(1) The number 2 can appear in any one of 4 positions for a 4 -permutation. The remaining three positions correspond to a 3 permutation of the five numbers from the set $\{1,3,4,5,6\}$. There are $5 \times 4 \times 3=60$ such 3 -permutations. Hence, the answer is $4 \times 60=240$.
(2) The answer is r where r is the largest positive integer such that 2^{r} divides 50 !. Thus, the answer is

$$
\begin{aligned}
r & =\left[\frac{50}{2}\right]+\left[\frac{50}{4}\right]+\left[\frac{50}{8}\right]+\left[\frac{50}{16}\right]+\left[\frac{50}{32}\right] \\
& =25+12+6+3+1 \\
& =47
\end{aligned}
$$

(4) (b) The number of subsets of $\{1,2, \ldots, n\}$ of size k is $\binom{n}{k}$. It follows that

$$
\left|\mathcal{A}_{1}\right|+\left|\mathcal{A}_{2}\right|+\cdots+\left|\mathcal{A}_{r}\right|=\sum_{k=0}^{n} k\binom{n}{k} .
$$

We evaluated this last expression in class (see Notes 6). The answer is $n 2^{n-1}$.
(5) We take $x=1 / 2$ in the binomial theorem

$$
(x+1)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k}
$$

to obtain

$$
(3 / 2)^{n}=\sum_{k=0}^{n} \frac{\binom{n}{k}}{2^{k}}=1+\sum_{k=1}^{n} \frac{\binom{n}{k}}{2^{k}}
$$

(since the summand $\binom{n}{k} / 2^{k}$ equals 1 when $k=0$). Subtracting 1 from both sides of the equation, we obtain

$$
\sum_{k=1}^{n} \frac{\binom{n}{k}}{2^{k}}=(3 / 2)^{n}-1
$$

(6) Observe that

$$
\int_{0}^{1} x^{k} d x=\left.\frac{x^{k+1}}{k+1}\right|_{x=0} ^{x=1}=\frac{1}{k+1}
$$

and

$$
\int_{0}^{1}(x+1)^{n} d x=\left.\frac{(x+1)^{n+1}}{n+1}\right|_{x=0} ^{x=1}=\frac{2^{n+1}-1}{n+1} .
$$

By integrating from 0 to 1 both sides of the binomial theorem $\sum_{k=0}^{n}\binom{n}{k} x^{k}=(x+1)^{n}$, we deduce that

$$
\sum_{k=0}^{n}\binom{n}{k} \frac{1}{k+1}=\frac{2^{n+1}-1}{n+1}
$$

which is equivalent to what was to be shown.

