets
andb with b > 1 such that

Since the right-hand side is 1/2 anda € |0, 1], we deduce that/b € (—1/2,3/2) so that
—b/2 < a < 3b/2 (a'is in an open interval of lengt®p). In particular, for a given integér > 1,
there are< 2b possible values aof for which the above inequality can hold. For eéch 1, we get
thata must be in one oK 2b intervals of lengtt2 /b™. Thus, the measure of the Liouville numbers
must be

giving the desired result. O
Corollary 1. There are transcendental numbers which are not Liouville numbers.

We now turn to a related discussion. Suppose that we have an sequence of positive integers
{ar}32, with a; < ay < ---. When will the argument given in the example above lead to a proof
that) ", ,1/2% is transcendental? It is not too difficult to see that what one essentially wants is
thata, increases “fast enough” where fast enough means that

ak41

lim inf =00
k—oo ag

On the other hand, it can be shown that sequences which increase much slower also lead to tran-
scendental numbers, an observation apparently first noticed I EFthe next theorem illustrates

the basic idea by showing a certain number of this form is transcendental; it can be shown also that
this number is not a Liouville number.

Theorem 15. The numbed_° , 1/22" is transcendental.

To prove Theorem 15, for positive integersandm, we definec(k, m) to be the number of
m—tuples(ji, ..., jn») Of non-negative integers for which
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Lemma 1. With the notation above(k, m) < m?™.

Proof. We do induction omn. Form = 1, ¢(k,m) € {0, 1} for all k£, so the result is clear. Suppose
m > 1. If k has more tham non-zero binary digits, then it is not too hard to see tiatm) = 0
(note that the sum of two like powers of 2 is a power of 2)k las exactlyn non-zero binary
digits, thenc(k, m) = m! < m™ < m?®™ (4, can correspond to any one of thenon-zero digits,
j2 to any one of the remaining — 1 non-zero digits, and so on). Afhas fewer thamn non-zero
binary digits, then for some integersands with 1 < r < s < m, j,. = j,. Since in this case,
2Jr 4 2Js = 201 we deduce that

c(k,m) < (T;l) c(k,m —1) <m?*(m —1)*"2 <m?™,

establishing the lemma.

Lemma 2. Lett andm be positive integers. Thettk, m) = 0 for every integek € (207! + ... +
2t+m, 2t+m+1)_

Proof. This follows since each sudhhas> m non-zero binary digits (see the proof of Lemma
1). O

Proof of Theorem 15Let o = 37 1/2%*. Let m be a positive integer. Then the definition of

c(k, m) implies that
m < 1) & c(k,m)
a = (Z 2?) - Z ok

k=0
Lett be a positive integer. Using Lemma 2 and then Lemma 1, we obtain

00

t+1 ... ot+m t+1, ... ot+m C(l{i m)
22 +e 2 am < 22 +- 42 E )

- k

k:2t+1+_.,+2t+m+1 2

[eS)
< 22t+1+m+2t+m Z C(k, m)
k=ot+m+1
)
t+1 ... ot+m 1
S 22 +---42 m?m 2 : =
k=ot+m+1

2L poqottm omo—2ttmEly] _ 51-2tF1  om
<2 m-"2 =2 m

If we view m as being fixed and leétapproach infinity, we see that the binary expansion'®has

arbitrarily long strings of)’s. By the same reasoning, we see that more generallybf, . . ., b,,
are non-negative integers, then the binary expansiop-efb,« + - - - 4+ b,,™ has arbitrarily long
strings of0’s. In fact, if by, by, ..., b, andcy, ¢4, . . ., ¢,, @re non-negative integers and if we have

the following binary expansions
{b(] + blOé + -+ meém} == (O.dldgdg Ce )2
and

{co+cia+ - +cpa™} = (0.didyd; . .. )a,
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then for any positive intege¥, there is a positive integgrfor which
diyg =djio="--= j+N:d;‘+1:d§+2:"':d§+N:O‘
Furthermore, we can tak€ and; so that
N=2" and j=2"4...420tm

with ¢ an integer as large (but perhaps not as small) as we wish.
Now, assume is a root of f (z) = > " a;27 € Z[z] with a,, > 0 (which would be possible
if « were algebraic). Then we can wriféx) in the form

f(z) = Z bz! — cha:j,
=0 =0
where theb; andc; are non-negative integers withc; = 0 for eachj. In particular,b, = a,, > 0
andc, = 0. Takem = n—1, and letN = 2¢ wheret is a positive integer to be chosen momentarily
andj = j(t) is as above. Then

n—1 n—1
i +27? Z bia' and 201277 Z ;o
i=0 i=0
both differ from an integer byc 1/2¥-2"" = 1/2>' 2 If we write
n—1 n—1
2j+2t72 Z biOéi =my + 6, and 2j+2t72 Z CiOéi = mso + (92,
=0 =0

wherem; andm, are the greatest integers in the above expressions, then we see thdtsinee
0,
i i 1
2J+2 2bnOén =ms + 93 with ms € 7 andwg‘ = ’91 — 92| < W (7)
On the other hand, sincehas the form given above, we get from the definitionc@f, m) that
c(j+21 n) > 1andc(k,n) = 0forallk € (j+2'72,j+2'"1). Fort sufficiently large, we have
that

22,3 C(kan):2j+2t*2bn 3 c(k,n)

2k 2k
k=j+2t72+1 k=j+2t-1
< 2j+2t*2bnn2n2—j—2t*1+1 _ 21—2f*2bnn2n < 523
and
L ot—2 > C(k,N) L ot—2 i ot—1 _ot—2 1
P, Y S 2 P2 =27, > o
k=j+2t=241

It follows that (7) cannot hold, giving a contradiction and completing the proof. O
Homework:

1. Prove that the set of Liouville numbers][ih 1] is uncountable.
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