Problem: Show that $\int_{0}^{\pi / 2} \cos ^{2 n+1} x d x=\prod_{j=1}^{n}\left(\frac{2 j}{2 j+1}\right)$ for every integer $n \geq 1$.

Solution. We prove

$$
\begin{equation*}
\int_{0}^{\pi / 2} \cos ^{2 n+1} x d x=\prod_{j=1}^{n}\left(\frac{2 j}{2 j+1}\right) \tag{*}
\end{equation*}
$$

for every integer $n \geq 1$ by induction on n. To see that $(*)$ holds for $n=1$, we make use of $\cos ^{2} x=1-\sin ^{2} x$ followed by the substitution $u=\sin x$ to see that

$$
\begin{aligned}
\int_{0}^{\pi / 2} \cos ^{3} x d x & =\int_{0}^{\pi / 2} \cos ^{2} x \cos x d x=\int_{0}^{\pi / 2}\left(1-\sin ^{2} x\right) \cos x d x \\
& =\int_{0}^{1}\left(1-u^{2}\right) d u=u-\left.\frac{u^{3}}{3}\right|_{0} ^{1}=1-\frac{1}{3}=\frac{2}{3}=\prod_{j=1}^{1}\left(\frac{2 j}{2 j+1}\right)
\end{aligned}
$$

Next, we suppose that (*) holds for some positive integer $n=k \geq 1$. Thus,

$$
\begin{equation*}
\int_{0}^{\pi / 2} \cos ^{2 k+1} x d x=\prod_{j=1}^{k}\left(\frac{2 j}{2 j+1}\right) . \tag{**}
\end{equation*}
$$

Next, we show that $(*)$ holds for $n=k+1$. To clarify, we want to show that

$$
\begin{aligned}
\int_{0}^{\pi / 2} \cos ^{2 k+3} x d x & =\int_{0}^{\pi / 2} \cos ^{2(k+1)+1} x d x=\prod_{j=1}^{k+1}\left(\frac{2 j}{2 j+1}\right) \\
& =\prod_{j=1}^{k}\left(\frac{2 j}{2 j+1}\right) \times \frac{2(k+1)}{2(k+1)+1}=\frac{2 k+2}{2 k+3} \prod_{j=1}^{k}\left(\frac{2 j}{2 j+1}\right) .
\end{aligned}
$$

To show this, we begin by applying integration by parts with $u=\cos ^{2 k+2} x$ and $v=\sin x$ to deduce

$$
\begin{aligned}
& \int_{0}^{\pi / 2} \cos ^{2 k+3} x d x=\int_{0}^{\pi / 2}\left(\cos ^{2 k+2} x\right)(\cos x) d x=\int_{x=0}^{x=\pi / 2} u d v=\left.u v\right|_{x=0} ^{x=\pi / 2}-\int_{x=0}^{x=\pi / 2} v d u \\
& \quad=\left.\left(\cos ^{2 k+2} x\right)(\sin x)\right|_{0} ^{\pi / 2}-\int_{0}^{\pi / 2}(\sin x)(2 k+2)\left(\cos ^{2 k+1} x\right)(-\sin x) d x \\
& \quad=\int_{0}^{\pi / 2}\left(\sin ^{2} x\right)(2 k+2)\left(\cos ^{2 k+1} x\right) d x=(2 k+2) \int_{0}^{\pi / 2}\left(1-\cos ^{2} x\right)\left(\cos ^{2 k+1} x\right) d x \\
& \quad=(2 k+2) \int_{0}^{\pi / 2}\left(\cos ^{2 k+1} x\right) d x-(2 k+2) \int_{0}^{\pi / 2}\left(\cos ^{2 k+3} x\right) d x
\end{aligned}
$$

Adding $(2 k+2) \int_{0}^{\pi / 2}\left(\cos ^{2 k+3} x\right) d x$ to the first and last parts of these equations gives

$$
(2 k+3) \int_{0}^{\pi / 2}\left(\cos ^{2 k+3} x\right) d x=(2 k+2) \int_{0}^{\pi / 2}\left(\cos ^{2 k+1} x\right) d x
$$

Combining this with ($* *$) gives

$$
\int_{0}^{\pi / 2}\left(\cos ^{2 k+3} x\right) d x=\frac{2 k+2}{2 k+3} \int_{0}^{\pi / 2}\left(\cos ^{2 k+1} x\right) d x=\frac{2 k+2}{2 k+3} \prod_{j=1}^{k}\left(\frac{2 j}{2 j+1}\right)
$$

This is what we said we wanted to show, so we deduce now that ($*$) holds for $n=k+1$. Thus, by induction, $(*)$ holds for every integer $n \geq 1$.

