MATH 574, NOTES 8 RECURRENCE RELATIONS

- Definition: A recurrence relation for a sequence $\left\{a_{n}\right\}$ is a formula which expresses the nth term of the sequence in terms of one or more of the previous terms of the sequence (when $n \geq n_{0}$ for some n_{0}).
- Comment: Typically the recurrence relation is known and one wants to determine explicitly the sequences which satisfy the given recurrence relation.

Examples:

(1) Given $a_{1}=1$ and $a_{n}=2 a_{n-1}$ for every $n \geq 2$, determine a_{n}.
(2) A person deposits $\$ 1000$ into a savings account earning 2% interest compounded annually and never withdraws or adds money to the account (other than the interest earned). How much will be in the account after n years?
(3) The Tower of Hanoi Problem. Describe it and solve it.
(4) Linear recurrences (with constant coefficients). Define them and describe how to solve one using its characteristic equation.
(5) Find a general formula for the nth Fibonacci number.
(6) Suppose $u_{0}=0, u_{1}=1$, and $u_{n}=u_{n-1}+2 u_{n-2}$ for $n \geq 2$. What is the characteristic equation for this recursion? What are its roots? Show that $u_{n}=\frac{1}{3}\left(2^{n}-(-1)^{n}\right)$ for all $n \geq 0$.
(7) Suppose $a_{0}=0, a_{1}=1, a_{2}=2$, and $a_{n}=3 a_{n-2}+2 a_{n-3}$ for $n \geq 3$. Show that $a_{n}=\frac{1}{9}\left((3 n-4)(-1)^{n}+2^{n+2}\right)$ for all $n \geq 0$.
(8) Suppose $a_{0}=0, a_{1}=1, a_{2}=2$, and $a_{n}=-2 a_{n-1}-a_{n-2}-2 a_{n-3}$ for $n \geq 3$. Show that

$$
a_{n}=\left(\frac{-2-9 \mathbf{i}}{10}\right) \mathbf{i}^{n}+\left(\frac{-2+9 \mathbf{i}}{10}\right)(-\mathbf{i})^{n}+\frac{2}{5}(-2)^{n} \quad \text { for all } n \geq 0
$$

(9) Suppose $u_{0}=4, u_{1}=5$, and $u_{n}=3 u_{n-1}-2 u_{n-2}$ for $n \geq 2$. Find an explicit formula for u_{n}.
(10) Suppose $a_{0}=4, a_{1}=5$, and $a_{n}=2 a_{n-1}+2 a_{n-2}$ for $n \geq 2$. Find an explicit formula for a_{n}.
(11) Suppose $u_{0}=0, u_{1}=1, u_{2}=2$, and $u_{n}=3 u_{n-1}-2 u_{n-2}+6 u_{n-3}$ for $n \geq 3$. Find an explicit formula for u_{n}.

