Math 574, Notes 9 Graphs and Trees

- Definition: A graph G is a finite collection of vertices V together with a collection of edges E

 (each edge joins two elements of V). We write $G=(V, E)$. We consider only the case where each pair of vertices in V corresponds to at most one edge in E (but possibly none). We denote each element of E as an unordered pair $\{u, v\}$ where both u and v are in V and suppose that $u \neq v$ for each $\{u, v\} \in E$.- Definitions: A path from $u \in V$ to $v \in V$ in a graph $G=(V, E)$ is a sequence of edges $e_{j}=\left\{x_{j-1}, x_{j}\right\} \in E$, where $j \in\{1,2, \ldots, r\}$, such that $x_{0}=u$ and $x_{r}=v$. A cycle in a graph G is a path from u to u consisting of distinct edges $e_{j}=\left\{x_{j-1}, x_{j}\right\} \in E$ for $j \in\{1,2, \ldots, r\}$ with $x_{0}=x_{r}=u$ and with $x_{0}, x_{1}, \ldots, x_{r-1}$ distinct. A connected graph is a graph having the property that there is a path from u to v for every choice of u and v from its vertex set V. The distance between two vertices u and v in a connected graph is the minimal number of edges in any path from u to v.
- Definition: A tree is a connected graph which contains no cycle.

Examples:

(1) Illustrate the above definitions with examples.
(2) What do family trees have to do with trees?
(3) A complete graph on n vertices is a graph $G=(V, E)$ with $|V|=n$ and such that for every choice of u and v in V, there is an edge $\{u, v\} \in E$. How many edges are there in a complete graph on n vertices?
(4) If each edge of a complete graph on 6 vertices is colored either red or blue, why must the graph contain a monochromatic triangle (i.e., why must there exist 3 vertices A, B, and C such that each of the edges $\{A, B\},\{A, C\}$, and $\{B, C\}$ is colored the same)?
(5) If each edge of a complete graph on 17 vertices is colored either red, blue, or green, why must the graph contain a monochromatic triangle?
(6) Let u and v be vertices in a graph $G=(V, E)$. Prove that if there are two or more distinct paths from u to v each containing no repeated edges (or vertices), then there is a cycle in G. What does this imply about trees?
(7) How many edges does a tree on n vertices have?
(8) For u a vertex in a graph $G=(V, E)$, let the degree of u (written $\operatorname{deg}(u)$) denote the number of edges containing u. Prove that a tree with $n \geq 2$ vertices has at least two vertices with degree 1 . (Hint: Consider u and v with the distance between them maximal, and show each of u and v has degree 1.)
(9) An Euler path in a graph G is a path that traverses every edge of G exactly once. Give examples
of graphs where Euler paths exist and other examples where they do not exist. Discuss a necessary and sufficient condition for the existence of an Euler path.
(10) A graph is called planar if it can be drawn in a plane without any edges intersecting or vertices overlapping. Give examples of graphs which are planar and other graphs which are not. Discuss a necessary and sufficient condition for a graph to be planar.

