MATH 574, NOTES 8 RECURRENCE RELATIONS

▶ **Definition:** A recurrence relation for a sequence $\{a_n\}$ is a formula which expresses the *n*th term of the sequence in terms of one or more of the previous terms of the sequence (when $n \ge n_0$ for some n_0).

► **Comment:** Typically the recurrence relation is known and one wants to determine explicitly the sequences which satisfy the given recurrence relation.

Examples:

(1) Given $a_1 = 1$ and $a_n = 2a_{n-1}$ for every $n \ge 2$, determine a_n .

(2) A person deposits \$1000 into a savings account earning 2% interest compounded annually and never withdraws or adds money to the account (other than the interest earned). How much will be in the account after n years?

(3) The Tower of Hanoi Problem. Describe it and solve it.

(4) Linear recurrences (with constant coefficients). Define them and describe how to solve one using its *characteristic equation*.

(5) Find a general formula for the nth Fibonacci number.

(6) Suppose $u_0 = 0$, $u_1 = 1$, and $u_n = u_{n-1} + 2u_{n-2}$ for $n \ge 2$. What is the characteristic equation for this recursion? What are its roots? Show that $u_n = \frac{1}{3} (2^n - (-1)^n)$ for all $n \ge 0$.

(7) Suppose $a_0 = 0$, $a_1 = 1$, $a_2 = 2$, and $a_n = 3a_{n-2} + 2a_{n-3}$ for $n \ge 3$. Show that $a_n = \frac{1}{9} ((3n-4)(-1)^n + 2^{n+2})$ for all $n \ge 0$.

(8) Suppose $a_0 = 0$, $a_1 = 1$, $a_2 = 2$, and $a_n = -2a_{n-1} - a_{n-2} - 2a_{n-3}$ for $n \ge 3$. Show that (-2 - 9i) = (-2 + 9i) = 2

$$a_n = \left(\frac{-2-9i}{10}\right)i^n + \left(\frac{-2+9i}{10}\right)(-i)^n + \frac{2}{5}(-2)^n \quad \text{for all } n \ge 0$$

(9) Suppose $u_0 = 4$, $u_1 = 5$, and $u_n = 3u_{n-1} - 2u_{n-2}$ for $n \ge 2$. Find an explicit formula for u_n .

(10) Suppose $a_0 = 4$, $a_1 = 5$, and $a_n = 2a_{n-1} + 2a_{n-2}$ for $n \ge 2$. Find an explicit formula for a_n .

(11) Suppose $u_0 = 0$, $u_1 = 1$, $u_2 = 2$, and $u_n = 3u_{n-1} - 2u_{n-2} + 6u_{n-3}$ for $n \ge 3$. Find an explicit formula for u_n .